DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Localized Symmetry Breaking for Tuning Thermal Expansion in ScF3 Nanoscale Frameworks

Abstract

The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here in this paper, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engineered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [4];  [2];  [2];  [5];  [2];  [6];  [7];  [6];  [6];  [2];  [8]; ORCiD logo [4]; ORCiD logo [2]; ORCiD logo [2]
  1. Univ. of Science and Technology, Beijing (China). Dept. of Physical Chemistry; Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering
  2. Univ. of Science and Technology, Beijing (China). Dept. of Physical Chemistry
  3. Univ. of Padova, Padova (Italy). Dept. of Phyics and Astronomy
  4. Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering
  5. Zhengzhou Univ., Zhengzhou (China). International Lab. for Quantum Functional Materials of Henan, School of Physics and Engineering
  6. Argonne National Lab. (ANL), Argonne, IL (United States). X-Ray Science Division
  7. Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Koc University, Sariyer, Istanbul (Turkey). Dept. of Chemistry
  8. Elettra Sincrotrone Trieste, Basovizza, Trieste (Italy)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Natural Science Foundation of China (NSFC); USDOE Office of Science - Office of Basic Energy Sciences - Scientific User Facilities Division
OSTI Identifier:
1435043
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 13; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Hu, Lei, Qin, Feiyu, Sanson, Andrea, Huang, Liang-Feng, Pan, Zhao, Li, Qiang, Sun, Qiang, Wang, Lu, Guo, Fangmin, Aydemir, Umut, Ren, Yang, Sun, Chengjun, Deng, Jinxia, Aquilanti, Giuliana, Rondinelli, James M., Chen, Jun, and Xing, Xianran. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF3 Nanoscale Frameworks. United States: N. p., 2018. Web. doi:10.1021/jacs.8b00885.
Hu, Lei, Qin, Feiyu, Sanson, Andrea, Huang, Liang-Feng, Pan, Zhao, Li, Qiang, Sun, Qiang, Wang, Lu, Guo, Fangmin, Aydemir, Umut, Ren, Yang, Sun, Chengjun, Deng, Jinxia, Aquilanti, Giuliana, Rondinelli, James M., Chen, Jun, & Xing, Xianran. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF3 Nanoscale Frameworks. United States. https://doi.org/10.1021/jacs.8b00885
Hu, Lei, Qin, Feiyu, Sanson, Andrea, Huang, Liang-Feng, Pan, Zhao, Li, Qiang, Sun, Qiang, Wang, Lu, Guo, Fangmin, Aydemir, Umut, Ren, Yang, Sun, Chengjun, Deng, Jinxia, Aquilanti, Giuliana, Rondinelli, James M., Chen, Jun, and Xing, Xianran. Tue . "Localized Symmetry Breaking for Tuning Thermal Expansion in ScF3 Nanoscale Frameworks". United States. https://doi.org/10.1021/jacs.8b00885. https://www.osti.gov/servlets/purl/1435043.
@article{osti_1435043,
title = {Localized Symmetry Breaking for Tuning Thermal Expansion in ScF3 Nanoscale Frameworks},
author = {Hu, Lei and Qin, Feiyu and Sanson, Andrea and Huang, Liang-Feng and Pan, Zhao and Li, Qiang and Sun, Qiang and Wang, Lu and Guo, Fangmin and Aydemir, Umut and Ren, Yang and Sun, Chengjun and Deng, Jinxia and Aquilanti, Giuliana and Rondinelli, James M. and Chen, Jun and Xing, Xianran},
abstractNote = {The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here in this paper, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engineered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.},
doi = {10.1021/jacs.8b00885},
journal = {Journal of the American Chemical Society},
number = 13,
volume = 140,
place = {United States},
year = {Tue Mar 20 00:00:00 EDT 2018},
month = {Tue Mar 20 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Temperature dependence of relative lattice constant, Δa = aTa0, of ScF3 crystals. S1 is bulk ScF3; while S2 (13.2 nm), S3 (8.1 nm), and S4 (6.3 nm) are nanocrystals. (b) Contour plots of (100) peaks of ScF3 crystals (S1 to S4).

Save / Share:

Works referenced in this record:

Entropically Stabilized Local Dipole Formation in Lead Chalcogenides
journal, December 2010


Local atomic structure of superconducting FeSe 1 x Te x
journal, April 2010


Local Lattice Distortion in the Giant Negative Thermal Expansion Material Mn 3 Cu 1 x Ge x N
journal, November 2008


Zero thermal expansion in a pure-form antiperovskite manganese nitride
journal, March 2009

  • Takenaka, K.; Takagi, H.
  • Applied Physics Letters, Vol. 94, Issue 13
  • DOI: 10.1063/1.3110046

Adjustable Zero Thermal Expansion in Antiperovskite Manganese Nitride
journal, September 2011

  • Song, Xiaoyan; Sun, Zhonghua; Huang, Qingzhen
  • Advanced Materials, Vol. 23, Issue 40
  • DOI: 10.1002/adma.201102552

Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8
journal, April 1996


A century of zero expansion
journal, July 1999


A fresh twist on shrinking materials
journal, December 2011


Negative thermal expansion materials †
journal, January 1999

  • Evans, John S. O.
  • Journal of the Chemical Society, Dalton Transactions, Issue 19
  • DOI: 10.1039/a904297k

Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer
journal, June 2011

  • Azuma, Masaki; Chen, Wei-tin; Seki, Hayato
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1361

Colossal negative thermal expansion in reduced layered ruthenate
journal, January 2017

  • Takenaka, Koshi; Okamoto, Yoshihiko; Shinoda, Tsubasa
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14102

Colossal Volume Contraction in Strong Polar Perovskites of Pb(Ti,V)O 3
journal, October 2017

  • Pan, Zhao; Chen, Jun; Jiang, Xingxing
  • Journal of the American Chemical Society, Vol. 139, Issue 42
  • DOI: 10.1021/jacs.7b08625

Giant Negative Thermal Expansion in NaZn 13 -Type La(Fe, Si, Co) 13 Compounds
journal, July 2013

  • Huang, Rongjin; Liu, Yanying; Fan, Wei
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja405161z

Zero Thermal Expansion in Magnetic and Metallic Tb(Co,Fe) 2 Intermetallic Compounds
journal, January 2018

  • Song, Yuzhu; Chen, Jun; Liu, Xinzhi
  • Journal of the American Chemical Society, Vol. 140, Issue 2
  • DOI: 10.1021/jacs.7b12235

Systematic and Controllable Negative, Zero, and Positive Thermal Expansion in Cubic Zr 1– x Sn x Mo 2 O 8
journal, August 2013

  • Tallentire, Sarah E.; Child, Felicity; Fall, Ian
  • Journal of the American Chemical Society, Vol. 135, Issue 34
  • DOI: 10.1021/ja4060564

Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)
journal, October 2016

  • Hu, Lei; Chen, Jun; Xu, Jiale
  • Journal of the American Chemical Society, Vol. 138, Issue 44
  • DOI: 10.1021/jacs.6b08746

Zero Thermal Expansion in a Flexible, Stable Framework: Tetramethylammonium Copper(I) Zinc(II) Cyanide
journal, January 2010

  • Phillips, Anthony E.; Halder, Gregory J.; Chapman, Karena W.
  • Journal of the American Chemical Society, Vol. 132, Issue 1
  • DOI: 10.1021/ja906895j

Tunable thermal expansion in framework materials through redox intercalation
journal, February 2017

  • Chen, Jun; Gao, Qilong; Sanson, Andrea
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14441

Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF 3
journal, November 2010

  • Greve, Benjamin K.; Martin, Kenneth L.; Lee, Peter L.
  • Journal of the American Chemical Society, Vol. 132, Issue 44
  • DOI: 10.1021/ja106711v

Local behaviour of negative thermal expansion materials
journal, May 2006

  • Fornasini, P.; Dalba, G.; Grisenti, R.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 246, Issue 1
  • DOI: 10.1016/j.nimb.2005.12.062

Negative thermal expansion and local dynamics in Cu 2 O and Ag 2 O
journal, June 2006


New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the “Guitar-String” Effect in Cubic ScF 3
journal, June 2016

  • Hu, Lei; Chen, Jun; Sanson, Andrea
  • Journal of the American Chemical Society, Vol. 138, Issue 27
  • DOI: 10.1021/jacs.6b02370

Size effects on negative thermal expansion in cubic ScF 3
journal, July 2016

  • Yang, C.; Tong, P.; Lin, J. C.
  • Applied Physics Letters, Vol. 109, Issue 2
  • DOI: 10.1063/1.4959083

Zero Thermal Expansion and Ferromagnetism in Cubic Sc 1– x M x F 3 (M = Ga, Fe) over a Wide Temperature Range
journal, September 2014

  • Hu, Lei; Chen, Jun; Fan, Longlong
  • Journal of the American Chemical Society, Vol. 136, Issue 39
  • DOI: 10.1021/ja5077487

High-Curie - Temperature Ferromagnetism in (Sc,Fe)F 3 Fluorides and its Dependence on Chemical Valence
journal, July 2015


Near-Zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn 4 B 6 O 13
journal, July 2016

  • Jiang, Xingxing; Molokeev, Maxim S.; Gong, Pifu
  • Advanced Materials, Vol. 28, Issue 36
  • DOI: 10.1002/adma.201601816

Works referencing / citing this record:

Cone-spiral magnetic ordering dominated lattice distortion and giant negative thermal expansion in Fe-doped MnNiGe compounds
journal, January 2020

  • Shen, Feiran; Zhou, Houbo; Hu, Fengxia
  • Materials Horizons, Vol. 7, Issue 3
  • DOI: 10.1039/c9mh01602c

Perovskite-related ReO3-type structures
journal, January 2020


On the switching between negative and positive thermal expansion in framework materials
journal, May 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.