DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cleaving Off Uranyl Oxygens through Chelation: A Mechanistic Study in the Gas Phase

Abstract

Recent efforts to activate the strong uranium-oxygen bonds in the dioxo uranyl cation have been limited to single oxo-group activation through either uranyl reduction and functionalization in solution, or by collision induced dissociation (CID) in the gas-phase, using mass spectrometry (MS). Here, we report and investigate the surprising double activation of uranyl by an organic ligand, 3,4,3-LI(CAM), leading to the formation of a formal U6+ chelate in the gas-phase. The cleavage of both uranyl oxo bonds was experimentally evidence d by CID, using deuterium and 18O isotopic substitutions, and by infrared multiple photon dissociation (IRMPD) spectroscopy. Density functional theory (DFT) computations predict that the overall reaction requires only 132 kJ/mol, with the first oxygen activation entailing about 107 kJ/mol. Here, combined with analysis of similar, but unreactive ligands, these results shed light on the chelation-driven mechanism of uranyl oxo bond cleavage, demonstrating its dependence on the presence of ligand hydroxyl protons available for direct interactions with the uranyl oxygens.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Duquesne Univ., Pittsburgh, PA (United States)
  3. Radboud Univ., Nijmegen (The Netherlands)
  4. Radboud Univ., Nijmegen (The Netherlands); Univ. of Amsterdam, Amsterdam (The Netherlands)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1436648
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 56; Journal Issue: 21; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Uranyl activation; Actinide chemistry; Gas-phase chemistry; Collision induced dissociation; Uranium chelate

Citation Formats

Abergel, Rebecca J., de Jong, Wibe A., Deblonde, Gauthier J. -P., Dau, Phuong D., Captain, Ilya, Eaton, Teresa M., Jian, Jiwen, van Stipdonk, Michael J., Martens, Jonathan, Berden, Giel, Oomens, Jos, and Gibson, John K. Cleaving Off Uranyl Oxygens through Chelation: A Mechanistic Study in the Gas Phase. United States: N. p., 2017. Web. doi:10.1021/acs.inorgchem.7b01720.
Abergel, Rebecca J., de Jong, Wibe A., Deblonde, Gauthier J. -P., Dau, Phuong D., Captain, Ilya, Eaton, Teresa M., Jian, Jiwen, van Stipdonk, Michael J., Martens, Jonathan, Berden, Giel, Oomens, Jos, & Gibson, John K. Cleaving Off Uranyl Oxygens through Chelation: A Mechanistic Study in the Gas Phase. United States. https://doi.org/10.1021/acs.inorgchem.7b01720
Abergel, Rebecca J., de Jong, Wibe A., Deblonde, Gauthier J. -P., Dau, Phuong D., Captain, Ilya, Eaton, Teresa M., Jian, Jiwen, van Stipdonk, Michael J., Martens, Jonathan, Berden, Giel, Oomens, Jos, and Gibson, John K. Wed . "Cleaving Off Uranyl Oxygens through Chelation: A Mechanistic Study in the Gas Phase". United States. https://doi.org/10.1021/acs.inorgchem.7b01720. https://www.osti.gov/servlets/purl/1436648.
@article{osti_1436648,
title = {Cleaving Off Uranyl Oxygens through Chelation: A Mechanistic Study in the Gas Phase},
author = {Abergel, Rebecca J. and de Jong, Wibe A. and Deblonde, Gauthier J. -P. and Dau, Phuong D. and Captain, Ilya and Eaton, Teresa M. and Jian, Jiwen and van Stipdonk, Michael J. and Martens, Jonathan and Berden, Giel and Oomens, Jos and Gibson, John K.},
abstractNote = {Recent efforts to activate the strong uranium-oxygen bonds in the dioxo uranyl cation have been limited to single oxo-group activation through either uranyl reduction and functionalization in solution, or by collision induced dissociation (CID) in the gas-phase, using mass spectrometry (MS). Here, we report and investigate the surprising double activation of uranyl by an organic ligand, 3,4,3-LI(CAM), leading to the formation of a formal U6+ chelate in the gas-phase. The cleavage of both uranyl oxo bonds was experimentally evidence d by CID, using deuterium and 18O isotopic substitutions, and by infrared multiple photon dissociation (IRMPD) spectroscopy. Density functional theory (DFT) computations predict that the overall reaction requires only 132 kJ/mol, with the first oxygen activation entailing about 107 kJ/mol. Here, combined with analysis of similar, but unreactive ligands, these results shed light on the chelation-driven mechanism of uranyl oxo bond cleavage, demonstrating its dependence on the presence of ligand hydroxyl protons available for direct interactions with the uranyl oxygens.},
doi = {10.1021/acs.inorgchem.7b01720},
journal = {Inorganic Chemistry},
number = 21,
volume = 56,
place = {United States},
year = {Wed Oct 11 00:00:00 EDT 2017},
month = {Wed Oct 11 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (top) CID ESI-MS spectra of [UO2(CAMH7)]- (blue) and [UO2(CAMD7)]- (red). Nominal CID voltage = 0.25 V. (bottom) CID ESI-MS spectrum of the ligand CAMH9-. Nominal CID voltage = 0.70 V. The structures of the ligand (CAMH10) and its deuterated version (CAMD10) are given for clarity. The dominant fragmentationmore » pathways are two H2O losses for [UO2(CAMH7)]- and two D2O losses for [UO2(CAMD7)]-; water loss is not observed for CAMH9-. Also observed are ligand cleavages as indicated, concomitant with H-atom transfer from the eliminated neutral fragment (136 m/z); this is the only pathway observed for the ligand. Although the fragmentation mechanisms are not revealed by these results, the peaks at 859, 841, and 824 m/z correspond to the respective losses of “136” and one H2O; “136” and two H2O; and “136”, two H2O, and one OH from [UO2(CAMH7)]-.« less

Save / Share:

Works referenced in this record:

A graphene oxide/amidoxime hydrogel for enhanced uranium capture
journal, January 2016

  • Wang, Feihong; Li, Hongpeng; Liu, Qi
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19367

Coordination chemistry in the ocean
journal, February 2014


Scientific Basis for Efficient Extraction of Uranium from Seawater. I: Understanding the Chemical Speciation of Uranium under Seawater Conditions
journal, December 2015

  • Endrizzi, Francesco; Leggett, Christina J.; Rao, Linfeng
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 15
  • DOI: 10.1021/acs.iecr.5b03679

Modeling and Speciation Study of Uranium(VI) and Technetium(VII) Coextraction with DEHiBA
journal, June 2016


XAS and TRLIF spectroscopy of uranium and neptunium in seawater
journal, January 2015

  • Maloubier, Melody; Solari, Pier Lorenzo; Moisy, Philippe
  • Dalton Trans., Vol. 44, Issue 12
  • DOI: 10.1039/C4DT03547J

Towards uranium catalysts
journal, September 2008

  • Fox, Alexander R.; Bart, Suzanne C.; Meyer, Karsten
  • Nature, Vol. 455, Issue 7211
  • DOI: 10.1038/nature07372

Uranyl oxo activation and functionalization by metal cation coordination
journal, November 2010

  • Arnold, Polly L.; Pécharman, Anne-Frédérique; Hollis, Emmalina
  • Nature Chemistry, Vol. 2, Issue 12
  • DOI: 10.1038/nchem.904

Control of Oxo-Group Functionalization and Reduction of the Uranyl Ion
journal, March 2015


Extending the Chemistry of the Uranyl Ion:  Lewis Acid Coordination to a UO Oxygen
journal, February 2004

  • Sarsfield, Mark J.; Helliwell, Madeleine
  • Journal of the American Chemical Society, Vol. 126, Issue 4
  • DOI: 10.1021/ja039101y

Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide
journal, May 2015

  • Gong, Yu; de Jong, Wibe A.; Gibson, John K.
  • Journal of the American Chemical Society, Vol. 137, Issue 18
  • DOI: 10.1021/jacs.5b02420

Activation of Gas-Phase Uranyl: From an Oxo to a Nitrido Complex
journal, December 2013

  • Gong, Yu; Vallet, Valérie; del Carmen Michelini, Maria
  • The Journal of Physical Chemistry A, Vol. 118, Issue 1
  • DOI: 10.1021/jp4113798

Formation of Bare UO 2 2+ and NUO + by Fragmentation of Gas-Phase Uranyl–Acetonitrile Complexes
journal, August 2014

  • Van Stipdonk, Michael J.; Michelini, Maria del Carmen; Plaviak, Alexandra
  • The Journal of Physical Chemistry A, Vol. 118, Issue 36
  • DOI: 10.1021/jp5066067

Crystal structure determination of 4f–5f heterometallic complexes
journal, February 2002

  • Leverd, Pascal C.; Rinaldo, David; Nierlich, Martine
  • Journal of the Chemical Society, Dalton Transactions, Issue 6
  • DOI: 10.1039/b200199n

Oxo ligand functionalization in the uranyl ion (UO22+)
journal, February 2010


Engineered Recognition of Tetravalent Zirconium and Thorium by Chelator–Protein Systems: Toward Flexible Radiotherapy and Imaging Platforms
journal, November 2016


Formation and Characterization of the Uranyl–SO 2 Complex, UO 2 (CH 3 SO 2 )(SO 2 )
journal, January 2013

  • Gong, Yu; Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 4
  • DOI: 10.1021/jp311034x

Electron transfer dissociation of dipositive uranyl and plutonyl coordination complexes: ETD of Uranyl/Plutonyl Complexes
journal, December 2011

  • Rios, Daniel; Rutkowski, Philip X.; Shuh, David K.
  • Journal of Mass Spectrometry, Vol. 46, Issue 12
  • DOI: 10.1002/jms.2011

Gas-Phase Uranyl, Neptunyl, and Plutonyl: Hydration and Oxidation Studied by Experiment and Theory
journal, June 2012

  • Rios, Daniel; Michelini, Maria C.; Lucena, Ana F.
  • Inorganic Chemistry, Vol. 51, Issue 12
  • DOI: 10.1021/ic3001625

The Free-Electron-Laser user facility FELIX
journal, January 1995

  • Oepts, D.; van der Meer, A. F. G.; van Amersfoort, P. W.
  • Infrared Physics & Technology, Vol. 36, Issue 1
  • DOI: 10.1016/1350-4495(94)00074-U

Electronic structure and characterization of a uranyl di-15-crown-5 complex with an unprecedented sandwich structure
journal, January 2016

  • Hu, Shu-Xian; Gibson, John K.; Li, Wan-Lu
  • Chemical Communications, Vol. 52, Issue 86
  • DOI: 10.1039/C6CC07205D

Synthesis and Hydrolysis of Uranyl, Neptunyl, and Plutonyl Gas-Phase Complexes Exhibiting Discrete Actinide–Carbon Bonds
journal, April 2016


Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory
journal, October 2016

  • Martens, Jonathan; Berden, Giel; Gebhardt, Christoph R.
  • Review of Scientific Instruments, Vol. 87, Issue 10
  • DOI: 10.1063/1.4964703

Structural identification of electron transfer dissociation products in mass spectrometry using infrared ion spectroscopy
journal, June 2016

  • Martens, Jonathan; Grzetic, Josipa; Berden, Giel
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11754

A new mixing of Hartree–Fock and local density‐functional theories
journal, January 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 2
  • DOI: 10.1063/1.464304

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide
journal, May 1994

  • Küchle, W.; Dolg, M.; Stoll, H.
  • The Journal of Chemical Physics, Vol. 100, Issue 10
  • DOI: 10.1063/1.466847

Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation
journal, February 1992

  • Godbout, Nathalie; Salahub, Dennis R.; Andzelm, Jan
  • Canadian Journal of Chemistry, Vol. 70, Issue 2
  • DOI: 10.1139/v92-079

New Insights into Structure and Luminescence of Eu III and Sm III Complexes of the 3,4,3-LI(1,2-HOPO) Ligand
journal, February 2015

  • Daumann, Lena J.; Tatum, David S.; Snyder, Benjamin E. R.
  • Journal of the American Chemical Society, Vol. 137, Issue 8
  • DOI: 10.1021/ja5116524

Chelation and stabilization of berkelium in oxidation state +IV
journal, April 2017

  • Deblonde, Gauthier J. -P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.
  • Nature Chemistry, Vol. 9, Issue 9
  • DOI: 10.1038/nchem.2759

Comparison between Optimized Geometries and Vibrational Frequencies Calculated by the DFT Methods
journal, January 1996

  • El-Azhary, A. A.; Suter, H. U.
  • The Journal of Physical Chemistry, Vol. 100, Issue 37
  • DOI: 10.1021/jp960618o

Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries
journal, August 2010

  • Alecu, I. M.; Zheng, Jingjing; Zhao, Yan
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 9
  • DOI: 10.1021/ct100326h

The gas-phase bis-uranyl nitrate complex [(UO2)2(NO3)5]−: Infrared spectrum and structure
journal, December 2011

  • Groenewold, Gary S.; van Stipdonk, Michael J.; Oomens, Jos
  • International Journal of Mass Spectrometry, Vol. 308, Issue 2-3
  • DOI: 10.1016/j.ijms.2011.06.002

Vibrational spectra of discrete UO22+ halide complexes in the gas phase
journal, November 2010

  • Groenewold, Gary S.; van Stipdonk, Michael J.; Oomens, Jos
  • International Journal of Mass Spectrometry, Vol. 297, Issue 1-3
  • DOI: 10.1016/j.ijms.2010.06.013

Vibrational Spectroscopy of Mass-Selected [UO 2 (ligand) n ] 2+ Complexes in the Gas Phase:  Comparison with Theory
journal, April 2006

  • Groenewold, Gary S.; Gianotto, Anita K.; Cossel, Kevin C.
  • Journal of the American Chemical Society, Vol. 128, Issue 14
  • DOI: 10.1021/ja058106n

Infrared Spectroscopy of Dioxouranium(V) Complexes with Solvent Molecules: Effect of Reduction
journal, June 2008

  • Groenewold, Gary S.; Van Stipdonk, Michael J.; de Jong, Wibe A.
  • ChemPhysChem, Vol. 9, Issue 9
  • DOI: 10.1002/cphc.200800034

Solution thermodynamic evaluation of hydroxypyridinonate chelators 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO) for UO 2 (VI) and Th(IV) decorporation
journal, June 2013

  • Sturzbecher-Hoehne, M.; Deblonde, G. J. -P.; Abergel, R. J.
  • Radiochimica Acta, Vol. 101, Issue 6
  • DOI: 10.1524/ract.2013.2047

Works referencing / citing this record:

Ligand‐Supported Facile Conversion of Uranyl(VI) into Uranium(IV) in Organic and Aqueous Media
journal, February 2020

  • Faizova, Radmila; Fadaei‐Tirani, Farzaneh; Bernier‐Latmani, Rizlan
  • Angewandte Chemie International Edition, Vol. 59, Issue 17
  • DOI: 10.1002/anie.201916334

A solution- and gas-phase study of uranyl hydroxamato complexes
journal, August 2018

  • Sladkov, Vladimir; He, Mingjian; Jewula, Pawel
  • Journal of Radioanalytical and Nuclear Chemistry, Vol. 318, Issue 1
  • DOI: 10.1007/s10967-018-6019-6

Ligand‐Supported Facile Conversion of Uranyl(VI) into Uranium(IV) in Organic and Aqueous Media
journal, April 2020

  • Faizova, Radmila; Fadaei‐Tirani, Farzaneh; Bernier‐Latmani, Rizlan
  • Angewandte Chemie, Vol. 132, Issue 17
  • DOI: 10.1002/ange.201916334

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.