DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multicolor Three-Dimensional Tracking for Single-Molecule Fluorescence Resonance Energy Transfer Measurements

Abstract

Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of “burst” confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution. The confocal tracking microscope utilizes closed-loop feedback to follow the particle in solution by recentering it within two overlapping tetrahedral detection elements, corresponding to donor and acceptor channels. We demonstrated the microscope’s multicolor tracking capability via random walk simulations and experimental tracking of 200 nm fluorescent beads in water with a range of apparent smFRET efficiency values, 0.45-0.69. We also demonstrated the microscope’s capability to track and quantify double-stranded DNA undergoing intramolecular smFRET in a viscous glycerol solution. In future experiments, the smFRET 3D tracking system will be used to study protein conformational dynamics while diffusing in solution and native biological environments with high temporal resolution.

Authors:
 [1];  [2];  [3];  [4];  [5]; ORCiD logo [4]
  1. William Jewell College, Liberty, MO (United States)
  2. Evangel Univ., Springfield, MO (United States)
  3. Univ. of Colorado, Boulder, CO (United States)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Texas A & M Univ., Corpus Christi, TX (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1438130
Report Number(s):
LA-UR-18-20822
Journal ID: ISSN 0003-2700
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Analytical Chemistry
Additional Journal Information:
Journal Volume: 90; Journal Issue: 10; Journal ID: ISSN 0003-2700
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Material Science; Fluorescence, tracking, microscopy

Citation Formats

Keller, Aaron M., DeVore, Matthew S., Stich, Dominik G., Vu, Dung M., Causgrove, Timothy, and Werner, James H. Multicolor Three-Dimensional Tracking for Single-Molecule Fluorescence Resonance Energy Transfer Measurements. United States: N. p., 2018. Web. doi:10.1021/acs.analchem.8b00244.
Keller, Aaron M., DeVore, Matthew S., Stich, Dominik G., Vu, Dung M., Causgrove, Timothy, & Werner, James H. Multicolor Three-Dimensional Tracking for Single-Molecule Fluorescence Resonance Energy Transfer Measurements. United States. https://doi.org/10.1021/acs.analchem.8b00244
Keller, Aaron M., DeVore, Matthew S., Stich, Dominik G., Vu, Dung M., Causgrove, Timothy, and Werner, James H. Thu . "Multicolor Three-Dimensional Tracking for Single-Molecule Fluorescence Resonance Energy Transfer Measurements". United States. https://doi.org/10.1021/acs.analchem.8b00244. https://www.osti.gov/servlets/purl/1438130.
@article{osti_1438130,
title = {Multicolor Three-Dimensional Tracking for Single-Molecule Fluorescence Resonance Energy Transfer Measurements},
author = {Keller, Aaron M. and DeVore, Matthew S. and Stich, Dominik G. and Vu, Dung M. and Causgrove, Timothy and Werner, James H.},
abstractNote = {Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of “burst” confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution. The confocal tracking microscope utilizes closed-loop feedback to follow the particle in solution by recentering it within two overlapping tetrahedral detection elements, corresponding to donor and acceptor channels. We demonstrated the microscope’s multicolor tracking capability via random walk simulations and experimental tracking of 200 nm fluorescent beads in water with a range of apparent smFRET efficiency values, 0.45-0.69. We also demonstrated the microscope’s capability to track and quantify double-stranded DNA undergoing intramolecular smFRET in a viscous glycerol solution. In future experiments, the smFRET 3D tracking system will be used to study protein conformational dynamics while diffusing in solution and native biological environments with high temporal resolution.},
doi = {10.1021/acs.analchem.8b00244},
journal = {Analytical Chemistry},
number = 10,
volume = 90,
place = {United States},
year = {Thu Apr 19 00:00:00 EDT 2018},
month = {Thu Apr 19 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Layout of excitation and emission paths for the smFRET 3D tracking microscope.

Save / Share:

Works referenced in this record:

Principles of Fluorescence Spectroscopy
book, January 2006


Energy transfer: a spectroscopic ruler.
journal, August 1967

  • Stryer, L.; Haugland, R. P.
  • Proceedings of the National Academy of Sciences, Vol. 58, Issue 2
  • DOI: 10.1073/pnas.58.2.719

Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor.
journal, June 1996

  • Ha, T.; Enderle, T.; Ogletree, D. F.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 13
  • DOI: 10.1073/pnas.93.13.6264

A practical guide to single-molecule FRET
journal, May 2008

  • Roy, Rahul; Hohng, Sungchul; Ha, Taekjip
  • Nature Methods, Vol. 5, Issue 6
  • DOI: 10.1038/nmeth.1208

Single-molecule FRET of protein structure and dynamics - a primer
journal, January 2013


Single-pair fluorescence resonance energy transfer on freely diffusing molecules: Observation of Forster distance dependence and subpopulations
journal, March 1999

  • Deniz, A. A.; Dahan, M.; Grunwell, J. R.
  • Proceedings of the National Academy of Sciences, Vol. 96, Issue 7
  • DOI: 10.1073/pnas.96.7.3670

Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy
journal, October 2002

  • Schuler, Benjamin; Lipman, Everett A.; Eaton, William A.
  • Nature, Vol. 419, Issue 6908
  • DOI: 10.1038/nature01060

Single-Molecule FRET States, Conformational Interchange, and Conformational Selection by Dye Labels in Calmodulin
journal, May 2016

  • DeVore, Matthew S.; Braimah, Adebayo; Benson, David R.
  • The Journal of Physical Chemistry B, Vol. 120, Issue 19
  • DOI: 10.1021/acs.jpcb.6b00864

Dynamic Multibody Protein Interactions Suggest Versatile Pathways for Copper Trafficking
journal, May 2012

  • Keller, Aaron M.; Benítez, Jaime J.; Klarin, Derek
  • Journal of the American Chemical Society, Vol. 134, Issue 21
  • DOI: 10.1021/ja3018835

Analysis of Single-Molecule FRET Trajectories Using Hidden Markov Modeling
journal, September 2006


A Single-Molecule Study of RNA Catalysis and Folding
journal, June 2000


Watching proteins fold one molecule at a time
journal, February 2003

  • Rhoades, E.; Gussakovsky, E.; Haran, G.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 6
  • DOI: 10.1073/pnas.2628068100

Fueling protein DNA interactions inside porous nanocontainers
journal, June 2007

  • Cisse, I.; Okumus, B.; Joo, C.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 31
  • DOI: 10.1073/pnas.0610673104

Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking
journal, February 2017


High Accuracy 3D Quantum Dot Tracking with Multifocal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells
journal, December 2008


Localizing and Tracking Single Nanoscale Emitters in Three Dimensions with High Spatiotemporal Resolution Using a Double-Helix Point Spread Function
journal, January 2010

  • Thompson, Michael A.; Lew, Matthew D.; Badieirostami, Majid
  • Nano Letters, Vol. 10, Issue 1
  • DOI: 10.1021/nl903295p

Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution
journal, October 2014


Ultrafast Diffusion of a Fluorescent Cholesterol Analog in Compartmentalized Plasma Membranes: Ultrafast Diffusion of a Cholesterol Analog
journal, March 2014

  • Hiramoto-Yamaki, Nao; Tanaka, Kenji A. K.; Suzuki, Kenichi G. N.
  • Traffic, Vol. 15, Issue 6
  • DOI: 10.1111/tra.12163

3-D Particle Tracking in a Two-Photon Microscope: Application to the Study of Molecular Dynamics in Cells
journal, April 2005


Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts
journal, May 2006

  • Cang, Hu; Wong, Chung M.; Xu, C. Shan
  • Applied Physics Letters, Vol. 88, Issue 22
  • DOI: 10.1063/1.2204652

Three-dimensional tracking of individual quantum dots
journal, November 2007

  • Lessard, Guillaume A.; Goodwin, Peter M.; Werner, James H.
  • Applied Physics Letters, Vol. 91, Issue 22
  • DOI: 10.1063/1.2819074

Quantum Dot Photon Statistics Measured by Three-Dimensional Particle Tracking
journal, November 2007

  • McHale, Kevin; Berglund, Andrew J.; Mabuchi, Hideo
  • Nano Letters, Vol. 7, Issue 11
  • DOI: 10.1021/nl0723376

Time-Resolved Three-Dimensional Molecular Tracking in Live Cells
journal, November 2010

  • Wells, Nathan P.; Lessard, Guillaume A.; Goodwin, Peter M.
  • Nano Letters, Vol. 10, Issue 11
  • DOI: 10.1021/nl103247v

3-Dimensional Tracking of Non-blinking ‘Giant’ Quantum Dots in Live Cells
journal, April 2014

  • Keller, Aaron M.; Ghosh, Yagnaseni; DeVore, Matthew S.
  • Advanced Functional Materials, Vol. 24, Issue 30
  • DOI: 10.1002/adfm.201400349

A two-dimensional view of the folding energy landscape of cytochrome c
journal, July 2006

  • Werner, J. H.; Joggerst, R.; Dyer, R. B.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 30
  • DOI: 10.1073/pnas.0604712103

Confocal, Three-Dimensional Tracking of Individual Quantum Dots in High-Background Environments
journal, December 2008

  • Wells, Nathan P.; Lessard, Guillaume A.; Werner, James H.
  • Analytical Chemistry, Vol. 80, Issue 24
  • DOI: 10.1021/ac8021899

Time-Resolved, Confocal Single-Molecule Tracking of Individual Organic Dyes and Fluorescent Proteins in Three Dimensions
journal, September 2012

  • Han, Jason J.; Kiss, Csaba; Bradbury, Andrew R. M.
  • ACS Nano, Vol. 6, Issue 10
  • DOI: 10.1021/nn302912j

Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging
journal, December 2015

  • DeVore, M. S.; Stich, D. G.; Keller, A. M.
  • Review of Scientific Instruments, Vol. 86, Issue 12
  • DOI: 10.1063/1.4937477

Classic Maximum Entropy Recovery of the Average Joint Distribution of Apparent FRET Efficiency and Fluorescence Photons for Single-Molecule Burst Measurements
journal, March 2012

  • DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 13
  • DOI: 10.1021/jp209861u

Two New Concepts to Measure Fluorescence Resonance Energy Transfer via Fluorescence Correlation Spectroscopy:  Theory and Experimental Realizations
journal, June 2001

  • Widengren, Jerker; Schweinberger, Enno; Berger, Sylvia
  • The Journal of Physical Chemistry A, Vol. 105, Issue 28
  • DOI: 10.1021/jp010301a

Separating Structural Heterogeneities from Stochastic Variations in Fluorescence Resonance Energy Transfer Distributions via Photon Distribution Analysis
journal, March 2006

  • Antonik, Matthew; Felekyan, Suren; Gaiduk, Alexander
  • The Journal of Physical Chemistry B, Vol. 110, Issue 13
  • DOI: 10.1021/jp057257+

An intermolecular FRET sensor detects the dynamics of T cell receptor clustering
journal, April 2017

  • Ma, Yuanqing; Pandzic, Elvis; Nicovich, Philip R.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15100

Effect of Phosphorylation on EGFR Dimer Stability Probed by Single-Molecule Dynamics and FRET/FLIM
journal, March 2015

  • Coban, Oana; Zanetti-Dominguez, Laura C.; Matthews, Daniel R.
  • Biophysical Journal, Vol. 108, Issue 5
  • DOI: 10.1016/j.bpj.2015.01.005

SINGLE-PARTICLE TRACKING:Applications to Membrane Dynamics
journal, June 1997


Works referencing / citing this record:

Super-resolution photoluminescence lifetime and intensity mapping of interacting CdSe/CdS quantum dots
journal, January 2020

  • Dunlap, Megan K.; Ryan, Duncan P.; Goodwin, Peter M.
  • Applied Physics Letters, Vol. 116, Issue 2
  • DOI: 10.1063/1.5132563

Real-Time 3D Single Particle Tracking: Towards Active Feedback Single Molecule Spectroscopy in Live Cells
journal, August 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.