DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Heat transport modeling of the dot spectroscopy platform on NIF

Abstract

Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. In this paper, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese–Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15 and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ~11% for the f = 0.03 model and the remaining models by ~16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulationmore » of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2–3 keV higher than the measurement. Finally, this suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi–Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1438678
Report Number(s):
LLNL-JRNL-742086
Journal ID: ISSN 0741-3335
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Plasma Physics and Controlled Fusion
Additional Journal Information:
Journal Volume: 60; Journal Issue: 4; Journal ID: ISSN 0741-3335
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Farmer, W. A., Jones, O. S., Barrios, M. A., Strozzi, D. J., Koning, J. M., Kerbel, G. D., Hinkel, D. E., Moody, J. D., Suter, L. J., Liedahl, D. A., Lemos, N., Eder, D. C., Kauffman, R. L., Landen, O. L., Moore, A. S., and Schneider, M. B. Heat transport modeling of the dot spectroscopy platform on NIF. United States: N. p., 2018. Web. doi:10.1088/1361-6587/aaaefd.
Farmer, W. A., Jones, O. S., Barrios, M. A., Strozzi, D. J., Koning, J. M., Kerbel, G. D., Hinkel, D. E., Moody, J. D., Suter, L. J., Liedahl, D. A., Lemos, N., Eder, D. C., Kauffman, R. L., Landen, O. L., Moore, A. S., & Schneider, M. B. Heat transport modeling of the dot spectroscopy platform on NIF. United States. https://doi.org/10.1088/1361-6587/aaaefd
Farmer, W. A., Jones, O. S., Barrios, M. A., Strozzi, D. J., Koning, J. M., Kerbel, G. D., Hinkel, D. E., Moody, J. D., Suter, L. J., Liedahl, D. A., Lemos, N., Eder, D. C., Kauffman, R. L., Landen, O. L., Moore, A. S., and Schneider, M. B. Tue . "Heat transport modeling of the dot spectroscopy platform on NIF". United States. https://doi.org/10.1088/1361-6587/aaaefd. https://www.osti.gov/servlets/purl/1438678.
@article{osti_1438678,
title = {Heat transport modeling of the dot spectroscopy platform on NIF},
author = {Farmer, W. A. and Jones, O. S. and Barrios, M. A. and Strozzi, D. J. and Koning, J. M. and Kerbel, G. D. and Hinkel, D. E. and Moody, J. D. and Suter, L. J. and Liedahl, D. A. and Lemos, N. and Eder, D. C. and Kauffman, R. L. and Landen, O. L. and Moore, A. S. and Schneider, M. B.},
abstractNote = {Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. In this paper, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese–Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15 and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ~11% for the f = 0.03 model and the remaining models by ~16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2–3 keV higher than the measurement. Finally, this suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi–Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.},
doi = {10.1088/1361-6587/aaaefd},
journal = {Plasma Physics and Controlled Fusion},
number = 4,
volume = 60,
place = {United States},
year = {Tue Feb 13 00:00:00 EST 2018},
month = {Tue Feb 13 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Schematic of dot-on-capsule hohlraum. Dot is sputter-coated onto capsule. Hohlraum is ViewFactor with Dante measuring x-ray flux from open end at 37 angle from vertical (bottom). Streaked x-ray spectrometer measures emission from dot through LEH, and temperature is inferred from spectrum. Framing camera views dot from side throughmore » window placed in side of hohlraum.« less

Save / Share:

Works referenced in this record:

Return current instability driven by a temperature gradient in ICF plasmas
journal, October 2017

  • Rozmus, W.; Brantov, A. V.; Sherlock, M.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 1
  • DOI: 10.1088/1361-6587/aa868d

Images of the laser entrance hole from the static x-ray imager at NIF
journal, October 2010

  • Schneider, M. B.; Jones, O. S.; Meezan, N. B.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491316

Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility
journal, April 2016

  • Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948276

Testing nonlocal models of electron thermal conduction for magnetic and inertial confinement fusion applications
journal, September 2017

  • Brodrick, J. P.; Kingham, R. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.5001079

Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment
journal, May 2017

  • Farmer, W. A.; Koning, J. M.; Strozzi, D. J.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983140

Non-local parallel transport in BOUT++
journal, August 2015


Hybrid atomic models for spectroscopic plasma diagnostics
journal, May 2007


A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments
journal, May 2012

  • Jones, O. S.; Cerjan, C. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4718595

The development of a Krook model for nonlocal transport in laser produced plasmas. I. Basic theory
journal, August 2008

  • Manheimer, Wallace; Colombant, Denis; Goncharov, Valeri
  • Physics of Plasmas, Vol. 15, Issue 8
  • DOI: 10.1063/1.2963078

Modeling of tokamak divertor plasma for weakly collisional parallel electron transport
journal, August 2015


A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
journal, January 2000

  • Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
  • Physics of Plasmas, Vol. 7, Issue 10
  • DOI: 10.1063/1.1289512

Moment approach to deriving parallel heat flow for general collisionality
journal, February 2009

  • Ji, Jeong-Young; Held, Eric D.; Sovinec, Carl R.
  • Physics of Plasmas, Vol. 16, Issue 2
  • DOI: 10.1063/1.3079072

A code for the solution of the Vlasov-Fokker-Planck equation in 1-D or 2-D
journal, December 1988


Advances in NLTE modeling for integrated simulations
journal, January 2010


The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited)
journal, October 2010

  • Kline, J. L.; Widmann, K.; Warrick, A.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491032

A fast non-Fourier method for Landau-fluid operators
journal, May 2014

  • Dimits, A. M.; Joseph, I.; Umansky, M. V.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876617

Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation
journal, January 1986

  • Epperlein, E. M.; Haines, M. G.
  • Physics of Fluids, Vol. 29, Issue 4
  • DOI: 10.1063/1.865901

A practical nonlocal model for heat transport in magnetized laser plasmas
journal, March 2006

  • Nicolaï, Ph. D.; Feugeas, J. -L. A.; Schurtz, G. P.
  • Physics of Plasmas, Vol. 13, Issue 3
  • DOI: 10.1063/1.2179392

Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums
journal, June 2015

  • Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.
  • Physics of Plasmas, Vol. 22, Issue 6
  • DOI: 10.1063/1.4921947

The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

Spot spectroscopy: Local spectroscopic measurements within laser‐produced plasmas
journal, September 1982

  • Herbst, M. J.; Burkhalter, P. G.; Grun, J.
  • Review of Scientific Instruments, Vol. 53, Issue 9
  • DOI: 10.1063/1.1137179

Progress towards a more predictive model for hohlraum radiation drive and symmetry
journal, May 2017

  • Jones, O. S.; Suter, L. J.; Scott, H. A.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982693

Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)
journal, May 2015

  • Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921151

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations
journal, August 2015

  • Cao, Duc; Moses, Gregory; Delettrez, Jacques
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4928445

Topology of Megagauss Magnetic Fields and of Heat-Carrying Electrons Produced in a High-Power Laser-Solid Interaction
journal, December 2014


Effect of Nonlocal Transport on Heat-Wave Propagation
journal, May 2004


Spontaneous Magnetic Fields in Laser-Produced Plasmas
journal, April 1971


Review on spontaneous magnetic fields in laser-produced plasmas: Phenomena and measurements
journal, December 1991


Revisiting Nonlocal Electron-Energy Transport in Inertial-Fusion Conditions
journal, February 2007


Novel Characterization of Capsule X-Ray Drive at the National Ignition Facility
journal, March 2014


Non-local parallel transport in BOUT++
text, January 2014


Works referencing / citing this record:

Kinetic physics in ICF: present understanding and future directions
journal, April 2018

  • Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 6
  • DOI: 10.1088/1361-6587/aab79f

Incorporating kinetic effects on Nernst advection in inertial fusion simulations
journal, June 2018

  • Brodrick, J. P.; Sherlock, M.; Farmer, W. A.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 8
  • DOI: 10.1088/1361-6587/aaca0b

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.