DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

Abstract

Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.

Authors:
ORCiD logo [1];  [1];  [1];  [2]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Science Division
  2. Univ. of Washington, Seattle, WA (United States). Dept. of Chemical Engineering
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); PNNL Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1430713
Alternate Identifier(s):
OSTI ID: 1372714
Report Number(s):
PNNL-SA-123710
Journal ID: ISSN 0021-9606; TRN: US1802921
Grant/Contract Number:  
AC05-76RL01830; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 147; Journal Issue: 16; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 97 MATHEMATICS AND COMPUTING; electrochemistry; condensed matter properties; crystallography; liquids; statistical mechanics models; thermodynamic properties; crystal structure; computational methods; density functional theory; computer simulation

Citation Formats

Duignan, Timothy T., Baer, Marcel D., Schenter, Gregory K., and Mundy, Chistopher J. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions. United States: N. p., 2017. Web. doi:10.1063/1.4994912.
Duignan, Timothy T., Baer, Marcel D., Schenter, Gregory K., & Mundy, Chistopher J. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions. United States. https://doi.org/10.1063/1.4994912
Duignan, Timothy T., Baer, Marcel D., Schenter, Gregory K., and Mundy, Chistopher J. Wed . "Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions". United States. https://doi.org/10.1063/1.4994912. https://www.osti.gov/servlets/purl/1430713.
@article{osti_1430713,
title = {Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions},
author = {Duignan, Timothy T. and Baer, Marcel D. and Schenter, Gregory K. and Mundy, Chistopher J.},
abstractNote = {Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.},
doi = {10.1063/1.4994912},
journal = {Journal of Chemical Physics},
number = 16,
volume = 147,
place = {United States},
year = {Wed Jul 26 00:00:00 EDT 2017},
month = {Wed Jul 26 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Analysis of Electrostatic Potential Truncation Schemes in Simulations of Polar Solvents
journal, May 1998

  • Åqvist, Johan; Hansson, Tomas
  • The Journal of Physical Chemistry B, Vol. 102, Issue 19
  • DOI: 10.1021/jp973207w

Application of the tetraphenylarsonium tetraphenylborate (TATB) assumption to the hydration entropies of ions
journal, May 2000

  • Marcus,, Yizhak; Hefter, Glenn; Chen, Ting
  • The Journal of Chemical Thermodynamics, Vol. 32, Issue 5
  • DOI: 10.1006/jcht.1999.0629

Collins’s rule, Hofmeister effects and ionic dispersion interactions
journal, July 2014


Charge Asymmetry at Aqueous Hydrophobic Interfaces and Hydration Shells
journal, July 2014

  • Scheu, Rüdiger; Rankin, Blake M.; Chen, Yixing
  • Angewandte Chemie International Edition, Vol. 53, Issue 36
  • DOI: 10.1002/anie.201310266

Size dependent ion hydration, its asymmetry, and convergence to macroscopic behavior
journal, March 2004

  • Rajamani, Sowmianarayanan; Ghosh, Tuhin; Garde, Shekhar
  • The Journal of Chemical Physics, Vol. 120, Issue 9
  • DOI: 10.1063/1.1644536

“Phantom ion effect” and the contact potential of the water-vapor interface
journal, September 2008

  • Levin, Yan
  • The Journal of Chemical Physics, Vol. 129, Issue 12
  • DOI: 10.1063/1.2982244

Understanding the Surface Potential of Water
journal, April 2011

  • Kathmann, Shawn M.; Kuo, I-Feng William; Mundy, Christopher J.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 15
  • DOI: 10.1021/jp1116036

Role of Local Response in Ion Solvation: Born Theory and Beyond
journal, April 2016

  • Remsing, Richard C.; Weeks, John D.
  • The Journal of Physical Chemistry B, Vol. 120, Issue 26
  • DOI: 10.1021/acs.jpcb.6b02238

Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models
journal, August 2008

  • Bryantsev, Vyacheslav S.; Diallo, Mamadou S.; Goddard III, William A.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 32
  • DOI: 10.1021/jp802665d

Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration
journal, June 2014

  • Pollard, Travis; Beck, Thomas L.
  • The Journal of Chemical Physics, Vol. 140, Issue 22
  • DOI: 10.1063/1.4881602

Rational design of ion force fields based on thermodynamic solvation properties
journal, March 2009

  • Horinek, Dominik; Mamatkulov, Shavkat I.; Netz, Roland R.
  • The Journal of Chemical Physics, Vol. 130, Issue 12
  • DOI: 10.1063/1.3081142

Solvation thermodynamics and heat capacity of polar and charged solutes in water
journal, March 2013

  • Sedlmeier, Felix; Netz, Roland R.
  • The Journal of Chemical Physics, Vol. 138, Issue 11
  • DOI: 10.1063/1.4794153

The Potential Distribution Theorem and Models of Molecular Solutions
book, January 2006


Absolute Hydration Free Energy Scale for Alkali and Halide Ions Established from Simulations with a Polarizable Force Field
journal, February 2006

  • Lamoureux, Guillaume; Roux, Benoît
  • The Journal of Physical Chemistry B, Vol. 110, Issue 7
  • DOI: 10.1021/jp056043p

A Continuum Model of Solvation Energies Including Electrostatic, Dispersion, and Cavity Contributions
journal, August 2013

  • Duignan, Timothy T.; Parsons, Drew F.; Ninham, Barry W.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 32
  • DOI: 10.1021/jp403596c

Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


Correspondence between Cluster-Ion and Bulk Solution Thermodynamic Properties: On the Validity of the Cluster-Pair-Based Approximation
journal, October 2013

  • Vlcek, Lukas; Chialvo, Ariel A.; Simonson, J. Michael
  • The Journal of Physical Chemistry A, Vol. 117, Issue 44
  • DOI: 10.1021/jp408632e

Are the Hydrophobic AsPh 4 + and BPh 4 - Ions Equally Solvated? A Theoretical Investigation in Aqueous and Nonaqueous Solutions Using Different Charge Distributions
journal, November 2000

  • Schurhammer, Rachel; Wipff, Georges
  • The Journal of Physical Chemistry A, Vol. 104, Issue 47
  • DOI: 10.1021/jp0015731

Probing the Thermodynamics of Competitive Ion Binding Using Minimum Energy Structures
journal, July 2011

  • Rogers, David M.; Rempe, Susan B.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 29
  • DOI: 10.1021/jp2012864

Hydration Free Energies by Energetic Partitioning of the Potential Distribution Theorem
journal, August 2011


Accurate description of van der Waals complexes by density functional theory including empirical corrections
journal, January 2004

  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 25, Issue 12
  • DOI: 10.1002/jcc.20078

Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
journal, April 2005

  • VandeVondele, Joost; Krack, Matthias; Mohamed, Fawzi
  • Computer Physics Communications, Vol. 167, Issue 2
  • DOI: 10.1016/j.cpc.2004.12.014

Absolute Hydration Free Energy of the Proton from First-Principles Electronic Structure Calculations
journal, December 2001

  • Zhan, Chang-Guo; Dixon, David A.
  • The Journal of Physical Chemistry A, Vol. 105, Issue 51
  • DOI: 10.1021/jp012536s

Hydration Structure and Free Energy of Biomolecularly Specific Aqueous Dications, Including Zn 2+ and First Transition Row Metals
journal, February 2004

  • Asthagiri, D.; Pratt, Lawrence R.; Paulaitis, Michael E.
  • Journal of the American Chemical Society, Vol. 126, Issue 4
  • DOI: 10.1021/ja0382967

Absolute hydration free energies of ions, ion–water clusters, and quasichemical theory
journal, August 2003

  • Asthagiri, D.; Pratt, Lawrence R.; Ashbaugh, H. S.
  • The Journal of Chemical Physics, Vol. 119, Issue 5
  • DOI: 10.1063/1.1587122

Ion Solvation Thermodynamics from Simulation with a Polarizable Force Field
journal, December 2003

  • Grossfield, Alan; Ren, Pengyu; Ponder, Jay W.
  • Journal of the American Chemical Society, Vol. 125, Issue 50
  • DOI: 10.1021/ja037005r

Charge Hydration Asymmetry: The Basic Principle and How to Use It to Test and Improve Water Models
journal, August 2012

  • Mukhopadhyay, Abhishek; Fenley, Andrew T.; Tolokh, Igor S.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 32
  • DOI: 10.1021/jp305226j

Vibrational Sum Frequency Generation Spectroscopy of the Water Liquid–Vapor Interface from Density Functional Theory-Based Molecular Dynamics Simulations
journal, December 2012

  • Sulpizi, Marialore; Salanne, Mathieu; Sprik, Michiel
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 1
  • DOI: 10.1021/jz301858g

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Ion-water clusters, bulk medium effects, and ion hydration
journal, August 2011

  • Merchant, Safir; Dixit, Purushottam D.; Dean, Kelsey R.
  • The Journal of Chemical Physics, Vol. 135, Issue 5
  • DOI: 10.1063/1.3620077

Single ion hydration free energies: A consistent comparison between experiment and classical molecular simulation
journal, November 2008

  • Ashbaugh, Henry S.; Asthagiri, D.
  • The Journal of Chemical Physics, Vol. 129, Issue 20
  • DOI: 10.1063/1.3013865

The Role of Broken Symmetry in Solvation of a Spherical Cavity in Classical and Quantum Water Models
journal, July 2014

  • Remsing, Richard C.; Baer, Marcel D.; Schenter, Gregory K.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 16
  • DOI: 10.1021/jz501067w

Convergence of Molecular and Macroscopic Continuum Descriptions of Ion Hydration
journal, August 2000

  • Ashbaugh, Henry S.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 31
  • DOI: 10.1021/jp0015067

Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation
journal, June 2006

  • Kastenholz, Mika A.; Hünenberger, Philippe H.
  • The Journal of Chemical Physics, Vol. 124, Issue 22
  • DOI: 10.1063/1.2201698

Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
journal, September 2007

  • VandeVondele, Joost; Hutter, Jürg
  • The Journal of Chemical Physics, Vol. 127, Issue 11
  • DOI: 10.1063/1.2770708

Comment on “Generalized Gradient Approximation Made Simple”
journal, January 1998


Comment on ‘‘Study on the liquid–vapor interface of water. I. Simulation results of thermodynamic properties and orientational structure’’
journal, May 1989

  • Wilson, Michael A.; Pohorille, Andrew; Pratt, Lawrence R.
  • The Journal of Chemical Physics, Vol. 90, Issue 9
  • DOI: 10.1063/1.456536

A Local Entropic Signature of Specific Ion Hydration
journal, August 2011

  • Beck, Thomas L.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 32
  • DOI: 10.1021/jp204883h

Nosé–Hoover chains: The canonical ensemble via continuous dynamics
journal, August 1992

  • Martyna, Glenn J.; Klein, Michael L.; Tuckerman, Mark
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463940

Ab initio molecular dynamics and quasichemical study of H+(aq)
journal, April 2005

  • Asthagiri, D.; Pratt, L. R.; Kress, J. D.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 19
  • DOI: 10.1073/pnas.0408071102

Length scales and interfacial potentials in ion hydration
journal, July 2013

  • Shi, Yu; Beck, Thomas L.
  • The Journal of Chemical Physics, Vol. 139, Issue 4
  • DOI: 10.1063/1.4814070

A polarizable, charge transfer model of water using the drude oscillator: Influence of Charge Transfer on the Drude Oscillator
journal, June 2016

  • Rick, Steven W.
  • Journal of Computational Chemistry, Vol. 37, Issue 22
  • DOI: 10.1002/jcc.24426

Modeling molecular and ionic absolute solvation free energies with quasichemical theory bounds
journal, October 2008

  • Rogers, David M.; Beck, Thomas L.
  • The Journal of Chemical Physics, Vol. 129, Issue 13
  • DOI: 10.1063/1.2985613

Contact potentials of solution interfaces: phase equilibrium and interfacial electric fields
journal, January 1992

  • Pratt, Lawrence R.
  • The Journal of Physical Chemistry, Vol. 96, Issue 1
  • DOI: 10.1021/j100180a010

Necessary conditions of the equivalence of canonical and grand canonical ensembles in Coulomb system thermodynamics
journal, June 2012

  • Bobrov, V. B.; Sokolov, I. M.; Trigger, S. A.
  • Physics of Plasmas, Vol. 19, Issue 6
  • DOI: 10.1063/1.4728075

The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data
journal, October 1998

  • Tissandier, Michael D.; Cowen, Kenneth A.; Feng, Wan Yong
  • The Journal of Physical Chemistry A, Vol. 102, Issue 40
  • DOI: 10.1021/jp982638r

Surface Potential at the Air−Water Interface Computed Using Density Functional Theory
journal, December 2009

  • Leung, Kevin
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 2
  • DOI: 10.1021/jz900268s

Single-ion hydration thermodynamics from clusters to bulk solutions: Recent insights from molecular modeling
journal, January 2016


Toward a quantitative theory of Hofmeister phenomena: From quantum effects to thermodynamics
journal, June 2016


Standard thermodynamics of transfer. Uses and misuses
journal, April 1978


Nuclear quantum effects in water exchange around lithium and fluoride ions
journal, February 2015

  • Wilkins, David M.; Manolopoulos, David E.; Dang, Liem X.
  • The Journal of Chemical Physics, Vol. 142, Issue 6
  • DOI: 10.1063/1.4907554

Probing the structural and dynamical properties of liquid water with models including non-local electron correlation
journal, August 2015

  • Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
  • The Journal of Chemical Physics, Vol. 143, Issue 5
  • DOI: 10.1063/1.4927325

Comment on “Accurate Experimental Values for the Free Energies of Hydration of H + , OH - , and H 3 O +
journal, December 2005

  • Camaioni, Donald M.; Schwerdtfeger, Christine A.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 47
  • DOI: 10.1021/jp054088k

Octa-Coordination and the Aqueous Ba 2+ Ion
journal, July 2015

  • Chaudhari, Mangesh I.; Soniat, Marielle; Rempe, Susan B.
  • The Journal of Physical Chemistry B, Vol. 119, Issue 28
  • DOI: 10.1021/acs.jpcb.5b03050

The thermodynamics of solvation of ions. Part 4.—Application of the tetraphenylarsonium tetraphenylborate (TATB) extrathermodynamic assumption to the hydration of ions and to properties of hydrated ions
journal, January 1987

  • Marcus, Yizhak
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 83, Issue 9
  • DOI: 10.1039/f19878302985

Equivalence of M- and P-Summation in Calculations of Ionic Solvation Free Energies
journal, February 2017

  • Simonson, Thomas; Hummer, Gerhard; Roux, Benoît
  • The Journal of Physical Chemistry A, Vol. 121, Issue 7
  • DOI: 10.1021/acs.jpca.6b12691

The influence of water interfacial potentials on ion hydration in bulk water and near interfaces
journal, March 2013


Dissecting the Molecular Structure of the Air/Water Interface from Quantum Simulations of the Sum-Frequency Generation Spectrum
journal, March 2016

  • Medders, Gregory R.; Paesani, Francesco
  • Journal of the American Chemical Society, Vol. 138, Issue 11
  • DOI: 10.1021/jacs.6b00893

Deconstructing Classical Water Models at Interfaces and in Bulk
journal, August 2011

  • Remsing, Richard C.; Rodgers, Jocelyn M.; Weeks, John D.
  • Journal of Statistical Physics, Vol. 145, Issue 2
  • DOI: 10.1007/s10955-011-0299-3

Molecular Theories and Simulation of Ions and Polar Molecules in Water
journal, October 1998

  • Hummer, Gerhard; Pratt, Lawrence R.; García, Angel E.
  • The Journal of Physical Chemistry A, Vol. 102, Issue 41
  • DOI: 10.1021/jp982195r

Hydration of the Fluoride Anion:  Structures and Absolute Hydration Free Energy from First-Principles Electronic Structure Calculations
journal, March 2004

  • Zhan, Chang-Guo; Dixon, David A.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 11
  • DOI: 10.1021/jp0311512

Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies
journal, September 2012

  • Bardhan, Jaydeep P.; Jungwirth, Pavel; Makowski, Lee
  • The Journal of Chemical Physics, Vol. 137, Issue 12
  • DOI: 10.1063/1.4752735

Real single ion solvation free energies with quantum mechanical simulation
journal, January 2017

  • Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.
  • Chemical Science, Vol. 8, Issue 9
  • DOI: 10.1039/C7SC02138K

Solvation Thermodynamics:  Theory and Applications
journal, April 2005

  • Ben-Amotz, Dor; Raineri, Fernando O.; Stell, George
  • The Journal of Physical Chemistry B, Vol. 109, Issue 14
  • DOI: 10.1021/jp045090z

Aqueous Solvation Free Energies of Ions and Ion−Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton
journal, August 2006

  • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 32
  • DOI: 10.1021/jp063552y

Free Energy of Ionic Hydration
journal, January 1996

  • Hummer, Gerhard; Pratt, Lawrence R.; García, Angel E.
  • The Journal of Physical Chemistry, Vol. 100, Issue 4
  • DOI: 10.1021/jp951011v

Studies of the Thermodynamic Properties of Hydrogen Gas in Bulk Water
journal, January 2008

  • Sabo, Dubravko; Varma, Sameer; Martin, Marcus G.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 3
  • DOI: 10.1021/jp075459v

Concepts and protocols for electrostatic free energies
journal, July 2016


The Surface Potential of the Water–Vapor Interface from Classical Simulations
journal, September 2014

  • Cendagorta, Joseph R.; Ichiye, Toshiko
  • The Journal of Physical Chemistry B, Vol. 119, Issue 29
  • DOI: 10.1021/jp508878v

Reply to Comment on “Electrostatic Potentials and Free Energies of Solvation of Polar and Charged Molecules”
journal, May 1998

  • Hummer, Gerhard; Pratt, Lawrence R.; García, Angel E.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 19
  • DOI: 10.1021/jp980145g

The thermodynamics of proton hydration and the electrochemical surface potential of water
journal, November 2014

  • Pollard, Travis P.; Beck, Thomas L.
  • The Journal of Chemical Physics, Vol. 141, Issue 18
  • DOI: 10.1063/1.4896217

Development of a “First-Principles” Water Potential with Flexible Monomers. III. Liquid Phase Properties
journal, July 2014

  • Medders, Gregory R.; Babin, Volodymyr; Paesani, Francesco
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 8
  • DOI: 10.1021/ct5004115

Ab initio molecular dynamics calculations of ion hydration free energies
journal, May 2009

  • Leung, Kevin; Rempe, Susan B.; von Lilienfeld, O. Anatole
  • The Journal of Chemical Physics, Vol. 130, Issue 20
  • DOI: 10.1063/1.3137054

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Case study of Rb+(aq), quasi-chemical theory of ion hydration, and the no split occupancies rule
journal, January 2013

  • Sabo, D.; Jiao, D.; Varma, S.
  • Annual Reports Section "C" (Physical Chemistry), Vol. 109
  • DOI: 10.1039/c3pc90009f

Separable dual-space Gaussian pseudopotentials
journal, July 1996


Charge Asymmetry at Aqueous Hydrophobic Interfaces and Hydration Shells
journal, July 2014

  • Scheu, Rüdiger; Rankin, Blake M.; Chen, Yixing
  • Angewandte Chemie, Vol. 126, Issue 36
  • DOI: 10.1002/ange.201310266

The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster Ion Solvation Data
journal, November 1998

  • Tissandier, Michael D.; Cowen, Kenneth A.; Feng, Wan Yong
  • The Journal of Physical Chemistry A, Vol. 102, Issue 46
  • DOI: 10.1021/jp983807a

Ab initio phase diagram and nucleation of gallium
journal, May 2020


One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport
journal, February 2020


Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
text, January 2007

  • J., VandeVondele,; J., Hutter,
  • American Institute of Physics
  • DOI: 10.5167/uzh-3160

Ab initio molecular dynamics calculations of ion hydration free energies
text, January 2009


Probing the structural and dynamical properties of liquid water with models including non-local electron correlation
text, January 2015

  • Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
  • American Institute of Physics
  • DOI: 10.5167/uzh-114313

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
text, January 1988

  • Robert, Parr,; Chengteh, Lee,; Weitao, Yang,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/zrp0-ry04

Ion-water clusters, bulk medium effects, and ion hydration
text, January 2011


Deconstructing classical water models at interfaces and in bulk
text, January 2011


Real single ion solvation free energies with quantum mechanical simulation
text, January 2017


Separable Dual Space Gaussian Pseudo-potentials
text, January 1995


Absolute Hydration Free Energies of Ions, Ion-Water Clusters, and Quasi-chemical Theory
text, January 2003


Molecular theories and simulation of ions and polar molecules in water
text, January 1998


Works referencing / citing this record:

Thermodynamic mechanism of selective cocrystallization explored by MD simulation and phase diagram analysis
journal, February 2019

  • Wang, Na; Huang, Xin; Gong, Hao
  • AIChE Journal, Vol. 65, Issue 5
  • DOI: 10.1002/aic.16570

The Influence of Distant Boundaries on the Solvation of Charged Particles
journal, March 2019


Interfacial structural crossover and hydration thermodynamics of charged C 60 in water
journal, January 2018

  • Sarhangi, Setare Mostajabi; Waskasi, Morteza M.; Hashemianzadeh, Seyed Majid
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 42
  • DOI: 10.1039/c8cp05422c

Electromechanics of the liquid water vapour interface
journal, January 2020

  • Zhang, Chao; Sprik, Michiel
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 19
  • DOI: 10.1039/c9cp06901a

Understanding the scale of the single ion free energy: A critical test of the tetra-phenyl arsonium and tetra-phenyl borate assumption
journal, June 2018

  • Duignan, Timothy T.; Baer, Marcel D.; Mundy, Christopher J.
  • The Journal of Chemical Physics, Vol. 148, Issue 22
  • DOI: 10.1063/1.5020171

Interfacial ion solvation: Obtaining the thermodynamic limit from molecular simulations
journal, June 2018

  • Cox, Stephen J.; Geissler, Phillip L.
  • The Journal of Chemical Physics, Vol. 148, Issue 22
  • DOI: 10.1063/1.5020563

Humidity effect on ion behaviors of moisture-driven CO 2 sorbents
journal, October 2018

  • Shi, Xiaoyang; Xiao, Hang; Liao, Xiangbiao
  • The Journal of Chemical Physics, Vol. 149, Issue 16
  • DOI: 10.1063/1.5027105

Communication: Inside the water wheel: Intrinsic differences between hydrated tetraphenylphosphonium and tetraphenylborate ions
journal, November 2018

  • Leśniewski, Mateusz; Śmiechowski, Maciej
  • The Journal of Chemical Physics, Vol. 149, Issue 17
  • DOI: 10.1063/1.5056237

Ion hydration free energies and water surface potential in water nano drops: The cluster pair approximation and the proton hydration Gibbs free energy in solution
journal, November 2019

  • Houriez, Céline; Réal, Florent; Vallet, Valérie
  • The Journal of Chemical Physics, Vol. 151, Issue 17
  • DOI: 10.1063/1.5109777

Electromechanics of the liquid water vapour interface.
text, January 2020

  • Zhang, Chao; Sprik, Michiel
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.48749

Quantifying the hydration structure of sodium and potassium ions: taking additional steps on Jacob's Ladder
text, January 2020

  • Duignan, Timothy T.; Schenter, Gregory K.; Fulton, John L.
  • Universität Regensburg
  • DOI: 10.5283/epub.45957

Electromechanics of the liquid water vapour interface
text, January 2019


Quantifying the hydration structure of sodium and potassium ions: taking additional steps on Jacob's Ladder
text, January 2020

  • Duignan, Timothy T.; Schenter, Gregory K.; Fulton, John L.
  • Universität Regensburg
  • DOI: 10.5283/epub.45957