DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scanning optical homodyne detection of high-frequency picoscale resonances in cantilever and tuning fork sensors

Abstract

Higher harmonic modes in nanoscale silicon cantilevers and microscale quartz tuning forks are detected and characterized using a custom scanning optical homodyne interferometer. Capable of both mass and force sensing, these resonators exhibit high-frequency harmonic motion content with picometer-scale amplitudes detected in a 2.5 MHz bandwidth, driven by ambient thermal radiation. Quartz tuning forks furthermore display both in-plane and out-of-plane harmonics. The first six electronically detected resonances are matched to optically detected and mapped fork eigenmodes. Mass sensing experiments utilizing higher tuning fork modes suggest greater than six times sensitivity enhancement over fundamental mode operation.

Authors:
 [1];  [1];  [2];  [3];  [4];  [1]
  1. Stanford Univ., CA (United States)
  2. Purdue Univ., West Lafayette, IN (United States); Harvard Medical School, Boston, MA (United States)
  3. Purdue Univ., West Lafayette, IN (United States)
  4. Stanford Univ., CA (United States); Chung-Ang Univ., Seoul (Korea, Republic of)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1443052
Report Number(s):
SLAC-PUB-13994
Journal ID: ISSN 0003-6951
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 91; Journal Issue: 17; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Zeltzer, G., Randel, J. C., Gupta, A. K., Bashir, R., Song, S. -H., and Manoharan, H. C. Scanning optical homodyne detection of high-frequency picoscale resonances in cantilever and tuning fork sensors. United States: N. p., 2007. Web. doi:10.1063/1.2803774.
Zeltzer, G., Randel, J. C., Gupta, A. K., Bashir, R., Song, S. -H., & Manoharan, H. C. Scanning optical homodyne detection of high-frequency picoscale resonances in cantilever and tuning fork sensors. United States. https://doi.org/10.1063/1.2803774
Zeltzer, G., Randel, J. C., Gupta, A. K., Bashir, R., Song, S. -H., and Manoharan, H. C. Fri . "Scanning optical homodyne detection of high-frequency picoscale resonances in cantilever and tuning fork sensors". United States. https://doi.org/10.1063/1.2803774. https://www.osti.gov/servlets/purl/1443052.
@article{osti_1443052,
title = {Scanning optical homodyne detection of high-frequency picoscale resonances in cantilever and tuning fork sensors},
author = {Zeltzer, G. and Randel, J. C. and Gupta, A. K. and Bashir, R. and Song, S. -H. and Manoharan, H. C.},
abstractNote = {Higher harmonic modes in nanoscale silicon cantilevers and microscale quartz tuning forks are detected and characterized using a custom scanning optical homodyne interferometer. Capable of both mass and force sensing, these resonators exhibit high-frequency harmonic motion content with picometer-scale amplitudes detected in a 2.5 MHz bandwidth, driven by ambient thermal radiation. Quartz tuning forks furthermore display both in-plane and out-of-plane harmonics. The first six electronically detected resonances are matched to optically detected and mapped fork eigenmodes. Mass sensing experiments utilizing higher tuning fork modes suggest greater than six times sensitivity enhancement over fundamental mode operation.},
doi = {10.1063/1.2803774},
journal = {Applied Physics Letters},
number = 17,
volume = 91,
place = {United States},
year = {Fri Oct 26 00:00:00 EDT 2007},
month = {Fri Oct 26 00:00:00 EDT 2007}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (Color online) (a) Scanning Michelson interferometer including a beam expander (focal length f , diameter φ) and focusing lens. (b) SEM of 200-nm-thick Si cantilever. (c) High frequency cantilever free-end motion ASD. (Insets) Cantilever maps of ASD vs position for the first four flexural modes.

Save / Share:

Works referenced in this record:

Frequency modulation detection using high‐ Q cantilevers for enhanced force microscope sensitivity
journal, January 1991

  • Albrecht, T. R.; Grütter, P.; Horne, D.
  • Journal of Applied Physics, Vol. 69, Issue 2
  • DOI: 10.1063/1.347347

High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork
journal, December 1998

  • Giessibl, Franz J.
  • Applied Physics Letters, Vol. 73, Issue 26
  • DOI: 10.1063/1.122948

On the acoustics of tuning forks
journal, July 1992

  • Rossing, Thomas D.; Russell, Daniel A.; Brown, David E.
  • American Journal of Physics, Vol. 60, Issue 7
  • DOI: 10.1119/1.17116

Interaction sensing in dynamic force microscopy
journal, February 2000


Force Microscopy with Light-Atom Probes
journal, July 2004


First Overtone Frequency Stimulated Quartz Tuning Fork Used for Shear-Force Scanning Near-Field Optical Microscopy
journal, November 2003


Resonant harmonic response in tapping-mode atomic force microscopy
journal, April 2004


Special cantilever geometry for the access of higher oscillation modes in atomic force microscopy
journal, July 2006

  • Sadewasser, S.; Villanueva, G.; Plaza, J. A.
  • Applied Physics Letters, Vol. 89, Issue 3
  • DOI: 10.1063/1.2226993

Micromechanical mass sensors for biomolecular detection in a physiological environment
journal, September 2005


Force microscope using a fiber‐optic displacement sensor
journal, November 1988

  • Rugar, D.; Mamin, H. J.; Erlandsson, R.
  • Review of Scientific Instruments, Vol. 59, Issue 11
  • DOI: 10.1063/1.1139958

A differential interferometer for force microscopy
journal, October 1989

  • Schönenberger, C.; Alvarado, S. F.
  • Review of Scientific Instruments, Vol. 60, Issue 10
  • DOI: 10.1063/1.1140543

Atomic force microscopy using optical interferometry
journal, March 1988

  • Erlandsson, R.; McClelland, G. M.; Mate, C. M.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 6, Issue 2
  • DOI: 10.1116/1.575440

Femtogram mass detection using photothermally actuated nanomechanical resonators
journal, April 2003

  • Lavrik, Nickolay V.; Datskos, Panos G.
  • Applied Physics Letters, Vol. 82, Issue 16
  • DOI: 10.1063/1.1569050

Single virus particle mass detection using microresonators with nanoscale thickness
journal, March 2004

  • Gupta, A.; Akin, D.; Bashir, R.
  • Applied Physics Letters, Vol. 84, Issue 11
  • DOI: 10.1063/1.1667011

Works referencing / citing this record:

Electrical characterization of a tuning fork crystal oscillator using dual-phase lock-in technique
journal, March 2009

  • Song, Sang-Hun
  • Review of Scientific Instruments, Vol. 80, Issue 3
  • DOI: 10.1063/1.3103574

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.