DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Better Absorbents for Ammonia Separation

Abstract

Making ammonia from renewable wind energy at a competitive price may be possible if the conventional ammonia condenser is replaced with an ammonia absorber. Such a process change requires an ammonia selective absorbent. Supported metal halide sorbents for this separation display outstanding dynamic capacity close to their equilibrium thermodynamic limits. Alkaline earth chlorides and bromides supported on silica and zeolite Y are the most promising. MgCl2 and CaBr2 at 40% loading on silica show capacities of 60-70 mgNH3/gsorbent at 150 °C and 4 bar. Overall, cations with smaller atomic numbers show more affinity to ammonia; bromides hold ammonia more strongly than chlorides. Different solvents and metal halide mixtures do not show significant changes in the absorption capacity. Finally, these absorbents can be incorporated into ammonia reaction-absorption syntheses to achieve faster production rates.

Authors:
ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States). Chemical Engineering and Materials Science
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1434930
Grant/Contract Number:  
AR0000804
Resource Type:
Accepted Manuscript
Journal Name:
ACS Sustainable Chemistry & Engineering
Additional Journal Information:
Journal Name: ACS Sustainable Chemistry & Engineering; Journal ID: ISSN 2168-0485
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 17 WIND ENERGY; Ammonia; Absorption; Metal halides; Wind energy

Citation Formats

Malmali, Mahdi, Le, Giang, Hendrickson, Jennifer, Prince, Joshua, McCormick, Alon V., and Cussler, E. L. Better Absorbents for Ammonia Separation. United States: N. p., 2018. Web. doi:10.1021/acssuschemeng.7b04684.
Malmali, Mahdi, Le, Giang, Hendrickson, Jennifer, Prince, Joshua, McCormick, Alon V., & Cussler, E. L. Better Absorbents for Ammonia Separation. United States. https://doi.org/10.1021/acssuschemeng.7b04684
Malmali, Mahdi, Le, Giang, Hendrickson, Jennifer, Prince, Joshua, McCormick, Alon V., and Cussler, E. L. Fri . "Better Absorbents for Ammonia Separation". United States. https://doi.org/10.1021/acssuschemeng.7b04684. https://www.osti.gov/servlets/purl/1434930.
@article{osti_1434930,
title = {Better Absorbents for Ammonia Separation},
author = {Malmali, Mahdi and Le, Giang and Hendrickson, Jennifer and Prince, Joshua and McCormick, Alon V. and Cussler, E. L.},
abstractNote = {Making ammonia from renewable wind energy at a competitive price may be possible if the conventional ammonia condenser is replaced with an ammonia absorber. Such a process change requires an ammonia selective absorbent. Supported metal halide sorbents for this separation display outstanding dynamic capacity close to their equilibrium thermodynamic limits. Alkaline earth chlorides and bromides supported on silica and zeolite Y are the most promising. MgCl2 and CaBr2 at 40% loading on silica show capacities of 60-70 mgNH3/gsorbent at 150 °C and 4 bar. Overall, cations with smaller atomic numbers show more affinity to ammonia; bromides hold ammonia more strongly than chlorides. Different solvents and metal halide mixtures do not show significant changes in the absorption capacity. Finally, these absorbents can be incorporated into ammonia reaction-absorption syntheses to achieve faster production rates.},
doi = {10.1021/acssuschemeng.7b04684},
journal = {ACS Sustainable Chemistry & Engineering},
number = ,
volume = ,
place = {United States},
year = {Fri Mar 30 00:00:00 EDT 2018},
month = {Fri Mar 30 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

How a century of ammonia synthesis changed the world
journal, September 2008

  • Erisman, Jan Willem; Sutton, Mark A.; Galloway, James
  • Nature Geoscience, Vol. 1, Issue 10
  • DOI: 10.1038/ngeo325

Detonator of the population explosion
journal, July 1999


Energy use and energy intensity of the U.S. chemical industry
report, April 2000


Performance of a Small-Scale Haber Process
journal, March 2016

  • Reese, Michael; Marquart, Cory; Malmali, Mahdi
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 13
  • DOI: 10.1021/acs.iecr.5b04909

Ammonia Synthesis at Low Pressure
journal, January 2017

  • Cussler, Edward; McCormick, Alon; Reese, Michael
  • Journal of Visualized Experiments, Issue 126
  • DOI: 10.3791/55691

Ammonia Synthesis at Reduced Pressure via Reactive Separation
journal, August 2016

  • Malmali, Mahdi; Wei, Yongming; McCormick, Alon
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 33
  • DOI: 10.1021/acs.iecr.6b01880

Converting Wind Energy to Ammonia at Lower Pressure
journal, November 2017


Ammonia Absorption on Alkaline Earth Halides as Ammonia Separation and Storage Procedure
journal, January 2004

  • Liu, Chun Yi; Aika, Ken-ichi
  • Bulletin of the Chemical Society of Japan, Vol. 77, Issue 1
  • DOI: 10.1246/bcsj.77.123

Indirect, Reversible High-Density Hydrogen Storage in Compact Metal Ammine Salts
journal, July 2008

  • Sørensen, Rasmus Z.; Hummelshøj, Jens S.; Klerke, Asbjørn
  • Journal of the American Chemical Society, Vol. 130, Issue 27
  • DOI: 10.1021/ja076762c

Metal ammine complexes for hydrogen storage
journal, January 2005

  • Christensen, Claus Hviid; Sørensen, Rasmus Zink; Johannessen, Tue
  • Journal of Materials Chemistry, Vol. 15, Issue 38
  • DOI: 10.1039/b511589b

Column absorption for reproducible cyclic separation in small scale ammonia synthesis
journal, February 2017

  • Wagner, Kevin; Malmali, Mahdi; Smith, Collin
  • AIChE Journal, Vol. 63, Issue 7
  • DOI: 10.1002/aic.15685

Ammonia Removal Using Activated Carbons: Effect of the Surface Chemistry in Dry and Moist Conditions
journal, December 2011

  • Gonçalves, Maraisa; Sánchez-García, Laura; Oliveira Jardim, Erika de
  • Environmental Science & Technology, Vol. 45, Issue 24
  • DOI: 10.1021/es203093v

Metal-organic frameworks with high capacity and selectivity for harmful gases
journal, August 2008

  • Britt, D.; Tranchemontagne, D.; Yaghi, O. M.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 33, p. 11623-11627
  • DOI: 10.1073/pnas.0804900105

Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air
journal, March 2015

  • Jasuja, Himanshu; Peterson, Gregory W.; Decoste, Jared B.
  • Chemical Engineering Science, Vol. 124
  • DOI: 10.1016/j.ces.2014.08.050

Exceptional ammonia uptake by a covalent organic framework
journal, February 2010

  • Doonan, Christian J.; Tranchemontagne, David J.; Glover, T. Grant
  • Nature Chemistry, Vol. 2, Issue 3, p. 235-238
  • DOI: 10.1038/nchem.548

Adsorption Equilibria of Ammonia Gas on Inorganic and Organic Sorbents at 298.15 K
February 2001

  • Helminen, Jarkko; Helenius, Joni; Paatero, Erkki
  • Journal of Chemical & Engineering Data, Vol. 46, Issue 2, p. 391-399
  • DOI: 10.1021/je000273+

Thermodynamics on Ammonia Absorption of Metal Halides and Borohydrides
journal, July 2014

  • Aoki, Taihei; Ichikawa, Takayuki; Miyaoka, Hiroki
  • The Journal of Physical Chemistry C, Vol. 118, Issue 32
  • DOI: 10.1021/jp5049474

A high-density ammonia storage/delivery system based on Mg(NH3)6Cl2 for SCR DeNO x in vehicles
journal, April 2006

  • Elmøe, Tobias Dokkedal; Sørensen, Rasmus Zink; Quaade, Ulrich
  • Chemical Engineering Science, Vol. 61, Issue 8
  • DOI: 10.1016/j.ces.2005.11.038

The Monoammoniate of Lithium Borohydride, Li(NH 3 )BH 4 : An Effective Ammonia Storage Compound
journal, June 2009

  • Johnson, Simon R.; David, William I. F.; Royse, David M.
  • Chemistry - An Asian Journal, Vol. 4, Issue 6
  • DOI: 10.1002/asia.200900051

Ammonia-storage in lithium intercalated fullerides
journal, January 2015

  • Pontiroli, D.; D'Alessio, D.; Gaboardi, M.
  • Journal of Materials Chemistry A, Vol. 3, Issue 42
  • DOI: 10.1039/C5TA05226B

Generation of Nanopores during Desorption of NH 3 from Mg(NH 3 ) 6 Cl 2
journal, January 2006

  • Hummelshøj, Jens S.; Sørensen, Rasmus Zink; Kustova, Marina Yu.
  • Journal of the American Chemical Society, Vol. 128, Issue 1
  • DOI: 10.1021/ja0556070

Ammonia adsorption by MgCl2, CaCl2 and BaCl2 confined to porous alumina: the fixed bed adsorber
journal, May 2005

  • Sharonov, Vasily E.; Aristov, Yury I.
  • Reaction Kinetics and Catalysis Letters, Vol. 85, Issue 1
  • DOI: 10.1007/s11144-005-0259-5

Ammonia sorption on composites 'CaCl2 in inorganic host matrix': isosteric chart and its performance
journal, July 2006

  • Sharonov, V. E.; Veselovskaya, J. V.; Aristov, Y. I.
  • International Journal of Low-Carbon Technologies, Vol. 1, Issue 3
  • DOI: 10.1093/ijlct/1.3.191

Ammonia sorbent development for on-board H2 purification
journal, March 2015

  • van Hassel, Bart A.; Karra, Jagadeswara R.; Santana, Jose
  • Separation and Purification Technology, Vol. 142
  • DOI: 10.1016/j.seppur.2014.12.009

Functionalization of carbon silica composites with active metal sites for NH 3 and SO 2 adsorption
journal, February 2016


Composites “binary salts in porous matrix” for adsorption heat transformation
journal, February 2013


Ammonia for hydrogen storage: challenges and opportunities
journal, January 2008

  • Klerke, Asbjørn; Christensen, Claus Hviid; Nørskov, Jens K.
  • Journal of Materials Chemistry, Vol. 18, Issue 20
  • DOI: 10.1039/b720020j

Solid ammonia as energy carrier: Current status and future prospects
journal, October 2009


Ammonia as a green fuel and hydrogen source for vehicular applications
journal, May 2009


Novel ammonia sorbents “porous matrix modified by active salt” for adsorptive heat transformation
journal, May 2010


Works referencing / citing this record:

An Fe III dinuclear metallacycle complex as a size-selective adsorbent for nitrogenous compounds and a potentially effective ammonia storage material
journal, January 2019

  • Silva, Ingrid F.; Teixeira, Ivo F.; Barros, Wdeson P.
  • Journal of Materials Chemistry A, Vol. 7, Issue 25
  • DOI: 10.1039/c8ta09786k

Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape
journal, January 2020

  • Smith, Collin; Hill, Alfred K.; Torrente-Murciano, Laura
  • Energy & Environmental Science, Vol. 13, Issue 2
  • DOI: 10.1039/c9ee02873k

Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape
text, January 2020

  • Smith, Collin; Hill, Alfred K.; Torrente-Murciano, Laura
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.49538