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Many turbulent flows are characterized by complex scale interactions and vorticity
generation caused by compressibility and variable-density effects. In the large-eddy
simulation of variable-density flows, these processes manifest themselves as subgrid-scale
(SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the
variable-density SGS terms and quantifies their relative importance. We consider the SGS
terms appearing in the density-weighted Favre-filtered equations and in the unweighted
Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum
equation is complicated by a temporal SGS term; therefore, we derive a new form of
Reynolds-filtered governing equations that does not contain this term and has only double
correlation SGS terms. The new form of the filtered equations has terms that represent
the SGS mass flux, pressure-gradient acceleration, and velocity-dilatation correlation. To
evaluate the dynamical significance of the variable-density SGS effects, we carry out direct
numerical simulations of compressible decaying turbulence at a turbulent Mach number of
0.3. Two different initial thermodynamic conditions are investigated: homentropic, and
a thermally inhomogeneous gas with regions of differing densities. The simulated flow
fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-
density SGS terms is quantified relative to the SGS specific stress, which is the only SGS
term active in incompressible constant-density turbulence. It is found that while the
variable-density SGS terms in the homentropic case are negligible, they are dynamically
significant in the thermally inhomogeneous flows. Investigation of the variable-density
SGS terms is therefore important, not only for developing variable-density closures, but
also to improve the understanding of scale interactions in variable-density flows.

1. Introduction

Variable-density flows are ubiquitous in technology and nature. For example, significant
variations in fluid density are encountered in high-speed flight, combustion, multi-phase
flows and inertial confinement fusion. In nature, atmospheric and oceanic convection as
well as astrophysical phenomena involve variable-density fluid dynamics.

Density variations in fluids can have different physical origins such as compressibility,
thermal, compositional and phase inhomogeneity, chemical reactions and external energy
sources and sinks. Primarily, there are two ways in which variations in the local density
field interact with the local velocity field (Lele 1994): inertial effects, in which spatial
variations in density correspond to spatial variations in the local pressure-gradient driven
acceleration field, and dilatational effects, in which the Lagrangian variation in density
corresponds to compression or expansion of the local Eulerian fluid element. These local
interactions can significantly alter global flow dynamics. An important example of inertial
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effects is the case of variable density jets, where the jet to free-stream density ratio affects
the global stability characteristics (Sreenivasan et al. 1989; Monkewitz et al. 1990), in free
and transverse jets (Getsinger et al. 2012). Another example of an inertial effect is the case
of interfacial instabilities associated with accelerated variable-density interfaces, such as
Rayleigh-Taylor (Joly et al. 2005) and Richtmyer-Meshkov instabilities (Brouillette 2002).
The primary mechanism underlying these instabilities is baroclinic torque. The torque is
produced by misalignment of independent thermodynamic quantities like pressure and
density or equivalently, temperature and entropy, and is represented in the general form
of the vorticity equation.

∂~ω

∂t
+∇× (~ω × ~v) =

1

ρ2
∇ρ×∇p+∇×

(
∇ · σ
ρ

)
+∇× ~F b (1.1)

where the σij is the viscous stress tensor and ~F b is non-conservative body force. In the
framework of the Kovasznay decomposition of turbulent fluctuations (Kovasznay 1953),
the interaction of acoustic and entropy modes produces vorticity modes via the baroclinic
source term. This torque is also the primary vorticity source in shock-bubble (Ranjan
et al. 2011) and shock-flame interactions (Thomas et al. 2001). Baroclinic instability
and associated turbulence is also observed in the form of mid-latitude storms in the
atmosphere (Pierrehumbert & Swanson 1995) and mesoscale eddies in the ocean (Gill
et al. 1974). In the atmosphere, earth’s rotation and differential heating produce vorticity,
while in the oceans, horizontal density gradients are responsible. Secondary instabilities
due to baroclinic torque are observed in two-dimensional Kelvin-Helmoltz billows of
variable-density shear layers, as shown in the work of Fontane & Joly (2008); Reinaud
et al. (2000). Variable-density inertial effects are not only restricted to instabilities
in quiescent flow states, but are also present in fully turbulent flows. For example,
the density ratio of the streams in a mixing layer affects the entrainment ratio and
composition of molecularly-mixed fluid in mixing layers (Miller et al. 1998; Frieler &
Dimotakis 1988). This is in addition to the reduction in growth rate and structural
changes associated with increasing compressibility (Brown & Roshko 1974; Pantano
& Sarkar 2002; Vreman et al. 1996; Freund et al. 2000; Ferrer et al. 2017) and/or
combustion-induced heat release. The composition of molecularly-mixed fluid has direct
implications in the case of reactive mixing. In the reacting case, dilatational and baroclinic
effects associated with heat release also contribute to the vorticity dynamics. Similarly,
high-speed turbulent boundary layers exhibit significant variable-density effects due
to near-wall thermal gradients (Spina et al. 1994). This is reflected in the inertial
transformations used to collapse the velocity profiles, such as the mean-density-based
Van Driest transformation for adiabatic boundary layers (Van Driest 1951) and mean-
density-gradient-based transformations for non-adiabatic walls (Patel et al. 2016; Trettel
& Larsson 2016).

Simulations of technologically-relevant variable-density turbulent flows require trunca-
tion of the spatio-temporal scales of the computed physical fields due to computational
expense. Exclusion of information that represents a part of the physical system introduces
the closure problem via the non-linearity of the governing equations. For accurate
simulations, the closure problem has to be addressed, whether the simulations compute
the time-averaged fields as in Reynolds averaged Navier-Stokes (RANS) or the spatially
filtered fields, as in large eddy simulations (LES). This paper focuses on the closure
problem that results from non-representation of small-scale density fluctuations in large
eddy simulations. The set of terms that require closure depends on the choice of the
computed velocity field. For example, in the context of RANS, the choice of computed
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velocity variable can be either the time-averaged velocity or the density-weighted time-
averaged velocity. The density-weighted averaging concept, also known as Favre averaging
(Favre 1969) is predominantly used. This method does not require closure of the mass
conservation equation and retains the mathematical structure of the unclosed terms in
a form that is structurally similar to their constant-density counterparts. Likewise, in
LES, the resolved-scale velocity may be represented by the filtered velocity or Favre-
filtered velocity. With the exception of the work of Yoshizawa (1986); Boersma & Lele
(1999) and Sun & Lu (2006), the Favre-filtered velocity is almost exclusively employed.
The two velocity fields represent two different physical variables and their evolution is
governed by different dynamics. An analogy may be drawn between the two resolved-
scale velocities and the concept of mass velocity and momentum velocity introduced as
bi-velocity hydrodynamics in Brenner (2009).

Favre (1992) cites the importance of mass-averaged velocity for statistical analysis
by stating that “the mean stream-surfaces lose their physical meaning as the mean
stream-surfaces are crossed by the mean mass flux” in the case of Reynolds-averaged
velocity. It is important to consider Favre’s statement in the context of RANS and LES.
While in RANS, steady-state stream surfaces would be desirable for the description of
the flow-state, but this may not hold true for LES filter volumes. The resolved-scale
velocity represents the local value of the filtered Eulerian velocity field, and may not
necessarily represent the velocity of a frame of reference in which there is net zero SGS
mass diffusion through the LES filter volume. Therefore, in this paper, in addition to the
Favre-filtered velocity formulation, we also consider unclosed terms arising in filtered-
velocity based equations, which we refer to as the Reynolds-filtered formulation. We also
note that the resolved-scale thermodynamic variables may be represented identically,
Reynolds-filtered or Favre-filtered, irrespective of the choice of resolved-scale velocity.
This is important as the representation of resolved-scale thermodynamic quantities is
required to be consistent with the laws of thermodynamics (Favre 1992; Chassaing
1997). From the point of resolved-scale vorticity statistics, the Reynolds-filtered velocity
is the preferred variable. This is because the curl of the Favre-filtered velocity does
not mathematically equal the Favre-filtered vorticity. This holds more generally for the
resolved-scale velocity gradient tensor. Representation of resolved-scale vorticity by a
compound variable involving the density field can have implications during subgrid-scale
(SGS) modeling where information from small velocity scales, close to the filter width
primarily guides the closure. In some previous work that use the Favre-filtered velocity
formulation, the filtered velocity is algebraically estimated for closure even though it
is not transported. This is discussed within an eddy viscosity framework in Germano
(1996); Germano et al. (2014), and within the stretched-vortex model in Sidharth et al.
(2014). However, the equations based on Reynolds-filtered velocity are not commonly
used because they require closure of additional SGS terms in the momentum equation.
This includes an unsteady time-derivative term that can, in the case of strong density
variations, be more significant than the SGS stress term (Chesnel et al. 2011). In the
present work, we will address this issue by deriving a new set of equations based on
Reynolds-filtered velocity, and that has a closure set with SGS terms that depend on
double correlations. Although the equations are developed for LES, they are applicable
to RANS due to the formal equivalence.

A review of the progress made in variable-density turbulence modeling is relevant
as it helps identify unclosed terms that are important in these classes of flows. Since
spatio-temporal variations in fluid density can have different physical origins, a variety
of modeling techniques exist, spanning low-speed variable-density turbulent mixing to
the high-speed turbulent flows and combustion. RANS modeling for variable-density
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turbulence has been a research field for several decades. Chassaing (2001) and Chassaing
et al. (2013) provide a comprehensive review of variable-density modeling in RANS
closure schemes. In first-order closures, variable-density effects in the k−ε framework have
been extensively studied. Important variable-density terms investigated are the turbulent
mass flux (Ristorcelli 1993), the pressure-dilatation (Sarkar 1992), and the dilatational
dissipation (Zeman 1990). Also, terms associated with baroclinic torque and compression
in the solenoidal dissipation rate equation have received interest (Sinha & Candler 2003;
Kreuzinger et al. 2006). Some modeling techniques estimate the variance of density
(Taulbee & VanOsdol 1991; Banerjee et al. 2010) and pressure (Zeman 1991). Within
second-order closures, density fluctuation correlations have been analyzed in the work
of Shih et al. (1987); Chassaing et al. (1994); Yoshizawa et al. (2013) and Schwarzkopf
et al. (2011). Pressure-strain (Adumitroaie et al. 1999) and pressure-acceleration-mass-
flux terms (Lindstedt & Vaos 1999) have been shown to be important for closure in
second-order moment equations. It is important to note that in both first-order and
second-order modeling, the Favre-averaged velocity is usually the solution variable. Shih
et al. (1987) investigate the evolution of non-density-averaged velocity in a variable-
density mixing layer, but use constant-density approximation for the turbulent pressure-
acceleration term appearing in the equation for mean velocity. In the class of algebraic
second-order closures, an explicit algebraic stress model for compressible variable-density
turbulent flows has been proposed (Grigoriev et al. 2015), where the effect of density-
velocity correlations on turbulence is accounted for. The authors in this work state their
preference of Reynolds averaging over Favre averaging due to turbulent dissipation being
a function of the fluctuating velocity field, and not the density-averaged fluctuating
velocity. Similarly, in the class of stochastic methods for turbulent flow simulation,
variable-density effects such as differential acceleration have been included in the work
of Bakosi & Ristorcelli (2011).

A significant effort to understand variable-density and dilatational effects in turbulence
has been carried out for turbulent premixed flames (Sabelnikov & Lipatnikov 2017;
Lipatnikov & Chomiak 2010; Robin et al. 2011). For example, Libby & Bray (1977) have
pointed out that modeling of variable-density effects in turbulent flames is important
and that there can be large differences between the Favre-averaged and the Reynolds-
averaged scalars and velocities in the flame zone. Also, assumptions such neglecting
third-order covariances can lead to inconsistent results. They also find that the Favre-
averaged turbulent kinetic energy production due to the pressure-acceleration-mass-flux
term can override the suppression due to dilatation and cause counter-gradient turbulent
diffusion of scalar concentration (Bray et al. 1981; Libby & Bray 1981; Bilger 1976). The
authors state that their results “constitute a warning as to the dangers of carrying over
the empiricism developed in constant-density flows to variable density flows in general
and to turbulent reacting flows with significant heat release in particular.” Counter-
gradient diffusion of scalars is more generally a variable-density effect in turbulence and
has also been observed in inert helium-air mixing (LaRue & Libby 1977). Variable-
density effects in turbulent flames have also been discussed extensively in Chomiak &
Nisbet (1995). It must be noted however that the major focus of RANS analysis has been
restricted to variable-density effects on the transport of second-order turbulent quantities.
With regard to LES, there have been efforts to understand the role of filtered velocity
and Favre-filtered velocity in turbulent flame dynamics. Chakraborty et al. (2017) show
that the difference between the orientation of the vorticity vector obtained from the
filtered velocity and Favre-filtered velocity in planar turbulent flames can be large. Serra
et al. (2014) account for the difference between the Favre-filtered scalar and the filtered
scalar using the SGS specific volume flux, similar to the approach presented in Sidharth
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et al. (2014). The concept of counter-gradient diffusion due to variable-density effects is
observed in LES as well, but with different physical connotations (Klein et al. 2015).

We focus on the variable-density SGS terms that appear in the resolved-scale mo-
mentum equation as opposed to terms that appear in the transport equations of SGS
terms. The terms under consideration are listed in Section 2 where we review the filtered
compressible Navier-Stokes equations in the Favre-filtered and the Reynolds-filtered
formulations. A new form of Reynolds-filtered governing equations is derived using the
transport equations of SGS mass flux and SGS kinetic energy. This form of the governing
equations does not contain unsteady unclosed terms. Flow fields from direct numerical
simulations of single-fluid decaying isotropic turbulence with dynamically significant
dilatational and inertial variable-density effects are used for the explicit evaluation of
the SGS terms. The setup of the direct numerical simulations and results from the SGS
analysis are discussed in Sections 3 and 4.

2. Filtered Navier-Stokes equations

Let us first review the formalism for filtering the Navier-Stokes equations and revisit
the resulting governing equations. A spatio-temporal linear filter for a flow-realization
with x = xi may be defined as

f(x, t) =

∫
G∆x,∆t

(x− x′, t− t′)f(x′, t)d3x′dt′ (2.1)

where G∆x,∆t
is the convolution kernel with an associated filter length scale ∆x and a

filter time scale ∆t, satisfying∫
G∆x,∆t(x− x′)d3x′dt′ = 1 (2.2)

For large eddy simulation, filters are spatial and no temporal filtering is considered
in this paper. It must be noted that the continuous filter is independent of the filter
associated with the discrete solution field and the discrete differential operators used
for numerical computation. We assume that the continuous filter is homogeneous and
therefore commutes with the continuous differential operator. The governing equations
for filtered mass, momentum, and energy are obtained from the filtered Navier-Stokes
equations.

∂

∂t

 ρ̄
ρui

1
2ρukuk + Ēint

+
∂

∂xj

 ρuj
ρuiuj + p̄δij

1
2ρukuk + Eintuj + puj

 =

 0
σ̄ρui

σ̄E

 (2.3)

Eint represents the internal energy per unit volume. The terms σρui
and σE correspond to

diffusive molecular transport in the momentum and the energy equations, respectively. In
the present analysis, the resolved-scale and the SGS terms that arise from the expressions
from σ̄ρui and σ̄E are not expanded.

2.1. Favre-filtered velocity formulation

In the Favre-filtered velocity formulation, the filtered Navier-Stokes equations for
variable-density flows are written in a form that uses the density-weighted filtered velocity
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as the resolved-scale velocity.

∂

∂t

 ρ̄
ρ̄ũi

Ēint + 1
2 ρ̄ũkũk + 1

2τ
F
kk

+
∂

∂xj

 ρ̄ũj
ρ̄ũiũj + p̄δij

1
2 ρ̄ũkũkũj + Ēintũj + p̄ũj


+

∂

∂xj

 0
τFij

KF
j +HF

j

 =

 0
σ̄ρui

σ̄E

 (2.4)

A Favre-filtered quantity is denoted by

f̃ =
ρf

ρ̄
(2.5)

The resolved-scale velocity, ũi, is therefore obtained from the filtered momentum and
the filtered density. The SGS terms in this formulation are the SGS stress tensor τFij , the

SGS kinetic energy flux, KF
j and the SGS enthalpy flux HF

j .

τFij = ρuiuj − ρ̄ũiũj , KF
j = ρukukuj − ρ̄ũkũkũj , HF

j = (Eint + p)uj − (Ēint + p̄)ũj (2.6)

The filtered convective stress ρuiuj is equivalent to the Favre-filtered specific stress ρ̄ũiuj .
The expression for the SGS stress τFij = ρ̄(ũiuj−ũiũj) appears as a variable-density analog
of the constant-density specific stress tensor uiuj − ūiūj .

The variable-density SGS contribution to the momentum equation can be written
explicitly if we represent the SGS terms using central moments (Germano 1992). Let us
denote the central moments under the filter operator as

T [a, b] = ab− āb̄ (2.7)

T [a, b, c] = abc− āT [b, c]− b̄T [a, c]− c̄T [a, b]− āb̄c̄ (2.8)

where a, b, c are field variables. The SGS stress tensor can then be expressed as

τFij = ρ̄(ũiuj − ũiũj) = ρ̄T [ui, uj ] + T [ρ, ui, uj ]−
1

ρ̄
T [ρ, ui] T [ρ, uj ] (2.9)

Equation 2.9 (Germano et al. 2014) shows that the SGS stress tensor in either formulation
involves three unclosed terms: the SGS specific stress tensor T [ui, uj ], the SGS mass flux
Mi = T [ρ, ui], and the SGS trivariate moment T [ρ, ui, uj ]. Although absent in the mass
conservation equation, the SGS mass flux Mi affects the Favre-filtered velocity SGS
stress τFij . The SGS trivariate moment also appears when momentum pi = ρui is used as
the variable of interest.

τFij = T
[
pi, pj ,

1

ρ

]
+

1

ρ
T [pi, pj ] + p̄iT

[
pj ,

1

ρ

]
+ p̄jT

[
pi,

1

ρ

]
− p̄ip̄j

ρ̄
T
[
ρ,

1

ρ

]
(2.10)

Similarly, the SGS term KF
j appearing in the filtered total energy equation can be shown

to consist of a fourth-order moment SGS term.

2.2. Reynolds-filtered velocity formulation

Now, let us represent the filtered Navier-Stokes equations using the filtered velocity.
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In this formulation, the equations are

∂

∂t

 ρ̄
ρ̄ūi +Mi

Ēint + 1
2 ρ̄ūkūk + 1

2τ
R
kk

+
∂

∂xj

 ρ̄ūj
ρ̄ūiūj + p̄δij

1
2 ρ̄ūkūkūj + Ēintūj + p̄ūj


+

∂

∂xj

 Mj

τRij
KR
j +HR

j

 =

 0
σ̄ρui

σ̄E

 (2.11)

The SGS terms with the superscript ‘R’ denote the same SGS terms as in the ũi
formulation, but with ūi as the resolved-scale velocity. Here,

Mi = ρui − ρ̄ūi, τRij = ρuiuj − ρ̄ūiūj
KR
j = ρukukuj − ρ̄ūkūkūj , HR

j = (Eint + p)uj − (Ēint + p̄)ūj
(2.12)

The additional SGS quantity Mi is the SGS mass flux and represents the spatial
correlation of density with velocity under the filter operator. It is a measure of the
difference between the quantity ρ̄ūi and the filtered momentum. With the use of central
moments, the SGS stress in this formulation can be written as

τRij = ρuiuj − ρ̄ūiūj = ρ̄T [ui, uj ] + T [ρ, ui, uj ] + ūiT [ρ, uj ] + ūjT [ρ, ui] (2.13)

We observe that the term τRij like τFij , consists of the SGS specific stress, the SGS trivariate
moment term, and the SGS mass flux term. However the resolved-scale momentum
equation in this formulation also includes the rate of change of SGS mass flux.

In order to understand the unclosed time derivative, we examine the differences be-
tween ūi and ũi by comparing their respective inviscid transport equations. The governing
equation for the Favre-filtered velocity is obtained using the transport equations for the
filtered momentum and filtered density. The equation for filtered velocity is obtained by
filtering the transport equation for velocity. If we compare the two transport equations,
it is seen that in the equation for ūi, there exist SGS terms other than the SGS specific
stress T [ui, uj ] = uiuj − ūiūj .

∂ũi
∂t

+ ũj
∂ũi
∂xj

+
1

ρ̄

∂p̄

∂xi
+

1

ρ̄

∂ρ̄(ũiuj − ũiũj)
∂xj

= 0 (2.14)

∂ūi
∂t

+ ūj
∂ūi
∂xj

+
1

ρ̄

∂p̄

∂xi
+
∂(uiuj − ūiūj)

∂xj
− T

[
ui,

∂uj
∂xj

]
− 1

ρ̄
T
[
ρ,

1

ρ

∂p

∂xi

]
= 0 (2.15)

These additional SGS terms are associated with dilatation, ∇ · u, and pressure acceler-
ation, ∇p/ρ. This is due to the non-conservative nature of velocity in the presence of
variable-density effects.

The transport equations for ũi (2.14) and ūi (2.15), with the filtered density equation,
can be used to derive the transport equation for the SGS mass flux Mi.

∂Mi

∂t
=
∂(ρui − ρ̄ūi)

∂t

=− ∂ρuiuj
∂xj

+ ūi
∂Mj

∂xj
+
∂ρ̄ūiūj
∂xj

+ ρ̄
∂T [ui, uj ]

∂xj
− ρ̄T

[
ui,

∂uj
∂xj

]
− T

[
ρ,

1

ρ

∂p

∂xi

]
(2.16)

For the sake of clarity, we do not consider terms corresponding to viscous molecular
transport and work with the inviscid transport equations; including viscous transport
term is straight-forward and produces an additional term, T [ρ, σρui/ρ] in (2.16). We note
that the filtered momentum equation is a composite equation transporting two physical
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variables, ūi andMi. This implies that a part of the SGS term ∂jτ
R
ij corresponds to the

convection ofMi. Therefore, the equation for ūi can be simplified by decoupling it from
the equation for SGS mass flux. Substituting for ∂tMi from (2.16), we obtain

∂ρ̄ūi
∂t

+
∂Mi

∂t
+
∂ρuiuj
∂xj

+
∂p̄

∂xi
=
∂ρ̄ūi
∂t

+
∂ρ̄ūiūj
∂xj

+
∂p̄

∂xi
+ Sρui (2.17)

where Sρui
= ūiSρ + ρ̄

∂T [ui, uj ]

∂xj
− ρ̄T

[
ui,

∂uj
∂xj

]
− T

[
ρ,

1

ρ

∂p

∂xi

]
(2.18)

and Sρ =
∂Mj

∂xj
=
∂(ρuj − ρ̄ ūj)

∂xj
(2.19)

Similarly, the filtered energy equation is also a composite equation, where the variable
1
2τ

R
kk is convected along with Ēint and 1

2 ρ̄ūkūk. A part of the SGS term ∂j(KR
j +HR

j ) in the
filtered energy equation therefore corresponds to the convective transport of SGS kinetic
energy 1

2τ
R
kk. Similar to the filtered momentum equation, the filtered energy equation

can be reduced as well. The transport equations for filtered the kinetic energy, filtered
momentum, and filtered velocity are used to obtain the transport equation for 1

2τ
R
kk =

1
2 (ρukuk − ρ̄ūkūk).

1

2

∂

∂t
(ρukuk − ρ̄ūkūk) =

1

2

∂ρukuk
∂t

− 1

2
ūk
∂ρ̄ūk
∂t
− 1

2
ρ̄ūk

∂ūk
∂t

=− ∂

∂xj

(
1

2
ρukukuj + puj

)
+ T

[
p,
∂uj
∂xj

]
+
∂p̄ūj
∂xj

+
1

2

∂ρ̄ūkūkūj
∂xj

+ ūkSρuk
− 1

2
ūkūkSρ

(2.20)

Substituting ∂t
1
2τ

R
kk in the filtered total energy equation, we obtain

∂

∂t

(
Ēint +

1

2
ρ̄ūkūk +

1

2
τFkk

)
+

∂

∂xj

(
Eintuj + ρukukuj + puj

)
=
∂

∂t

(
Ēint +

1

2
ρ̄ūkūk

)
+

∂

∂xj

(
Ēintūj +

1

2
ρ̄ūkūkūj + p̄ūj

)
+ SE

(2.21)

where the SGS terms in the transport of the quantity Ēint + 1
2 ūkūk are

SE =
∂

∂xj
(T [Eint, uj ]) + T

[
p,
∂uj
∂xj

]
+ ūkSρuk

− 1

2
ūkūkSρ (2.22)

Thus, the Reynolds-filtered LES equations can then be written as:

∂

∂t

 ρ̄
ρ̄ūi

Ēint + 1
2 ρ̄ūkūk

+
∂

∂xj

 ρ̄ūj
ρ̄ūiūj + p̄δij

1
2 ρ̄ūkūkūj + Ēintūj + p̄ūj

+

 Sρ
Sρui

SE

 =

 0
σ̄ρui

σ̄E


(2.23)

where the SGS contribution to the governing equations is:

Sρ =
∂T [ρ, uj ]

∂xj
(2.24)

Sρui
= ūiSρ + ρ̄

∂T [ui, uj ]

∂xj
− T

[
ρ,

1

ρ

∂p

∂xi

]
− ρ̄ T [∇ · u, ui] (2.25)

SE = ūiSρui
− 1

2
ūiūiSρ +

∂T [Eint, uj ]

∂xj
+ T [∇ · u, p] (2.26)
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The conservation-law form of the closed convective terms is maintained and the non-
conservative SGS source terms arise as a consequence of choosing to solve for the filtered
velocity instead of the filtered momentum. The unclosed SGS terms are:

• SGS mass flux T [ρ, ui] = ρui − ρ̄ūi
• SGS specific stress T [ui, uj ] = uiuj − ūiūj
• SGS dilatational flux T [∇ · u, ui] = (∇ · u)ui − (∇ · ū)ūi

• SGS pressure work T [∇ · u, p] = (∇ · u)p− (∇ · ū)p̄

• SGS pressure acceleration T [ρ,∇ip/ρ] /ρ̄ = −(∇ip/ρ−∇ip̄/ρ̄)

• SGS internal energy flux T [Eint, ui] = Eintui − Ēintūi

All of the SGS terms satisfy the principle of Galilean invariance. The new SGS terms
corresponding to variable-density effects not previously analyzed in the LES literature
are the SGS pressure acceleration and the SGS dilatational flux. The SGS pressure
acceleration arises due to the non-linear interaction between pressure gradient and
density. The SGS dilatational flux arises from the non-linear product of dilatation and
velocity. We observe its similarity to the SGS pressure work, commonly referred to as the
SGS pressure-dilatation. SGS pressure work has been studied extensively in the literature,
because it appears in the transport equation of SGS kinetic energy, irrespective of the
choice of the resolved-scale velocity variable. It should also be noted that in a multi-
component reacting flow, p̄ cannot be obtained directly from Ēint. In flows that involve
non-constant ∂p/∂Eint|ρ, such as in the case of real/dense gas effects or multi-component
mixture of gases with different heat capacity ratio, the term p̄−p(Ēint, ρ̄) requires closure
as well. In such a case, non-linear relation between pressure and total internal energy
effects the momentum equation through the filtered pressure. In this paper, we consider
a single gas that obeys the ideal gas law. Therefore, the SGS term p̄−p(Ēint, ρ̄) does not
appear in the resolved-scale momentum equation.

The primary advantage of the new equations over the conventional Reynolds-filtered
formulation is the presence of a framework in which SGS contributions arising from
spatial and Lagrangian density variations may be explicitly quantified. The simplified
nature of the SGS terms avoids the trivariate central moment T [ρ, ui, uj ] in the filtered
momentum equation and the quadrivariate central moment T [ρ, uk, uk, uj ] in the energy
equation. This is a result of decoupling the transport equation for the SGS mass fluxMi

and the SGS kinetic energy 1
2τ

R
kk from the filtered momentum and the filtered energy

equations. The decoupling concept for the energy equation is not restricted to a Reynolds-
filtered formulation. For Favre-filtered equations, solving for the variable Ēint + 1

2 ρ̄ũkũk
(referred to as computable energy in Vreman 1995), instead of the filtered total energy
Ēint + 1

2 ρ̄ũkuk removes KF
j . Following a procedure similar to (2.20), we may obtain

the following Favre-filtered kinetic energy equation in which no quadrivariate central
moments appear.

∂

∂t

(
ρ̄ũkũk

2
+ Ēint

)
+

∂

∂xj

(
Eintuj +

ρ̄ũkũkũj
2

+ p̄ũj

)
+ ũi

∂τFij
∂xj

+

(
p
∂uj
∂xj
− p̄ ∂ũj

∂xj

)
= σ̄E

(2.27)
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2.3. Filtered vorticity equation

The resolved-scale vorticity computed from the equations is a consequence of the choice
of the resolved-scale velocity. While the Reynolds-filtered formulation computes filtered
vorticity ω̄i, in the case of Favre-filtered velocity, the resolved-scale vorticity variable
is ωF

i = ∇ × ρui/ρ̄. This is different from the filtered vorticity ω̄i, or even the Favre-
filtered vorticity ω̃i. Consider the filtered inviscid vorticity equation with the SGS terms
represented as central moments.

∂ω̄i
∂t

+
∂ω̄iūj
∂xj

+
∂T [ωi, uj ]

∂xj
= ω̄j

∂ūi
∂xj

+ T
[
ωj ,

∂ui
∂xj

]
− εijk

(
∂(1/ρ)

∂xj

∂p̄

∂xk

+ T
[
∂(1/ρ)

∂xj
,
∂p

∂xk

])
(2.28)

The SGS contributions to vorticity flux, vortex stretching, and baroclinic torque can be
seen to appear separately. We observe that the curl of the SGS pressure acceleration is
the SGS baroclinic torque.

−εijkT
[
∂

∂xj

(
1

ρ

)
,
∂p

∂xk

]
= εijk

∂

∂xj

(
1

ρ̄
T
[
ρ,

1

ρ

∂p

∂xk

])
(2.29)

The SGS acceleration field contributes to the filtered vorticity, and more generally to
the entire filtered velocity gradient tensor. The symmetric part of the SGS pressure
acceleration gradient tensor ∂j(T [ρ, ∂kp/ρ] /ρ̄) appears as a source term in the filtered
strain rate S̄ij equation. SGS pressure acceleration, due its dependence on both pressure
and density field, can distinguish between entropic and acoustic density fluctuations.
This can be important for modeling (Hamba 1999; Rubinstein & Erlebacher 1997).

Therefore, we see that the curl of the Reynolds-filtered and Favre-filtered velocities
represent physically different resolved-scale vorticity variables. In particular, the subgrid-
scale baroclinic torque affects Reynolds-filtered vorticity ω̄i, but does not explicitly affect
ωF
i .

2.4. Filtered scalar advection equation

It is important to discuss scalar advection equation in the context of variable-density
flows. For example, flows that involve multicomponent mixing and combustion require
advection of species densities. When a combustion model is used, a reaction progress
variable is advected. The filtered inviscid scalar advection equations with ũi and ūi are

∂ρ̄c̃

∂t
+
∂ρ̄ũj c̃

∂xj
+
∂Cj
∂xj

= ρΩc (2.30)

∂ρ̄c̃

∂t
+
∂ρ̄ūj c̃

∂xj
+
∂T [ρc, uj ]

∂xj
= ρΩc (2.31)

where scalar c is the advected variable. Ωc represents the source term in the transport
equation of the scalar c. The unclosed term in the Favre-filtered velocity scalar equation
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can be expressed with central moments similar to the subgrid-scale stress τFij

Cj = ρujc− ρ̄ũj c̃ = ρ̄(c̃uj − c̃ũj) (2.32)

= ρ̄T [c, uj ] + T [ρ, uj , c]−
1

ρ̄
T [ρ, uj ] T [ρ, c] (2.33)

In the equations above, the Favre-filtered scalar is transported. It is also possible to derive
the transport equation for the filtered scalar and express the equation in a conservation
law form:

∂ρ̄c̄

∂t
+
∂ρ̄ūj c̄

∂xj
+ Sρc = ρ̄Ω̄c (2.34)

where the subgrid-scale contribution Sρc is expressed in the form of central moments as

Sρc = ρ̄
∂T [c, uj ]

∂xj
+ c̄ Sρ − ρ̄T

[
c,
∂uj
∂xj

]
(2.35)

Equation (2.34) is obtained by decoupling the inviscid transport equation for T [ρ, c]
from (2.30), similar to the procedure we adopt for the resolved-scale momentum and
the energy equations. We observe that usage of filtered velocity does not involve the
trivariate moment T [ρ, uj , c] in the unclosed terms. In the case of Favre-filtered scalar
and the filtered velocity, the effect of density appears in subgrid-scale conserved scalar
flux T [ρc, uj ]. If the filtered scalar is transported, the effect of SGS mass flux and SGS
dilatation can be represented explicitly.

3. Direct numerical simulations

We carry out direct numerical simulations of decaying isotropic compressible tur-
bulence to study variable-density and dilatation effects on the flow. The data from
the DNS will be filtered to evaluate the relative importance of the variable-density
SGS terms. Two flow cases are investigated, as listed in Table 1. The first case is
canonical decaying compressible turbulence where initial thermodynamic fluctuations
are homentropic, i.e. the flow has spatially uniform entropy. The second case is com-
pressible variable-density decaying turbulence, where the initial density field is isotropic,
inhomogeneous, and corresponds to a double-δ probability distribution function. In the
first case, density fluctuations arise primarily out of compressibility, while in the second,
density fluctuations are primarily a consequence of the mixing of fluid of varying density.
A variant of the second case with stronger initial density fluctuations is also simulated.
In these simulations, the double-δ pdf density field initialization corresponds to thermal
inhomogeneity which is different from binary mixing between two different fluid species
with associated species mass diffusion. Therefore, Schmidt-number effects are outside the
scope of these simulations. Since the imprints of initial conditions in triperiodic decaying
compressible flows can persist throughout the simulation time (Ristorcelli & Blaisdell
1997), the initial conditions in the current simulations are carefully designed to avoid
impulsive forcing of the flow field that might corrupt the high-order statistics.

3.1. Simulation setup and numerical method

We solve the compressible Navier-Stokes equations on a triperiodic domain with
initialization for the variables ρ, ui, p. The ideal gas law p = ρRT is used to compute
the temperature field. Transport properties such as viscosity are taken to be constant, to
avoid the influence of variable-density fluctuations on viscous transport processes. The
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Table 1. Primary flow-cases simulated for subgrid-scale analysis.

Initial condition Atwood number

Case 1 IC1 (homentropic ρ fluctuations) -

Case 2a IC2 (isotropic double-δ ρ pdf) 0.4

Case 2b IC2 (isotropic double-δ ρ pdf) 0.7

viscous terms in the momentum and energy equations are σρui
= −µ(∂jSij−2/3 ∂jSkkδij)

and σE = −cpµ/Pr ∂jT , respectively. Sij is the strain rate tensor, and cp is the specific
heat capacity. We assume a calorically perfect gas with constant cp = 1.003 kJ/kg K and
a Prandtl number of 0.72.

∂

∂t


ρ

ρui

1
2ρukuk + Eint

+
∂

∂xj


ρuj

ρuiuj + pδij

1
2ρukuk + Eintuj + puj

+


0

σρui

σE

 =


0

0

0

 (3.1)

A triperiodic grid with 512 points in each co-ordinate direction is used for the simulations.
Three cases are considered (Table 1) with turbulent Mach number Mt of 0.3, which is
chosen as representative of high-speed turbulent boundary layers (Lagha et al. 2011). The
initial velocity field is identical for all cases, and is initialized by extracting the solenoidal
velocity component from a precursor simulation of compressible decaying turbulence
simulation whose velocity derivative skewness has saturated to a value close to 0.5.
Saturation in skewness implies that the rate of vorticity production via vortex stretching
has stabilized and the flow has evolved from an artificial state into a turbulent state with
realistic non-linear dynamics. The precursor simulation therefore ensures that the flows
initialized in this study are closer to a realistic turbulent flow compared to a random
isotropic velocity field. The precursor simulation is initialized with a k2 exp(−2(k/k0)2)
radial spectrum with Reλ = 100,Mt = 0.3, k0/L = 6 and simulated to t/teddy = 3.0.

Initial density, pressure, and temperature fields are initialized in two different ways de-
noted by IC1 and IC2. In IC1, the initial pressure field is obtained from the incompressible
Poisson equation using the volume-averaged density. The density field is then initialized
with p/ργ = 〈p〉/〈ρ〉γ (Samtaney et al. (2001); Ristorcelli & Blaisdell (1997)). Note that
only the solenoidal velocity field from the precursor simulation is used for initialization.
This is because with IC1 thermodynamic fields, the time evolution of mean dilatation
variance with zero initial dilatation is nearly identical to that from a non-zero initial
dilatation obtained from small parameter expansion about Mt (Ristorcelli & Blaisdell
(1997)). The two curves from zero and non-zero initial dilatation are found to nearly
overlap for t/teddy > 0.3. The turbulent kinetic energy decay in compressible turbulence
using IC1 is compared to results from Samtaney et al. (2001) in the Appendix.

IC2 corresponds to an isotropic double-δ distribution of the density field with the
volume divided into two regions of densities ρ1 and ρ2, with a smooth interface. Similar
scalar fields have been used previously in the work of Livescu & Ristorcelli (2007) and
Sandoval (1995). The scalar field is generated with non-zero spectral content for 2 6
kL 6 4, where L is the length of the periodic domain. To generate a smooth interface,
the field is filtered with an exponential filter with kcL = 4, resulting in a ρ pdf that
deviates slightly from a strict double-δ distribution. Smoothing the ρ interface changes
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ρ

IC1

u p

ρ

IC2

u p

Figure 1. DNS initialization: ρ, u, p fields are shown.

the mean and variance of the density distribution from 1.0 and 0.25 to 1.017 and 0.235,
respectively. The Atwood number A = (ρ2 + ρ1)/(ρ2 − ρ1) is an important parameter
in quantifying the strength of hydrodynamic instability in stratified flows; a volumetric
mean density 〈ρ〉 = 1.0 is used to calculate ρ1 and ρ2. Cases 2a and 2b use IC2, but
differ in the Atwood number. Case 2b has a larger Atwood number than Case 2a, and as
expected, exhibits more pronounced variable-density effects. The largest value of Atwood
number considered here corresponds to a density ratio of approximately 6, which is a
typical of light/heavy fluid mixing in industrial applications. Larger density ratios exist
in combustion and multiphase systems, and are expected to produce stronger variable-
density effects. The pressure in IC2 is determined by solving the inviscid variable-density
Poisson equation. This equation is obtained by ensuring that the initial conditions do not
provide a source of Lagrangian change in fluid density, D(∂juj)/Dt = 0. The pressure at
time t = 0 therefore satisfies

∂

∂xi

(
1

ρ

∂p

∂xi

)
= −∂uj

∂xi

∂ui
∂xj

(3.2)

We restrict the initial ui, ρ fields to large length scales. The velocity field from the
precursor simulation and the generated density field are filtered using a sharp-spectral
filter with kcL = 32. This ensures that the small scales in the density and velocity fields
develop from the initial conditions together via vortex stretching and baroclinic torque.
The viscosity is specified such that the initial Taylor length scale Reynolds number Reλ
is 500. Reλ is large because the initial velocity spectrum is non-zero at low wavenumbers
kL < 32, resulting in a large initial Taylor length scale λ. After the transient, the energy
spectrum becomes broadband and Reλ decreases. At t/teddy = 3, the Taylor length scale
Reynolds number reduces to Reλ = 85. The fields corresponding to the initial conditions
are visualized in figure 1.

A finite-volume scheme is employed to solve 3.1. The convective flux is evaluated
using a stable low-dissipation scheme based on the kinetic-energy consistent method
developed by Subbareddy & Candler (2009). A gradient reconstruction method described
in Subbareddy et al. (2014) is used to make the symmetric part of the convective flux
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Figure 2. Time history of volume averaged quantities.

formally sixth-order accurate. In regions of strong compression (shocklets), a Ducros-type
shock sensor adds dissipation to the convective flux using the non-symmetric part of the
modified Steger-Warming flux-vector splitting scheme. The details of the flux scheme
can be found in Candler et al. (2015) and MacCormack (2014). The viscous fluxes are
computed using a second-order central scheme and use compact stencil second-order
least-squares gradients. The low-storage third-order accurate strong-stability preserving
Runge-Kutta scheme (Gottlieb et al. 2001) is used for time integration. A CFL number
of 0.7 based on the local fast characteristic wave speed is used.

3.2. Time histories and spatial statistics

Volume-averaged statistics from the three cases simulated are shown in figure 2.
Time histories of six physical quantities are plotted: (a) kinetic energy, (b) enstrophy,
(c) dilatation variance, (d) mass flux variance, (e) density variance, and (f) baroclinic
torque variance. The volume averages of dilatation, mass flux and baroclinic torque are
numerically close to zero, and hence, variances of these quantities are plotted. All the
curves are normalized by the value corresponding to Case 2b at time t = 0. While
the volume-averaged kinetic energy curves nearly overlap, quantities based on velocity
gradients, namely the enstrophy and dilatation variance, exhibit prominent differences
during 1 6 t/teddy 6 4. This occurs when small velocity scales are produced by vortex
stretching and variable-density mixing effects are active. Later, when mixing homogenizes
the density field, the curves of kinetic energy, enstrophy and dilatation variance for Cases
2a and 2b begin to converge with the Case 1 curves.

Velocity-gradient-based statistics are found to be more strongly affected by variable-
density effects. In the case of enstrophy, the differences can be attributed to production
of vorticity by baroclinic torque, which is the curl of the pressure-gradient acceleration.
Baroclinic-torque-generated vorticity is further stretched by the background strain, thus
compounding the enstrophy generation process. We also note that the differences in
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Figure 3. Three-dimensional shell-averaged radial spectra of kinetic energy (left) and energy
spectral density of the density (right) at t/teddy = 3.0.
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the curves are discernible only after one eddy turnover time, indicating the absence
of impulsively-generated enstrophy by the initial conditions. The increase in dilatation
variance (figure 2c) in Cases 2a and 2b can be explained by the pressure-gradient
acceleration. The pressure-gradient acceleration tensor Aij = ∂j(∂ip/ρ) appears in the
velocity gradient transport equation. The antisymmetric part Aij − Aji is associated
with baroclinic torque and the corresponding term in the dilatation rate equation is
the trace of the tensor Aii. The symmetric part Aij + Aji contributes to the rate of
change of the strain rate tensor. The fluctuating mass flux variance and the density
fluctuation variance decay monotonically, but have transience that lasts approximately
two eddy turnover times, marked by an inflection point in their respective curves. The
fluctuating mass flux is also the mean fluctuating Favre-filtered velocity, and represents
the spatial correlation of the density and the velocity fields. The initial density variance
in Case 1 is seen to be extremely small relative to Cases 2a and 2b, and suggests that
the variable-density effects in compressible decaying turbulence are expected to be small
for Mt = 0.3.

The kinetic energy radial spectra and the energy spectral density of the density field
at t/teddy = 3.0 are plotted in figure 3. The flow field at this time contains a small
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inertial subrange with a k−5/3 slope present approximately between 0.2 > kη > 0.1. The
presence of initial thermal-density inhomogeneity increases the content at small velocity
scales, but the k−5/3 spectrum is preserved. Increasing strength of density fluctuations
leads to increased rate of kinetic energy transfer to higher wavenumbers. This is also
reflected in the aliasing error that develops at high wavenumbers due to the use of a
low-dissipation central numerical scheme in the simulations. The density field spectrum
shows that the content in the large scales for Case 1 is relatively flat (∼ k0), while Cases
2a and 2b, which involve mixing of variable-density fluids, exhibit a k−1 behavior at low
wavenumbers. This may be interpreted as the Batchelor k−1 viscous-convective scaling
in the high Schmidt number limit as the effective diffusivity for density is zero (Donzis
et al. 2010).

Figure 4 shows the effect of variable-density mixing on the intermittency of the flow
fields. Probability distribution functions of x-gradients of the x component of the velocity
and density are plotted. The mean values have been subtracted and the x-axis is scaled
with the standard deviation for Case 1. Variable-density effects are seen to increase
the probability of occurrence of tail events and have distributions with larger standard
deviation. The ∂xu and ∂xρ pdfs show that all cases have a high degree of super-Gaussian
(leptokurtic) character, indicating the presence of intermittency representative of high
Re turbulence (Schumacher et al. 2014). The kurtosis of the ∂xu and ∂xρ fields in Case
1 is 18.8 and 22.7, respectively. In Case 2b, the value of kurtosis for both distributions
reduces to 13.0 and 16.7, respectively, due to increased probability of the occurrence of
tail events. In comparison, the kurtosis of a Gaussian distribution is 3.

4. Variable-density subgrid-scale analysis

In this section, we explicitly filter the DNS flow fields to study the SGS terms
that appear in the Favre-filtered and Reynolds-filtered momentum equations. The first
subsection compares the two resolved-scale velocity fields in Fourier and physical space.
The second subsection compares the importance of the variable-density SGS terms with
respect to the constant-density SGS terms. Central moments that involve ρ and ∇ · u
as one of the variables under the filter operator are referred to as variable-density SGS
terms. Terms that involve the SGS specific stress T [ui, uj ] = uiuj − ūiūj are referred
to as constant-density SGS terms. This is the first study that computes the effect of
the small-scale density variations on large-scale momentum in compressible turbulent
mixing of variable-density fluids. We restrict the results to a budget analysis, and no a
priori assessment of SGS closures is conducted. Similarly, as aforementioned, the effect
of implicit filtering associated with an LES discretization is not discussed.

The time histories of dilatation and enstrophy suggest that the flows reach a state
of decay after two eddy turnover times. Therefore, we carry out the variable-density
SGS analysis of the instantaneous flow field at t/teddy = 3.0. The conclusions from the
analysis are not sensitive to the time chosen in the decay regime. An exponential filter
with kcη = 0.12 is used to filter the fields, and all filtering operations are carried out
in Fourier space. The value of 0.12 is chosen so that the cutoff wavenumber lies in the
inertial subrange and approximately 82% of the kinetic energy is resolved. The effect of
filter type and the choice of filter width is discussed in the Appendix. It is found that the
relative importance of the variable-density SGS terms is not sensitive to either of these
parameters.
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ūi
ui

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

0.01 0.05 0.1 0.2 0.4 1.0

E
û
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Figure 5. Resolved-scale velocity radial spectra from Case 2b filtered with kcη = 0.12 with
different filters: Favre-filtered velocity ũi and filtered velocity ūi are compared.

4.1. Comparison of Reynolds-filtered and Favre-filtered velocity fields

The flow field corresponding to Case 2b with Atwood number of 0.7 is filtered to
assess the differences between the ũi and ūi velocity fields. The spectral content for both
resolved-scale variables is found to be nearly identical for this case, with ũi having slightly
larger specific energy at wavenumbers beyond the filter cutoff (figure 5). This is true for
the exponential and the sharp spectral filter. We also compare the filtered vorticity ω̄i
and the curl of the Favre-filtered velocity ∇× ũi in Fourier and physical space (figure 6
left). The curl of the Favre-filtered velocity ωF

i = ∇× ũi is referred to as pseudo-vorticity
in Chakraborty et al. (2017). We also note that pseudo-vorticity ωF

i is not the Favre-
filtered vorticity ω̃i. The differences in the spectral content of the filtered vorticity and
pseudo-vorticity are found to be similar to the differences in the spectral content of the
velocity fields, except they are amplified because Eω̂iω̂∗

i
∼ k2Eûiûi

∗

In physical space, the pdf of the normalized difference between the ūi and ũi gradient
fields is plotted. It is found that the difference between ω̄i and ωF

i can exceed 100% in
different regions of the flow. This is seen in figure 6 (right), where |ω̄i| − |ωF

i | > |ω̄i|
(area under the solid curve beyond horizontal-axis value of 1.0). The differences between
the magnitude of S̄ij and SF

ij = 1/2(∂iũj + ∂j ũi) can also be large, but are relatively
less pronounced than in the case of vorticity variables. In summary, the spectral content
of the Favre-filtered and the Reynolds-filtered velocity fields in Case 2b do not exhibit
strong disparities in the decay stage. However, differences in the resolved-scale velocity
gradient fields in physical space are non-negligible.

4.2. Variable-density SGS terms in resolved-scale momentum equation

Subgrid-scale terms in the resolved-scale momentum equation are computed using the
DNS fields at t/teddy = 3.0 with an exponential filter of kcη = 0.12. The SGS terms
involving density ρ and dilatation ∇ · u in the central moments are of primary interest.
The SGS specific stress T [ui, uj ] serves as the reference for comparison. The analysis
is unique because the terms appearing in the resolved-scale momentum equation are
considered, as opposed to terms appearing in the transport equations of SGS kinetic
energy, SGS stress, or other second-moment SGS terms. The resolved-scale momentum
equations corresponding to both the variables, ∂tρ̄ũi and ∂tρ̄ūi are considered; each
equation has its own set of SGS terms.
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The SGS terms arising from viscous transport, including T [ρ, σρui/ρ] are not considered
in this analysis. Snapshots of the x-component of the Case 2b SGS vector field are shown
in figures 7 and 8 for the ∂tρ̄ũi and ∂tρ̄ūi equations, respectively. All SGS terms are
plotted on the same scale and colormap. We see that the specific stress T [ui, uj ] terms
in both equations are large and space-filling. While the variable-density SGS terms in
both forms of the momentum equations are sparsely active, they can be large in specific
regions. In particular, we note that the SGS mass flux term in the ∂tρ̄ũi equation is
extremely small and that SGS velocity-dilatation term is the most active variable-density
SGS term in the ∂tρ̄ūi equation.

The relative importance of the variable-density SGS terms is evaluated by normalizing
by the local constant-density term. The resulting ratio fields quantify the importance
of the variable-density SGS terms. Since the SGS terms are vectors, the ratio of scalar
projections are evaluated; two scalars are considered for this purpose. The first scalar
is the magnitude of the SGS vector. If we denote a particular variable-density SGS
term by Ti, and the constant-density term by T cd

i , the quantity |Ti|/|T cd
i | indicates the

relative magnitude. However, there are regions in the flow where |T cd
i | can approach

zero, which corrupts the statistics. To avoid this issue, we evaluate the regularized
ratio |Ti|/(|T cd

i | + |Vi|), where Vi = σ̄ρui
is the resolved-scale viscous diffusion vector

and represents a physical and dimensional regularization. Thus, |Vi| ensures that the
statistical information derived from the ratio field, particularly the pdf tail is not
arbitrary. In comparison to the SGS terms Ti, the |Vi| values are typically very small.
However, the Vi field is space-filling and non-zero due to the presence of non-zero strain-
rate in the entire domain. In the limit when kcη >> 1 and the SGS terms are zero
(Ti, T

cd
i → 0), then Vi → σρui

where σρui
is the viscous term in the momentum

equation. Note that the SGS vectors require derivatives. Like the filters, we compute
these derivatives in Fourier space.

Besides the magnitude of these terms, a scalar incorporating the orientation of the SGS
vectors is also required. In this context, projection on the resolved-scale velocity vector
is considered. This is a physically meaningful projection and quantifies the contribution
of SGS terms to the kinetic energy associated with the resolved-scale velocity. The rate
of change of the kinetic energy is

∂ 1
2 ρ̄ũiũi

∂t
= ũi

∂ρ̄ũi
∂t
− 1

2
ũiũi

∂ρ̄

∂t
,

∂ 1
2 ρ̄ūiūi

∂t
= ūi

∂ρ̄ūi
∂t
− 1

2
ūiūi

∂ρ̄

∂t
(4.3)

We see that the projection of the resolved-scale momentum equation SGS terms on
the resolved-scale velocities is their contribution to the computable kinetic energy. The
term ūiSρ appearing in ∂tρ̄ūi is an exception; its contribution reverses sign due to the
term ∂tρ̄. Similar to the magnitude ratio, the ratio of the projection on resolved-scale
velocity is computed with Vi to regularize the denominator. The ratio signifies the relative
contribution to the resolved-scale kinetic energy.

By computing the ratio at each point in the instantaneous flow field, we can compute
the probability distribution functions for these fields. A typical ratio field and its pdf are
shown in figure 9. These distributions are plotted for ũi (figure 10) and ūi (figure 11).
Plots on the left are the magnitude ratio distributions, and those on the right are the
resolved-scale velocity projection ratios. Each plot has three curves with distributions
from Cases 1, 2a and 2b. Let us consider figure 10. The plots in the top row correspond
to the trivariate moment term ∂jT [ρ, ui, uj ] and those in the bottom row correspond to
the SGS mass flux term −∂j(T [ρ, ui] T [ρ, uj ] /ρ̄).

Reynolds-filtered momentum equation ∂tρ̄ūi pdfs are plotted in figure 11 for the
SGS mass flux term ūi∂jT [ρ, uj ] (top row), SGS pressure-gradient acceleration term
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−T [ρ, ∂ip/ρ] (middle row), and SGS velocity-dilatation ρ̄T [ui, ∂juj ](bottom row). All
three variable-density SGS terms are found to be non-negligible for Cases 2a and 2b,
but insignificant for Case 1. For both resolved-scale momentum variables, the terms are
found to be more important by means of the velocity projection ratio metric.

Integral values for the ratios are also evaluated. Average ratio values are large for
Case 2b and small for Case 1. For example, the value corresponding to the trivariate
term in the Favre-filtered equation by the projection metric is 0.18 for Case 2b and 0.01
for Case 1. We note that averaging the ratio field over the entire volume suppresses
the importance of variable-density SGS terms as it causes the average to be biased by
homogenized flow pockets where the ratio values are close to zero. Therefore, for Case
2b, we present the conditionally averaged ratio in figure 12. The conditional average
is the average over regions where |∇ρ̄| is greater than a specified value |∇ρ̄|c. As the
value of |∇ρ̄|c is increased, the conditional mean of the ratios corresponding to all terms
increases. This implies that when regions with strong density gradients are sampled,
variable-density SGS terms become relatively more important, even in a statistical sense.
For Case 2b, the mean values of the variable-density terms are found to be larger than
the specific stress term using the projection metric in regions of strong resolved-scale
density gradients.

Ratio distributions for the filtered vorticity transport equation (2.28) are also com-
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Figure 10. Probability distribution functions of the relative magnitude (left) and relative
projection (right) for SGS terms in ∂tρ̄ũi equation from instantaneous flow field.

puted. There are three inviscid SGS terms in the equation: the SGS vorticity flux
∂jT [ωi, uj ], the SGS vortex stretching term T [ωj , ∂jui], and the SGS baroclinic torque
∇× T [∂ip, 1/ρ]. The pdf plots quantifying the importance of the SGS baroclinic torque
relative to the SGS vorticity flux ∂jT [ωi, uj ] and the SGS vortex stretching term
T [ωj , ∂jui] are plotted in figure 13. Both metrics, magnitude, and projection on ω̄i are
considered. Projecting the SGS vectors onto the resolved-scale vorticity, similar to the
projection of the SGS terms in the momentum equation on the resolved-scale velocity,
represents the contribution of each SGS term to the resolved-scale enstrophy ω̄iω̄i/2. The
resolved-scale viscous term ∇ × σ̄ρui/ρ̄ is used for regularization of the denominator to
compute the ratio fields. The ratio of SGS baroclinic torque to both SGS vorticity flux
as well as SGS vortex stretching is computed, and is found to be important for Cases 2a
and 2b, but unimportant for Case 1.

We now synthesize the important findings from the analysis. Turbulent flow fields with
active variable-density effects have been investigated to quantify the role of variable-
density SGS terms on the dynamics of the Favre-filtered and Reynolds-filtered velocity
fields. Evidence for the significance of these terms is provided in the form of pdfs of their
magnitude relative to the constant-density SGS terms. Two scalar metrics are chosen
to compare the SGS vectors, namely their magnitude and their contribution to kinetic
energy production and dissipation.



22 Sidharth GS and G. V. Candler

1e-04

1e-03

1e-02

1e-01

1e+00

0.0 0.5 1.0 1.5 2.0

p
d
f

|Ti|/(|T cd
i | + |Vi|)
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Figure 11. Probability distribution functions of the relative magnitude (left) and relative
projection (right) for SGS terms in ∂tρ̄ūi equation from instantaneous flow field.

For the Mt = 0.3 flows studied, it is found that density fluctuations arising out of
compressibility alone are weak, and that SGS terms arising from small-scale density
fluctuations are also negligible. However, when density fluctuations are associated with
thermal inhomogeneities, they interact with the pressure gradient field to produce accel-
eration fluctuations, thereby affecting velocity gradients. Not only is vorticity affected,
but the dilatation content is also significantly altered. Therefore, flow compressibility
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Trivariate term
Mass flux term

0.5

1.0

1.5

2.0

0 1 2 3 4

〈R
a
ti

o〉
∣ ∣ ∣ |∇

ρ̄
|>

|∇
ρ̄
| c

|∇ρ̄|c/〈|∇ρ̄|〉

Conditional average (∂tρ̄ūi SGS terms)
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Figure 12. Conditional volumetric averages of relative magnitude (black) and relative
projection (red) for SGS terms in Favre-filtered equation (left) and Reynolds-filtered equation
(right) from instantaneous flow field.

strongly couples with thermal density inhomogeneities, and consequently, the dynamics
of compressible variable-density turbulence are inherently different from incompressible
variable-density turbulence (Sandoval 1995). Although we do not study compressible
turbulent mixing of variable-density fluids with different molecular weights, such flows
are expected to exhibit non-negligible variable-density SGS effects as well.

The analysis discusses variable-density effects on the Favre-filtered velocity SGS stress
tensor in terms of central moments under the filter, which represent the spatial correlation
between small scales. The trivariate moment T [ρ, ui, uj ] is found to be the most dynam-
ically important variable-density term in the SGS stress. The physics of this term merit
attention because it contributes significantly to the computable resolved-scale kinetic
energy ρ̄ũiũi/2.

We also present an alternate form of the Reynolds-filtered Navier-Stokes equations.
The equations are novel because they do not involve time derivatives of unclosed terms
and all unclosed terms involve only second moments under the filter operator. Using the
new Reynolds-filtered momentum equation, we isolate the SGS inertial and dilatational
effects and establish the dynamical importance of specific terms. The new Reynolds-
filtered equations represent the effect of SGS pressure-acceleration, as well as the SGS
mass flux and SGS dilatation correlations in resolved-scale mass, velocity, and internal
energy.

From the point of view of large eddy simulations, the analysis has implications on
the modeling variable-density SGS effects. The new SGS terms provide a framework to
study variable-density counter-gradient diffusion independently of the constant-density
SGS terms. For example, in Case 2b, we find that the SGS mass flux and SGS pressure-
acceleration terms have a net positive contribution to (1/2)∂tρ̄ūiūi, as opposed to the SGS
specific stress, which has a net negative contribution. In other words, while the constant-
density SGS term drains energy from the large scales in the mean sense, these two
variable-density SGS terms transfer kinetic energy to the large scales. Counter-gradient
diffusion is particularly important for turbulent combustion in which dilatation (Veynante
et al. 1997; Yoshizawa et al. 2009; O’Brien et al. 2014) and pressure gradients (Veynante
& Poinsot 1997) correlate with counter-gradient diffusion of species and kinetic energy.
Future work will involve developing and testing subgrid-scale closures for the variable-
density SGS terms in Favre and Reynolds-filtered formulations in different classes of
flows.

.
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5. Conclusions

This paper identifies the role of subgrid-scale density fluctuations on resolved-scale
velocity, using both density-weighted and non-density-weighted forms of the governing
equations. We first discuss the filtered Navier-Stokes equations in the conventional Favre-
filtered framework and follow with a novel derivation of the Reynolds-filtered form of the
equations. The filtered velocity dynamics are studied because the curl of the filtered
velocity is the filtered vorticity. Important variable-density effects such as the SGS
baroclinic torque appear in the transport equation of filtered vorticity. On the other
hand, the curl of the Favre-filtered velocity follows different dynamics and can differ
significantly from the filtered vorticity, particularly when small-scale density fluctuations
are strong.

The conventional resolved-scale momentum equation derived without density weighting
contains the time derivative of the subgrid-scale mass flux. This unsteady SGS term
makes the equation cumbersome from a modeling perspective. Therefore, we derive a
new set of Reynolds-filtered equations for mass, momentum, and energy by decoupling
the transport of SGS mass flux and SGS kinetic energy from the equations. In addition to
having only spatial SGS terms, the new Reynolds-filtered equations involve only double
correlations of the flow state.

In the equations for the resolved-scale momentum, we represent the SGS terms by
expressing them as central moments under the filter operator. Using this method, we
isolate the terms that involve the density or dilatation field, and the SGS terms containing
only the specific stress uiuj − ūiūj appear explicitly. We refer to such terms as constant-
density SGS terms because they are the only active terms in a constant-density turbulent
flow. After partitioning the SGS terms into variable-density and constant-density terms,
it is natural to compare their relative strength. For this purpose, we carry out direct
numerical simulations of two types of compressible decaying turbulence. In the first case,
density fluctuations are primarily barotropic and arise from the compressibility of the
flow, which is set to a moderate value. The other case involves the mixing of thermally
inhomogeneous variable-density fluid regions with identical flow parameters. Therefore,
the main content of the density fluctuations is entropic. It is found that the variable-
density SGS terms are negligible in the first case, but important in the second. This is
attributed to the presence of strong inertial effects on small-scale turbulent flow features
in the latter case.
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Figure 14. Comparison of decaying isotropic compressible turbulence simulations with
literature.

We conclude that the effects of small-scale density variations on the dynamics of large-
scale velocity and vorticity can be important in compressible flows involving the mixing
of variable-density fluids. In the Favre-filtered momentum equation, these effects are
embedded in the trivariate moment term (triple correlation). Whereas, in the Reynolds-
filtered momentum equation, these effects appear separately as the SGS pressure-gradient
acceleration, SGS velocity dilatation, and SGS mass flux convection. Understanding and
quantifying the role played by these terms under different flow conditions will pave the
way to the design of improved closures for variable-density turbulence.

We thank Dr. Pramod Subbareddy and the reviewers for suggestions that improved
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expressed or implied, of the funding agencies or the U.S. Government.

6. Appendix

The sensitivity of the analysis to the choice of simulation and filtering parameters is
briefly discussed in this section. A comparison of kinetic energy decay and instantaneous
radial spectra with simulations reported in literature is shown in figure 14. The effect
of grid resolution on Case 2b flow-field at a fixed time t/teddy = 3.0 is shown in
figure 15. The spectral content and the intermittency of the instantaneous flow-field
are properly captured with a grid resolution of 5123. To quantify the sensitivity of the
relative importance of the subgrid-scale variable density terms, we focus on the resolved-
scale momentum equation corresponding to the filtered velocity ūi. The effect of filter
type, cutoff wavenumber for the exponential filter, initial and instantaneous length-scale
Reynolds number and the randomness of the initial density distribution is considered.
The results are displayed in figures 16-19. The relative importance of the variable-density
SGS terms is found to be insensitive to all the parameters mentioned above, making
the conclusions drawn in this paper general for decaying compressible variable-density
turbulence.
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Figure 15. Grid refinement study of the field statistics at t/teddy = 3 for Case 2b
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|Tiūi|/(|T cd
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i ūi|+ |Viūi|)
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equation (Case 2b).
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Figure 17. Effect of cutoff wavenumber used in the exponential filter on relative strength of
variable-density SGS terms in ρ̄ūi equation (Case 2b).
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Figure 18. Effect of Reynolds number on relative strength of variable-density SGS terms in ρ̄ūi

equation. The Taylor scale Reynolds number shown in the plots corresponds to the instantaneous
flow-field (Case 2b).
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Figure 19. Effect of the randomness of the initial density field distribution on relative
strength of variable-density SGS terms in ρ̄ūi equation (Case 2b).
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