DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

Abstract

Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.

Authors:
 [1];  [2]; ORCiD logo [2];  [3];  [4];  [4];  [5];  [6];  [2]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. General Atomics, San Diego, CA (United States)
  3. Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics
  4. Univ. of Texas, Austin, TX (United States)
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
  6. Univ. of California, Los Angeles, CA (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); General Atomics, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
Contributing Org.:
DIII-D Team
OSTI Identifier:
1432047
Alternate Identifier(s):
OSTI ID: 1420351; OSTI ID: 1462499
Grant/Contract Number:  
FG02-08ER54999; FG03-97ER54415; AC02-09CH11466; FC02-04ER54698; FG02- 08ER54984; FG02-04ER54235; FG02-07ER54917
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 2; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Grierson, B. A., Staebler, G. M., Solomon, W. M., McKee, G. R., Holland, C., Austin, M., Marinoni, A., Schmitz, L., and Pinsker, R. I. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER. United States: N. p., 2018. Web. doi:10.1063/1.5011387.
Grierson, B. A., Staebler, G. M., Solomon, W. M., McKee, G. R., Holland, C., Austin, M., Marinoni, A., Schmitz, L., & Pinsker, R. I. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER. United States. https://doi.org/10.1063/1.5011387
Grierson, B. A., Staebler, G. M., Solomon, W. M., McKee, G. R., Holland, C., Austin, M., Marinoni, A., Schmitz, L., and Pinsker, R. I. Tue . "Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER". United States. https://doi.org/10.1063/1.5011387. https://www.osti.gov/servlets/purl/1432047.
@article{osti_1432047,
title = {Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER},
author = {Grierson, B. A. and Staebler, G. M. and Solomon, W. M. and McKee, G. R. and Holland, C. and Austin, M. and Marinoni, A. and Schmitz, L. and Pinsker, R. I.},
abstractNote = {Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.},
doi = {10.1063/1.5011387},
journal = {Physics of Plasmas},
number = 2,
volume = 25,
place = {United States},
year = {Tue Feb 13 00:00:00 EST 2018},
month = {Tue Feb 13 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The beam emission spectroscopy diagnostic on the DIII-D tokamak
journal, January 1999

  • McKee, G.; Ashley, R.; Durst, R.
  • Review of Scientific Instruments, Vol. 70, Issue 1
  • DOI: 10.1063/1.1149416

Collisionality dependence of density peaking in quasilinear gyrokinetic calculations
journal, November 2005

  • Angioni, C.; Peeters, A. G.; Jenko, F.
  • Physics of Plasmas, Vol. 12, Issue 11
  • DOI: 10.1063/1.2135283

Off-diagonal particle and toroidal momentum transport: a survey of experimental, theoretical and modelling aspects
journal, October 2012


Beta scaling of transport in microturbulence simulations
journal, July 2005


Extraction of poloidal velocity from charge exchange recombination spectroscopy measurements
journal, October 2004

  • Solomon, W. M.; Burrell, K. H.; Gohil, P.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1790042

Tokamak profile prediction using direct gyrokinetic and neoclassical simulation
journal, June 2009

  • Candy, J.; Holland, C.; Waltz, R. E.
  • Physics of Plasmas, Vol. 16, Issue 6
  • DOI: 10.1063/1.3167820

A first-principles predictive model of the pedestal height and width: development, testing and ITER optimization with the EPED model
journal, August 2011


Selected transport studies of a tokamak-based DEMO fusion reactor
journal, September 2016


Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes
journal, September 2016


Core momentum and particle transport studies in the ASDEX Upgrade tokamak
journal, November 2011


Collisionality scaling of main-ion toroidal and poloidal rotation in low torque DIII-D plasmas
journal, May 2013


Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices
journal, March 2016

  • Solomon, W. M.; Snyder, P. B.; Bortolon, A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4944822

Multi-scale gyrokinetic simulation of Alcator C-Mod tokamak discharges
journal, March 2014

  • Howard, N. T.; White, A. E.; Greenwald, M.
  • Physics of Plasmas, Vol. 21, Issue 3
  • DOI: 10.1063/1.4869078

Gyro-Landau fluid equations for trapped and passing particles
journal, October 2005

  • Staebler, G. M.; Kinsey, J. E.; Waltz, R. E.
  • Physics of Plasmas, Vol. 12, Issue 10
  • DOI: 10.1063/1.2044587

Gyrokinetic predictions of multiscale transport in a DIII-D ITER baseline discharge
journal, May 2017


Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating
journal, May 2016

  • Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948723

Demonstration of ITER operational scenarios on DIII-D
journal, June 2010


Non-adiabatic passing electron response and outward impurity convection in gyrokinetic calculations of impurity transport in ASDEX Upgrade plasmas
journal, November 2007


A design retrospective of the DIII-D tokamak
journal, May 2002


The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence
journal, June 2016

  • Staebler, G. M.; Candy, J.; Howard, N. T.
  • Physics of Plasmas, Vol. 23, Issue 6
  • DOI: 10.1063/1.4954905

Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling
journal, July 2014


Theoretical predictions of the density profile in a tokamak reactor
journal, March 2005


A novel, multichannel, comb-frequency Doppler backscatter system
journal, October 2010

  • Peebles, W. A.; Rhodes, T. L.; Hillesheim, J. C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3464266

Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics
journal, July 2008


A theory-based transport model with comprehensive physics
journal, May 2007

  • Staebler, G. M.; Kinsey, J. E.; Waltz, R. E.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2436852

The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library
journal, June 2004

  • Pankin, Alexei; McCune, Douglas; Andre, Robert
  • Computer Physics Communications, Vol. 159, Issue 3
  • DOI: 10.1016/j.cpc.2003.11.002

Chapter 2: Plasma confinement and transport
journal, June 2007

  • Physics), E. J. Doyle (Chair Transport; Modelling), W. A. Houlberg (Chair Confinement Da; Edge), Y. Kamada (Chair Pedestal and
  • Nuclear Fusion, Vol. 47, Issue 6
  • DOI: 10.1088/0029-5515/47/6/S02

Predicting rotation for ITER via studies of intrinsic torque and momentum transport in DIII-D
journal, May 2017

  • Chrystal, C.; Grierson, B. A.; Staebler, G. M.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4979194

Predictions of H-mode performance in ITER
journal, May 2008


Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITERa)
journal, May 2015

  • Loarte, A.; Reinke, M. L.; Polevoi, A. R.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921253

Works referencing / citing this record:

Propagation of input parameter uncertainties in transport models
journal, October 2018

  • Vaezi, P.; Holland, C.; Grierson, B. A.
  • Physics of Plasmas, Vol. 25, Issue 10
  • DOI: 10.1063/1.5053906

Interpretative and predictive modelling of Joint European Torus collisionality scans
journal, September 2019

  • Eriksson, F.; Fransson, E.; Oberparleiter, M.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 11
  • DOI: 10.1088/1361-6587/ab2f45

Progress and challenges in understanding core transport in tokamaks in support to ITER operations
journal, December 2019

  • Mantica, P.; Angioni, C.; Bonanomi, N.
  • Plasma Physics and Controlled Fusion, Vol. 62, Issue 1
  • DOI: 10.1088/1361-6587/ab5ae1

The effect of plasma shape and neutral beam mix on the rotation threshold for RMP-ELM suppression
journal, March 2019


Predicting the rotation profile in ITER
journal, January 2020


Interpretative and predictive modelling of Joint European Torus collisionality scans
text, January 2019