DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys

Abstract

We use mock galaxy survey simulations designed to resemble the Dark Energy Survey Year 1 (DES Y1) data to validate and inform cosmological parameter estimation. When similar analysis tools are applied to both simulations and real survey data, they provide powerful validation tests of the DES Y1 cosmological analyses presented in companion papers. We use two suites of galaxy simulations produced using different methods, which therefore provide independent tests of our cosmological parameter inference. The cosmological analysis we aim to validate is presented in DES Collaboration et al. (2017) and uses angular two-point correlation functions of galaxy number counts and weak lensing shear, as well as their cross-correlation, in multiple redshift bins. While our constraints depend on the specific set of simulated realisations available, for both suites of simulations we find that the input cosmology is consistent with the combined constraints from multiple simulated DES Y1 realizations in the $$\Omega_m-\sigma_8$$ plane. For one of the suites, we are able to show with high confidence that any biases in the inferred $$S_8=\sigma_8(\Omega_m/0.3)^{0.5}$$ and $$\Omega_m$$ are smaller than the DES Y1 $$1-\sigma$$ uncertainties. For the other suite, for which we have fewer realizations, we are unable to be this conclusive; we infer a roughly 70% probability that systematic biases in the recovered $$\Omega_m$$ and $$S_8$$ are sub-dominant to the DES Y1 uncertainty. Furthermore, as cosmological analyses of this kind become increasingly more precise, validation of parameter inference using survey simulations will be essential to demonstrate robustness.

Authors:
 [1];  [2];  [3];  [4];  [5];  [5];  [6];  [2];  [7];  [8];  [8];  [6];  [9];  [1];  [10];  [11];  [12];  [13];  [14];  [5] more »;  [15];  [16];  [17];  [18];  [19];  [12];  [12];  [20];  [7];  [21];  [12];  [6];  [22];  [23];  [11];  [5];  [14];  [15];  [7];  [22];  [15];  [24];  [12];  [21];  [25];  [26];  [16];  [23];  [12];  [27];  [28];  [1];  [29];  [30];  [28];  [21];  [31];  [12];  [32];  [22];  [33];  [23];  [34];  [35];  [6];  [24];  [12];  [17];  [24];  [36];  [18];  [37];  [38];  [39];  [40];  [17];  [20];  [18];  [41] « less
  1. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA;Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  2. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA;Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA
  3. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA;Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA;SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  4. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA;Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, 1290 Versoix, Switzerland
  5. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain;Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  6. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA;SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  7. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  8. Steward Observatory, Department of Astronomy/, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA;Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  9. Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK
  10. Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
  11. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra, Barcelona, Spain
  12. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  13. Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, PA 15312, USA
  14. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  15. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA
  16. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA;Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  17. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  18. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  19. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK;Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
  20. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK
  21. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
  22. Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil;Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
  23. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA;National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  24. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
  25. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA;Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  26. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  27. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK;Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  28. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  29. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany;Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
  30. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  31. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  32. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil;Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
  33. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  34. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain;Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra, Barcelona, Spain
  35. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  36. School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
  37. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA
  38. Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, E-13083-859, Campinas, SP, Brazil;Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
  39. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  40. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  41. Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany;Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany;Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1439467
Alternate Identifier(s):
OSTI ID: 1479699; OSTI ID: 1645472
Report Number(s):
arXiv:1803.09795; FERMILAB-PUB-18-080-A-AD-AE-SCD
Journal ID: ISSN 0035-8711;1365-2966; oai:inspirehep.net:1664467; TRN: US1900619
Grant/Contract Number:  
AC02-07CH11359; SC0007859; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 480; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; large-scale structure of Universe; cosmological parameters

Citation Formats

MacCrann, N, DeRose, J, Wechsler, R H, Blazek, J, Gaztanaga, E, Crocce, M, Rykoff, E S, Becker, M R, Jain, B, Krause, E, Eifler, T F, Gruen, D, Zuntz, J, Troxel, M A, Elvin-Poole, J, Prat, J, Wang, M, Dodelson, S, Kravtsov, A, Fosalba, P, Busha, M T, Evrard, A E, Huterer, D, Abbott, T M C, Abdalla, F B, Allam, S, Annis, J, Avila, S, Bernstein, G M, Brooks, D, Buckley-Geer, E, Burke, D L, Rosell, A Carnero, Kind, M Carrasco, Carretero, J, Castander, F J, Cawthon, R, Cunha, C E, D’Andrea, C B, da Costa, L N, Davis, C, De Vicente, J, Diehl, H T, Doel, P, Frieman, J, García-Bellido, J, Gerdes, D W, Gruendl, R A, Gutierrez, G, Hartley, W G, Hollowood, D, Honscheid, K, Hoyle, B, James, D J, Jeltema, T, Kirk, D, Kuehn, K, Kuropatkin, N, Lima, M, Maia, M A G, Marshall, J L, Menanteau, F, Miquel, R, Plazas, A A, Roodman, A, Sanchez, E, Scarpine, V, Schubnell, M, Sevilla-Noarbe, I, Smith, M, Smith, R C, Soares-Santos, M, Sobreira, F, Suchyta, E, Swanson, M E C, Tarle, G, Thomas, D, Walker, A R, and Weller, J. DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys. United States: N. p., 2018. Web. doi:10.1093/mnras/sty1899.
MacCrann, N, DeRose, J, Wechsler, R H, Blazek, J, Gaztanaga, E, Crocce, M, Rykoff, E S, Becker, M R, Jain, B, Krause, E, Eifler, T F, Gruen, D, Zuntz, J, Troxel, M A, Elvin-Poole, J, Prat, J, Wang, M, Dodelson, S, Kravtsov, A, Fosalba, P, Busha, M T, Evrard, A E, Huterer, D, Abbott, T M C, Abdalla, F B, Allam, S, Annis, J, Avila, S, Bernstein, G M, Brooks, D, Buckley-Geer, E, Burke, D L, Rosell, A Carnero, Kind, M Carrasco, Carretero, J, Castander, F J, Cawthon, R, Cunha, C E, D’Andrea, C B, da Costa, L N, Davis, C, De Vicente, J, Diehl, H T, Doel, P, Frieman, J, García-Bellido, J, Gerdes, D W, Gruendl, R A, Gutierrez, G, Hartley, W G, Hollowood, D, Honscheid, K, Hoyle, B, James, D J, Jeltema, T, Kirk, D, Kuehn, K, Kuropatkin, N, Lima, M, Maia, M A G, Marshall, J L, Menanteau, F, Miquel, R, Plazas, A A, Roodman, A, Sanchez, E, Scarpine, V, Schubnell, M, Sevilla-Noarbe, I, Smith, M, Smith, R C, Soares-Santos, M, Sobreira, F, Suchyta, E, Swanson, M E C, Tarle, G, Thomas, D, Walker, A R, & Weller, J. DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys. United States. https://doi.org/10.1093/mnras/sty1899
MacCrann, N, DeRose, J, Wechsler, R H, Blazek, J, Gaztanaga, E, Crocce, M, Rykoff, E S, Becker, M R, Jain, B, Krause, E, Eifler, T F, Gruen, D, Zuntz, J, Troxel, M A, Elvin-Poole, J, Prat, J, Wang, M, Dodelson, S, Kravtsov, A, Fosalba, P, Busha, M T, Evrard, A E, Huterer, D, Abbott, T M C, Abdalla, F B, Allam, S, Annis, J, Avila, S, Bernstein, G M, Brooks, D, Buckley-Geer, E, Burke, D L, Rosell, A Carnero, Kind, M Carrasco, Carretero, J, Castander, F J, Cawthon, R, Cunha, C E, D’Andrea, C B, da Costa, L N, Davis, C, De Vicente, J, Diehl, H T, Doel, P, Frieman, J, García-Bellido, J, Gerdes, D W, Gruendl, R A, Gutierrez, G, Hartley, W G, Hollowood, D, Honscheid, K, Hoyle, B, James, D J, Jeltema, T, Kirk, D, Kuehn, K, Kuropatkin, N, Lima, M, Maia, M A G, Marshall, J L, Menanteau, F, Miquel, R, Plazas, A A, Roodman, A, Sanchez, E, Scarpine, V, Schubnell, M, Sevilla-Noarbe, I, Smith, M, Smith, R C, Soares-Santos, M, Sobreira, F, Suchyta, E, Swanson, M E C, Tarle, G, Thomas, D, Walker, A R, and Weller, J. Mon . "DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys". United States. https://doi.org/10.1093/mnras/sty1899. https://www.osti.gov/servlets/purl/1439467.
@article{osti_1439467,
title = {DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys},
author = {MacCrann, N and DeRose, J and Wechsler, R H and Blazek, J and Gaztanaga, E and Crocce, M and Rykoff, E S and Becker, M R and Jain, B and Krause, E and Eifler, T F and Gruen, D and Zuntz, J and Troxel, M A and Elvin-Poole, J and Prat, J and Wang, M and Dodelson, S and Kravtsov, A and Fosalba, P and Busha, M T and Evrard, A E and Huterer, D and Abbott, T M C and Abdalla, F B and Allam, S and Annis, J and Avila, S and Bernstein, G M and Brooks, D and Buckley-Geer, E and Burke, D L and Rosell, A Carnero and Kind, M Carrasco and Carretero, J and Castander, F J and Cawthon, R and Cunha, C E and D’Andrea, C B and da Costa, L N and Davis, C and De Vicente, J and Diehl, H T and Doel, P and Frieman, J and García-Bellido, J and Gerdes, D W and Gruendl, R A and Gutierrez, G and Hartley, W G and Hollowood, D and Honscheid, K and Hoyle, B and James, D J and Jeltema, T and Kirk, D and Kuehn, K and Kuropatkin, N and Lima, M and Maia, M A G and Marshall, J L and Menanteau, F and Miquel, R and Plazas, A A and Roodman, A and Sanchez, E and Scarpine, V and Schubnell, M and Sevilla-Noarbe, I and Smith, M and Smith, R C and Soares-Santos, M and Sobreira, F and Suchyta, E and Swanson, M E C and Tarle, G and Thomas, D and Walker, A R and Weller, J},
abstractNote = {We use mock galaxy survey simulations designed to resemble the Dark Energy Survey Year 1 (DES Y1) data to validate and inform cosmological parameter estimation. When similar analysis tools are applied to both simulations and real survey data, they provide powerful validation tests of the DES Y1 cosmological analyses presented in companion papers. We use two suites of galaxy simulations produced using different methods, which therefore provide independent tests of our cosmological parameter inference. The cosmological analysis we aim to validate is presented in DES Collaboration et al. (2017) and uses angular two-point correlation functions of galaxy number counts and weak lensing shear, as well as their cross-correlation, in multiple redshift bins. While our constraints depend on the specific set of simulated realisations available, for both suites of simulations we find that the input cosmology is consistent with the combined constraints from multiple simulated DES Y1 realizations in the $\Omega_m-\sigma_8$ plane. For one of the suites, we are able to show with high confidence that any biases in the inferred $S_8=\sigma_8(\Omega_m/0.3)^{0.5}$ and $\Omega_m$ are smaller than the DES Y1 $1-\sigma$ uncertainties. For the other suite, for which we have fewer realizations, we are unable to be this conclusive; we infer a roughly 70% probability that systematic biases in the recovered $\Omega_m$ and $S_8$ are sub-dominant to the DES Y1 uncertainty. Furthermore, as cosmological analyses of this kind become increasingly more precise, validation of parameter inference using survey simulations will be essential to demonstrate robustness.},
doi = {10.1093/mnras/sty1899},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 480,
place = {United States},
year = {Mon Jul 23 00:00:00 EDT 2018},
month = {Mon Jul 23 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Coyote Universe. i. Precision Determination of the Nonlinear Matter Power Spectrum
journal, April 2010


Analytic model for galaxy and dark matter clustering
journal, October 2000


The MICE grand challenge lightcone simulation – I. Dark matter clustering
journal, March 2015

  • Fosalba, P.; Crocce, M.; Gaztañaga, E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 448, Issue 4
  • DOI: 10.1093/mnras/stv138

Galaxy–halo alignments in the Horizon-AGN cosmological hydrodynamical simulation
journal, August 2017

  • Chisari, N. E.; Koukoufilippas, N.; Jindal, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 472, Issue 1
  • DOI: 10.1093/mnras/stx1998

The APM Galaxy Survey -- III. An analysis of systematic errors in the angular correlation function and cosmological implications
journal, December 1996

  • Maddox, S. J.; Efstathiou, G.; Sutherland, W. J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 283, Issue 4
  • DOI: 10.1093/mnras/283.4.1227

Biasing and hierarchical statistics in large-scale structure
journal, August 1993

  • Fry, J. N.; Gaztanaga, Enrique
  • The Astrophysical Journal, Vol. 413
  • DOI: 10.1086/173015

The DEEP2 Galaxy Redshift Survey: the relationship between galaxy properties and environment at z  1
journal, July 2006


HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere
journal, April 2005

  • Gorski, K. M.; Hivon, E.; Banday, A. J.
  • The Astrophysical Journal, Vol. 622, Issue 2
  • DOI: 10.1086/427976

Baryons and weak lensing power spectra
journal, November 2004


Revising the Halofit Model for the Nonlinear Matter Power Spectrum
journal, December 2012

  • Takahashi, Ryuichi; Sato, Masanori; Nishimichi, Takahiro
  • The Astrophysical Journal, Vol. 761, Issue 2
  • DOI: 10.1088/0004-637X/761/2/152

Handbook for the GREAT08 Challenge: An image analysis competition for cosmological lensing
journal, March 2009

  • Bridle, Sarah; Shawe-Taylor, John; Amara, Adam
  • The Annals of Applied Statistics, Vol. 3, Issue 1
  • DOI: 10.1214/08-AOAS222

Galaxy–galaxy lensing estimators and their covariance properties
journal, July 2017

  • Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš
  • Monthly Notices of the Royal Astronomical Society, Vol. 471, Issue 4
  • DOI: 10.1093/mnras/stx1828

The dark Energy Camera
journal, October 2015


Combining probes of large-scale structure with CosmoLike
journal, March 2014

  • Eifler, Tim; Krause, Elisabeth; Schneider, Peter
  • Monthly Notices of the Royal Astronomical Society, Vol. 440, Issue 2
  • DOI: 10.1093/mnras/stu251

The cosmological simulation code gadget-2
journal, December 2005


Quantifying the effect of baryon physics on weak lensing tomography: Baryon physics and weak lensing tomography
journal, September 2011

  • Semboloni, Elisabetta; Hoekstra, Henk; Schaye, Joop
  • Monthly Notices of the Royal Astronomical Society, Vol. 417, Issue 3
  • DOI: 10.1111/j.1365-2966.2011.19385.x

The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample
journal, March 2017

  • Alam, Shadab; Ata, Metin; Bailey, Stephen
  • Monthly Notices of the Royal Astronomical Society, Vol. 470, Issue 3
  • DOI: 10.1093/mnras/stx721

cosmolike – cosmological likelihood analyses for photometric galaxy surveys
journal, May 2017

  • Krause, Elisabeth; Eifler, Tim
  • Monthly Notices of the Royal Astronomical Society, Vol. 470, Issue 2
  • DOI: 10.1093/mnras/stx1261

Observational probes of cosmic acceleration
journal, September 2013


Planck 2015 results : XIII. Cosmological parameters
journal, September 2016


Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant
journal, September 1998

  • Riess, Adam G.; Filippenko, Alexei V.; Challis, Peter
  • The Astronomical Journal, Vol. 116, Issue 3
  • DOI: 10.1086/300499

The skewness of the aperture mass statistic
journal, July 2004


calclens: weak lensing simulations for large-area sky surveys and second-order effects in cosmic shear power spectra
journal, August 2013

  • Becker, Matthew R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 435, Issue 1
  • DOI: 10.1093/mnras/stt1352

An algorithm to build mock galaxy catalogues using MICE simulations
journal, December 2014

  • Carretero, J.; Castander, F. J.; Gaztañaga, E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 447, Issue 1
  • DOI: 10.1093/mnras/stu2402

Effect of Hot Baryons on the Weak-Lensing Shear Power Spectrum
journal, October 2004

  • Zhan, Hu; Knox, Lloyd
  • The Astrophysical Journal, Vol. 616, Issue 2
  • DOI: 10.1086/426712

The Third Gravitational Lensing Accuracy Testing (Great3) Challenge Handbook
journal, April 2014

  • Mandelbaum, Rachel; Rowe, Barnaby; Bosch, James
  • The Astrophysical Journal Supplement Series, Vol. 212, Issue 1
  • DOI: 10.1088/0067-0049/212/1/5

THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES
journal, June 2016

  • Laigle, C.; McCracken, H. J.; Ilbert, O.
  • The Astrophysical Journal Supplement Series, Vol. 224, Issue 2
  • DOI: 10.3847/0067-0049/224/2/24

KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering
journal, October 2017

  • Joudaki, Shahab; Blake, Chris; Johnson, Andrew
  • Monthly Notices of the Royal Astronomical Society, Vol. 474, Issue 4
  • DOI: 10.1093/mnras/stx2820

Cosmological parameter constraints from galaxy–galaxy lensing and galaxy clustering with the SDSS DR7
journal, April 2013

  • Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 2
  • DOI: 10.1093/mnras/stt572

Extended Limber approximation
journal, December 2008


The Concentration Dependence of the Galaxy–Halo Connection: Modeling Assembly bias with Abundance Matching
journal, December 2016

  • Lehmann, Benjamin V.; Mao, Yao-Yuan; Becker, Matthew R.
  • The Astrophysical Journal, Vol. 834, Issue 1
  • DOI: 10.3847/1538-4357/834/1/37

Sourcelens clustering effects on the skewness of the lensing convergence
journal, February 2002

  • Hamana, Takashi; Colombi, Stphane T.; Thion, Aurlien
  • Monthly Notices of the Royal Astronomical Society, Vol. 330, Issue 2
  • DOI: 10.1046/j.1365-8711.2002.05103.x

Bayesian Photometric Redshift Estimation
journal, June 2000

  • Benitez, Narciso
  • The Astrophysical Journal, Vol. 536, Issue 2
  • DOI: 10.1086/308947

The Luminosity and Color Dependence of the Galaxy Correlation Function
journal, September 2005

  • Zehavi, Idit; Zheng, Zheng; Weinberg, David H.
  • The Astrophysical Journal, Vol. 630, Issue 1
  • DOI: 10.1086/431891

Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey
journal, May 2003

  • Blanton, Michael R.; Brinkmann, J.; Csabai, Istvn
  • The Astronomical Journal, Vol. 125, Issue 5
  • DOI: 10.1086/342935

Cosmic Emulation: fast Predictions for the Galaxy Power Spectrum
journal, August 2015


Transients from initial conditions in cosmological simulations
journal, November 2006


Stable clustering, the halo model and non-linear cosmological power spectra
journal, June 2003


The physics driving the cosmic star formation history
journal, March 2010


The EAGLE project: simulating the evolution and assembly of galaxies and their environments
journal, November 2014

  • Schaye, Joop; Crain, Robert A.; Bower, Richard G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 446, Issue 1
  • DOI: 10.1093/mnras/stu2058

Halo occupation numbers and galaxy bias
journal, November 2000


Cosmology from large-scale galaxy clustering and galaxy–galaxy lensing with Dark Energy Survey Science Verification data
journal, October 2016

  • Kwan, J.; Sánchez, C.; Clampitt, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 464, Issue 4
  • DOI: 10.1093/mnras/stw2464

Galaxy-galaxy weak lensing in the Sloan Digital Sky Survey: intrinsic alignments and shear calibration errors
journal, September 2004

  • Hirata, Christopher M.; Mandelbaum, Rachel; Seljak, Uroš
  • Monthly Notices of the Royal Astronomical Society, Vol. 353, Issue 2
  • DOI: 10.1111/j.1365-2966.2004.08090.x

CMB anisotropies from primordial inhomogeneous magnetic fields
journal, August 2004


Measuring the lensing potential with tomographic galaxy number counts
journal, October 2015


Weak gravitational lensing
journal, January 2001


Cosmology with cosmic shear observations: a review
journal, July 2015


On the insufficiency of arbitrarily precise covariance matrices: non-Gaussian weak-lensing likelihoods
journal, September 2017

  • Sellentin, Elena; Heavens, Alan F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 473, Issue 2
  • DOI: 10.1093/mnras/stx2491

Inference from the small scales of cosmic shear with current and future Dark Energy Survey data
journal, November 2016

  • MacCrann, N.; Aleksić, J.; Amara, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 3
  • DOI: 10.1093/mnras/stw2849

Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies
journal, April 2018

  • Hoyle, B.; Gruen, D.; Bernstein, G. M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 478, Issue 1
  • DOI: 10.1093/mnras/sty957

Lensing bias in Cosmic Shear
journal, August 2009


Bias and variance of angular correlation functions
journal, July 1993

  • Landy, Stephen D.; Szalay, Alexander S.
  • The Astrophysical Journal, Vol. 412
  • DOI: 10.1086/172900

Subaru Prime Focus Camera — Suprime-Cam
journal, December 2002

  • Miyazaki, Satoshi; Komiyama, Yutaka; Sekiguchi, Maki
  • Publications of the Astronomical Society of Japan, Vol. 54, Issue 6
  • DOI: 10.1093/pasj/54.6.833

Modeling Luminosity‐dependent Galaxy Clustering through Cosmic Time
journal, August 2006

  • Conroy, Charlie; Wechsler, Risa H.; Kravtsov, Andrey V.
  • The Astrophysical Journal, Vol. 647, Issue 1
  • DOI: 10.1086/503602

Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe
journal, August 2014

  • Vogelsberger, Mark; Genel, Shy; Springel, Volker
  • Monthly Notices of the Royal Astronomical Society, Vol. 444, Issue 2
  • DOI: 10.1093/mnras/stu1536

Measurements of Ω and Λ from 42 High‐Redshift Supernovae
journal, June 1999

  • Perlmutter, S.; Aldering, G.; Goldhaber, G.
  • The Astrophysical Journal, Vol. 517, Issue 2
  • DOI: 10.1086/307221

The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function
journal, September 2016

  • Ross, Ashley J.; Beutler, Florian; Chuang, Chia-Hsun
  • Monthly Notices of the Royal Astronomical Society, Vol. 464, Issue 1
  • DOI: 10.1093/mnras/stw2372

The MICE Grand Challenge light-cone simulation – III. Galaxy lensing mocks from all-sky lensing maps
journal, December 2014

  • Fosalba, P.; Gaztañaga, E.; Castander, F. J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 447, Issue 2
  • DOI: 10.1093/mnras/stu2464

redMaGiC: selecting luminous red galaxies from the DES Science Verification data
journal, May 2016

  • Rozo, E.; Rykoff, E. S.; Abate, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 461, Issue 2
  • DOI: 10.1093/mnras/stw1281

Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples
journal, August 2014


The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field.
journal, January 1953

  • Limber, D. Nelson
  • The Astrophysical Journal, Vol. 117
  • DOI: 10.1086/145672

Works referencing / citing this record:

Cosmic shear covariance matrix in w CDM: Cosmology matters
journal, November 2019


Cosmological simulations for combined-probe analyses: covariance and neighbour-exclusion bias
journal, August 2018

  • Harnois-Déraps, J.; Amon, A.; Choi, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 1
  • DOI: 10.1093/mnras/sty2319

H  i intensity mapping for clustering-based redshift estimation
journal, October 2018

  • Cunnington, Steven; Harrison, Ian; Pourtsidou, Alkistis
  • Monthly Notices of the Royal Astronomical Society, Vol. 482, Issue 3
  • DOI: 10.1093/mnras/sty2928

Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1
journal, December 2018

  • Abbott, T. M. C.; Abdalla, F. B.; Alarcon, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 483, Issue 4
  • DOI: 10.1093/mnras/sty3351

Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing
journal, August 2019

  • Buchs, R.; Davis, C.; Gruen, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 1
  • DOI: 10.1093/mnras/stz2162

Dark Energy Survey Year 1 results: validation of weak lensing cluster member contamination estimates from P(z) decomposition
journal, August 2019

  • Varga, T. N.; DeRose, J.; Gruen, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 2
  • DOI: 10.1093/mnras/stz2185

Dark Energy Survey Year 1 results: constraints on intrinsic alignments and their colour dependence from galaxy clustering and weak lensing
journal, August 2019

  • Samuroff, S.; Blazek, J.; Troxel, M. A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 4
  • DOI: 10.1093/mnras/stz2197

The Aemulus Project. I. Numerical Simulations for Precision Cosmology
journal, April 2019

  • DeRose, Joseph; Wechsler, Risa H.; Tinker, Jeremy L.
  • The Astrophysical Journal, Vol. 875, Issue 1
  • DOI: 10.3847/1538-4357/ab1085

Dark Energy Survey Year 1 results: Measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1
text, January 2019

  • Abbott, Tmc; Abdalla, Fb; Alarcon, A.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.20891

Cosmological Constraints from Multiple Probes in the Dark Energy Survey
text, January 2018


Debiasing inference with approximate covariance matrices and other unidentified biases
journal, August 2019