DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Applications of XPS in the characterization of Battery materials

Abstract

In this study, technological development requires reliable power sources where energy storage devices are emerging as a critical component. Wide range of energy storage devices, Redox-flow batteries (RFB), Lithium ion based batteries (LIB), and Lithium-sulfur (LSB) batteries are being developed for various applications ranging from grid-scale level storage to mobile electronics. Material complexities associated with these energy storage devices with unique electrochemistry are formidable challenge which needs to be address for transformative progress in this field. X-ray photoelectron spectroscopy (XPS) - a powerful surface analysis tool - has been widely used to study these energy storage materials because of its ability to identify, quantify and image the chemical distribution of redox active species. However, accessing the deeply buried solid-electrolyte interfaces (which dictates the performance of energy storage devices) has been a challenge in XPS usage. Herein we report our recent efforts to utilize the XPS to gain deep insight about these interfaces under realistic conditions with varying electrochemistry involving RFB, LIB and LSB.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1441210
Report Number(s):
PNNL-SA-134570
Journal ID: ISSN 0368-2048; PII: S0368204817302505
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Electron Spectroscopy and Related Phenomena
Additional Journal Information:
Journal Volume: 231; Journal ID: ISSN 0368-2048
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Shutthanandan, Vaithiyalingam, Nandasiri, Manjula, Zheng, Jianming, Engelhard, Mark H., Xu, Wu, Thevuthasan, Suntharampillai, and Murugesan, Vijayakumar. Applications of XPS in the characterization of Battery materials. United States: N. p., 2018. Web. doi:10.1016/j.elspec.2018.05.005.
Shutthanandan, Vaithiyalingam, Nandasiri, Manjula, Zheng, Jianming, Engelhard, Mark H., Xu, Wu, Thevuthasan, Suntharampillai, & Murugesan, Vijayakumar. Applications of XPS in the characterization of Battery materials. United States. https://doi.org/10.1016/j.elspec.2018.05.005
Shutthanandan, Vaithiyalingam, Nandasiri, Manjula, Zheng, Jianming, Engelhard, Mark H., Xu, Wu, Thevuthasan, Suntharampillai, and Murugesan, Vijayakumar. Sat . "Applications of XPS in the characterization of Battery materials". United States. https://doi.org/10.1016/j.elspec.2018.05.005. https://www.osti.gov/servlets/purl/1441210.
@article{osti_1441210,
title = {Applications of XPS in the characterization of Battery materials},
author = {Shutthanandan, Vaithiyalingam and Nandasiri, Manjula and Zheng, Jianming and Engelhard, Mark H. and Xu, Wu and Thevuthasan, Suntharampillai and Murugesan, Vijayakumar},
abstractNote = {In this study, technological development requires reliable power sources where energy storage devices are emerging as a critical component. Wide range of energy storage devices, Redox-flow batteries (RFB), Lithium ion based batteries (LIB), and Lithium-sulfur (LSB) batteries are being developed for various applications ranging from grid-scale level storage to mobile electronics. Material complexities associated with these energy storage devices with unique electrochemistry are formidable challenge which needs to be address for transformative progress in this field. X-ray photoelectron spectroscopy (XPS) - a powerful surface analysis tool - has been widely used to study these energy storage materials because of its ability to identify, quantify and image the chemical distribution of redox active species. However, accessing the deeply buried solid-electrolyte interfaces (which dictates the performance of energy storage devices) has been a challenge in XPS usage. Herein we report our recent efforts to utilize the XPS to gain deep insight about these interfaces under realistic conditions with varying electrochemistry involving RFB, LIB and LSB.},
doi = {10.1016/j.elspec.2018.05.005},
journal = {Journal of Electron Spectroscopy and Related Phenomena},
number = ,
volume = 231,
place = {United States},
year = {Sat May 26 00:00:00 EDT 2018},
month = {Sat May 26 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 67 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Schematic diagram of the Vanadium Redox flow battery and the reaction equation during the battery operation.

Save / Share:

Works referenced in this record:

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery
journal, January 2013

  • Barghamadi, Marzieh; Kapoor, Ajay; Wen, Cuie
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.096308jes

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Advances in Li–S batteries
journal, January 2010

  • Ji, Xiulei; Nazar, Linda F.
  • Journal of Materials Chemistry, Vol. 20, Issue 44, p. 9821-9826
  • DOI: 10.1039/b925751a

Lithium–sulfur batteries: from liquid to solid cells
journal, January 2015

  • Lin, Zhan; Liang, Chengdu
  • Journal of Materials Chemistry A, Vol. 3, Issue 3
  • DOI: 10.1039/C4TA04727C

Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
journal, May 2017

  • Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.
  • Chemistry of Materials, Vol. 29, Issue 11
  • DOI: 10.1021/acs.chemmater.7b00374

Spectroscopic investigations of the fouling process on Nafion membranes in vanadium redox flow batteries
journal, January 2011


Investigation of local environments in Nafion–SiO2 composite membranes used in vanadium redox flow batteries
journal, April 2012


State of Understanding of Nafion
journal, October 2004

  • Mauritz, Kenneth A.; Moore, Robert B.
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr0207123

Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions
journal, September 2009


Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries
journal, December 2016

  • Vijayakumar, M.; Luo, Qingtao; Lloyd, Ralph
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 50
  • DOI: 10.1021/acsami.6b10744

XRD and XPS analysis of the degradation of the polymer electrolyte in H2–O2 fuel cell
journal, March 2003


XPS studies of the surface oxidation states on vanadium-phosphorus-oxygen (VPO) equilibrated catalysts
journal, June 1995


Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery
journal, April 2009


Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries
journal, November 2010


Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Inoue, Atsuyoshi
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785795

Characterization of Lithium Alkyl Carbonates by X-ray Photoelectron Spectroscopy: Experimental and Theoretical Study
journal, August 2005

  • Dedryvère, R.; Gireaud, L.; Grugeon, S.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 33
  • DOI: 10.1021/jp051626k

XPS analysis of the SEI formed on carbonaceous materials
journal, May 2004


Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
journal, November 2013

  • Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo
  • Angewandte Chemie International Edition, Vol. 52, Issue 50
  • DOI: 10.1002/anie.201304762

Shuttle phenomenon – The irreversible oxidation mechanism of sulfur active material in Li–S battery
journal, August 2013


Polysulfide Shuttle Study in the Li/S Battery System
journal, January 2004

  • Mikhaylik, Yuriy V.; Akridge, James R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 11, p. A1969-A1976
  • DOI: 10.1149/1.1806394

Study of the Initial Stage of Solid Electrolyte Interphase Formation upon Chemical Reaction of Lithium Metal and N -Methyl- N -Propyl-Pyrrolidinium-Bis(Fluorosulfonyl)Imide
journal, September 2012

  • Budi, Akin; Basile, Andrew; Opletal, George
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp304581g

The effect of a solid electrolyte interphase on the mechanism of operation of lithium–sulfur batteries
journal, January 2015

  • Markevich, E.; Salitra, G.; Rosenman, A.
  • Journal of Materials Chemistry A, Vol. 3, Issue 39
  • DOI: 10.1039/C5TA04613K

Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification
journal, April 2012

  • Barchasz, Céline; Molton, Florian; Duboc, Carole
  • Analytical Chemistry, Vol. 84, Issue 9
  • DOI: 10.1021/ac2032244

Li 2 S Film Formation on Lithium Anode Surface of Li–S batteries
journal, February 2016

  • Liu, Zhixiao; Bertolini, Samuel; Balbuena, Perla B.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 7
  • DOI: 10.1021/acsami.5b11803

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

In situ methods for Li-ion battery research: A review of recent developments
journal, August 2015


Effect of Anion on Behaviour of Li-S Battery Electrolyte Solutions Based on N-Methyl-N-Butyl-Pyrrolidinium Ionic Liquids
journal, October 2015


Physicochemical Characterization of 1-Butyl-3-methylimidazolium and 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide
journal, March 2012

  • Vranes, Milan; Dozic, Sanja; Djeric, Vesna
  • Journal of Chemical & Engineering Data, Vol. 57, Issue 4
  • DOI: 10.1021/je2010837

Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide
journal, December 2005


X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation–anion interactions and a comparison to imidazolium-based analogues
journal, January 2011

  • Men, Shuang; Lovelock, Kevin R. J.; Licence, Peter
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 33
  • DOI: 10.1039/c1cp21053j

Quantitative determination of surface composition of sulfur bearing anion mixtures by Auger electron spectroscopy
journal, October 1980

  • Turner, N. H.; Murday, J. S.; Ramaker, D. E.
  • Analytical Chemistry, Vol. 52, Issue 1
  • DOI: 10.1021/ac50051a021

XPS of sulphide mineral surfaces: metal-deficient, polysulphides, defects and elemental sulphur
journal, August 1999


Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes
journal, January 2006

  • Howlett, P. C.; Brack, N.; Hollenkamp, A. F.
  • Journal of The Electrochemical Society, Vol. 153, Issue 3
  • DOI: 10.1149/1.2164726

Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study
journal, January 2014

  • Xu, Chao; Sun, Bing; Gustafsson, Torbjörn
  • J. Mater. Chem. A, Vol. 2, Issue 20
  • DOI: 10.1039/C4TA00214H

Understanding the Interfacial Processes at Silicon–Copper Electrodes in Ionic Liquid Battery Electrolyte
journal, July 2012

  • Nguyen, Cao Cuong; Woo, Sang-Wook; Song, Seung-Wan
  • The Journal of Physical Chemistry C, Vol. 116, Issue 28
  • DOI: 10.1021/jp3019815

Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries
journal, November 2015

  • Camacho-Forero, Luis E.; Smith, Taylor W.; Bertolini, Samuel
  • The Journal of Physical Chemistry C, Vol. 119, Issue 48
  • DOI: 10.1021/acs.jpcc.5b08254

Works referencing / citing this record:

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.