DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries

Abstract

Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modeling and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li2S, LiF, Li2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategiesmore » for the development of Li–S batteries.« less

Authors:
 [1];  [2];  [1];  [1];  [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Texas A & M Univ., College Station, TX (United States). Department of Chemical Engineering
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Joint Center for Energy Storage Research (JCESR)
Publication Date:
Research Org.:
Texas A & M Univ., College Station, TX (United States). Texas A & M Engineering Experiment Station
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1430633
Grant/Contract Number:  
EE0006832
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 11; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Nandasiri, Manjula I., Camacho-Forero, Luis E., Schwarz, Ashleigh M., Shutthanandan, Vaithiyalingam, Thevuthasan, Suntharampillai, Balbuena, Perla B., Mueller, Karl T., and Murugesan, Vijayakumar. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.7b00374.
Nandasiri, Manjula I., Camacho-Forero, Luis E., Schwarz, Ashleigh M., Shutthanandan, Vaithiyalingam, Thevuthasan, Suntharampillai, Balbuena, Perla B., Mueller, Karl T., & Murugesan, Vijayakumar. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries. United States. https://doi.org/10.1021/acs.chemmater.7b00374
Nandasiri, Manjula I., Camacho-Forero, Luis E., Schwarz, Ashleigh M., Shutthanandan, Vaithiyalingam, Thevuthasan, Suntharampillai, Balbuena, Perla B., Mueller, Karl T., and Murugesan, Vijayakumar. Wed . "In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries". United States. https://doi.org/10.1021/acs.chemmater.7b00374. https://www.osti.gov/servlets/purl/1430633.
@article{osti_1430633,
title = {In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries},
author = {Nandasiri, Manjula I. and Camacho-Forero, Luis E. and Schwarz, Ashleigh M. and Shutthanandan, Vaithiyalingam and Thevuthasan, Suntharampillai and Balbuena, Perla B. and Mueller, Karl T. and Murugesan, Vijayakumar},
abstractNote = {Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modeling and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li2S, LiF, Li2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.},
doi = {10.1021/acs.chemmater.7b00374},
journal = {Chemistry of Materials},
number = 11,
volume = 29,
place = {United States},
year = {Wed May 03 00:00:00 EDT 2017},
month = {Wed May 03 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 106 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery
journal, January 2013

  • Barghamadi, Marzieh; Kapoor, Ajay; Wen, Cuie
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.096308jes

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Advances in Li–S batteries
journal, January 2010

  • Ji, Xiulei; Nazar, Linda F.
  • Journal of Materials Chemistry, Vol. 20, Issue 44, p. 9821-9826
  • DOI: 10.1039/b925751a

Lithium–sulfur batteries: from liquid to solid cells
journal, January 2015

  • Lin, Zhan; Liang, Chengdu
  • Journal of Materials Chemistry A, Vol. 3, Issue 3
  • DOI: 10.1039/C4TA04727C

Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
journal, November 2013

  • Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo
  • Angewandte Chemie International Edition, Vol. 52, Issue 50
  • DOI: 10.1002/anie.201304762

Study of the Initial Stage of Solid Electrolyte Interphase Formation upon Chemical Reaction of Lithium Metal and N -Methyl- N -Propyl-Pyrrolidinium-Bis(Fluorosulfonyl)Imide
journal, September 2012

  • Budi, Akin; Basile, Andrew; Opletal, George
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp304581g

The effect of a solid electrolyte interphase on the mechanism of operation of lithium–sulfur batteries
journal, January 2015

  • Markevich, E.; Salitra, G.; Rosenman, A.
  • Journal of Materials Chemistry A, Vol. 3, Issue 39
  • DOI: 10.1039/C5TA04613K

Capacity Fading Mechanisms on Cycling a High-Capacity Secondary Sulfur Cathode
journal, January 2004

  • Cheon, Sang-Eun; Choi, Soo-Seok; Han, Ji-Seong
  • Journal of The Electrochemical Society, Vol. 151, Issue 12
  • DOI: 10.1149/1.1815153

Insights into Li-S Battery Cathode Capacity Fading Mechanisms: Irreversible Oxidation of Active Mass during Cycling
journal, January 2012

  • Diao, Yan; Xie, Kai; Xiong, Shizhao
  • Journal of The Electrochemical Society, Vol. 159, Issue 11
  • DOI: 10.1149/2.020211jes

Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification
journal, April 2012

  • Barchasz, Céline; Molton, Florian; Duboc, Carole
  • Analytical Chemistry, Vol. 84, Issue 9
  • DOI: 10.1021/ac2032244

Li 2 S Film Formation on Lithium Anode Surface of Li–S batteries
journal, February 2016

  • Liu, Zhixiao; Bertolini, Samuel; Balbuena, Perla B.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 7
  • DOI: 10.1021/acsami.5b11803

Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer
journal, September 2016


Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Solid–Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights from First-Principles Molecular Dynamics
journal, November 2012

  • Ganesh, P.; Kent, P. R. C.; Jiang, De-en
  • The Journal of Physical Chemistry C, Vol. 116, Issue 46
  • DOI: 10.1021/jp3086304

Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces
journal, March 2016

  • Leung, Kevin; Soto, Fernando; Hankins, Kie
  • The Journal of Physical Chemistry C, Vol. 120, Issue 12
  • DOI: 10.1021/acs.jpcc.5b11719

Electrolyte decomposition on Li-metal surfaces from first-principles theory
journal, November 2016

  • Ebadi, Mahsa; Brandell, Daniel; Araujo, C. Moyses
  • The Journal of Chemical Physics, Vol. 145, Issue 20
  • DOI: 10.1063/1.4967810

Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode
journal, July 2017


In situ methods for Li-ion battery research: A review of recent developments
journal, August 2015


In-Situ Raman Investigation of Polysulfide Formation in Li-S Cells
journal, January 2013

  • Hagen, M.; Schiffels, P.; Hammer, M.
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.045308jes

Li-S Battery Analyzed by UV/Vis in Operando Mode
journal, June 2013

  • Patel, Manu U. M.; Demir-Cakan, Rezan; Morcrette, Mathieu
  • ChemSusChem, Vol. 6, Issue 7
  • DOI: 10.1002/cssc.201300142

Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries
journal, December 2014

  • Wang, Qiang; Zheng, Jianming; Walter, Eric
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0851503jes

Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy
journal, September 2013

  • Cuisinier, Marine; Cabelguen, Pierre-Etienne; Evers, Scott
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 19
  • DOI: 10.1021/jz401763d

Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy
journal, January 2014

  • Lowe, Michael A.; Gao, Jie; Abruña, Héctor D.
  • RSC Advances, Vol. 4, Issue 35
  • DOI: 10.1039/c4ra01388c

X-ray Absorption Near-Edge Structure and Nuclear Magnetic Resonance Study of the Lithium-Sulfur Battery and its Components
journal, February 2014

  • Patel, Manu U. M.; Arčon, Iztok; Aquilanti, Giuliana
  • ChemPhysChem, Vol. 15, Issue 5
  • DOI: 10.1002/cphc.201300972

Ab Initio Structure Search and in Situ 7 Li NMR Studies of Discharge Products in the Li–S Battery System
journal, November 2014

  • See, Kimberly A.; Leskes, Michal; Griffin, John M.
  • Journal of the American Chemical Society, Vol. 136, Issue 46
  • DOI: 10.1021/ja508982p

Following the Transient Reactions in Lithium–Sulfur Batteries Using an In Situ Nuclear Magnetic Resonance Technique
journal, April 2015


In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries
journal, March 2012

  • Nelson, Johanna; Misra, Sumohan; Yang, Yuan
  • Journal of the American Chemical Society, Vol. 134, Issue 14
  • DOI: 10.1021/ja2121926

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Effect of Anion on Behaviour of Li-S Battery Electrolyte Solutions Based on N-Methyl-N-Butyl-Pyrrolidinium Ionic Liquids
journal, October 2015


Physicochemical Characterization of 1-Butyl-3-methylimidazolium and 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide
journal, March 2012

  • Vranes, Milan; Dozic, Sanja; Djeric, Vesna
  • Journal of Chemical & Engineering Data, Vol. 57, Issue 4
  • DOI: 10.1021/je2010837

Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries
journal, January 2013

  • Zheng, Jianming; Gu, Meng; Chen, Honghao
  • Journal of Materials Chemistry A, Vol. 1, Issue 29
  • DOI: 10.1039/c3ta11553d

Vacuum Electrochemistry in Ionic Liquids
journal, January 2014


Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide
journal, December 2005


Molecular structure and stability of dissolved lithium polysulfide species
journal, January 2014

  • Vijayakumar, M.; Govind, Niranjan; Walter, Eric
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 22
  • DOI: 10.1039/c4cp00889h

Quantum Mechanical Continuum Solvation Models
journal, August 2005

  • Tomasi, Jacopo; Mennucci, Benedetta; Cammi, Roberto
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr9904009

Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries
journal, November 2015

  • Camacho-Forero, Luis E.; Smith, Taylor W.; Bertolini, Samuel
  • The Journal of Physical Chemistry C, Vol. 119, Issue 48
  • DOI: 10.1021/acs.jpcc.5b08254

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


A grid-based Bader analysis algorithm without lattice bias
journal, January 2009


Improved grid-based algorithm for Bader charge allocation
journal, January 2007

  • Sanville, Edward; Kenny, Steven D.; Smith, Roger
  • Journal of Computational Chemistry, Vol. 28, Issue 5
  • DOI: 10.1002/jcc.20575

A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation–anion interactions and a comparison to imidazolium-based analogues
journal, January 2011

  • Men, Shuang; Lovelock, Kevin R. J.; Licence, Peter
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 33
  • DOI: 10.1039/c1cp21053j

XPS of sulphide mineral surfaces: metal-deficient, polysulphides, defects and elemental sulphur
journal, August 1999


A highly efficient polysulfide mediator for lithium–sulfur batteries
journal, January 2015

  • Liang, Xiao; Hart, Connor; Pang, Quan
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6682

Quantitative determination of surface composition of sulfur bearing anion mixtures by Auger electron spectroscopy
journal, October 1980

  • Turner, N. H.; Murday, J. S.; Ramaker, D. E.
  • Analytical Chemistry, Vol. 52, Issue 1
  • DOI: 10.1021/ac50051a021

Exploiting XPS for the identification of sulfides and polysulfides
journal, January 2015

  • Fantauzzi, Marzia; Elsener, Bernhard; Atzei, Davide
  • RSC Advances, Vol. 5, Issue 93
  • DOI: 10.1039/C5RA14915K

Toward a Molecular Understanding of Energetics in Li–S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study
journal, May 2014

  • Assary, Rajeev S.; Curtiss, Larry A.; Moore, Jeffrey S.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 22
  • DOI: 10.1021/jp5015466

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes
journal, January 2016


Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes
journal, January 2006

  • Howlett, P. C.; Brack, N.; Hollenkamp, A. F.
  • Journal of The Electrochemical Society, Vol. 153, Issue 3
  • DOI: 10.1149/1.2164726

A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes
journal, April 2009


Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions
journal, September 2012

  • Schroder, Kjell W.; Celio, Hugo; Webb, Lauren J.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp307372m

Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study
journal, March 2007


Polysulfide rejection layer from alpha-lipoic acid for high performance lithium–sulfur battery
journal, January 2015

  • Song, Jongchan; Noh, Hyungjun; Lee, Hongkyung
  • Journal of Materials Chemistry A, Vol. 3, Issue 1
  • DOI: 10.1039/C4TA03625E

Understanding the Interfacial Processes at Silicon–Copper Electrodes in Ionic Liquid Battery Electrolyte
journal, July 2012

  • Nguyen, Cao Cuong; Woo, Sang-Wook; Song, Seung-Wan
  • The Journal of Physical Chemistry C, Vol. 116, Issue 28
  • DOI: 10.1021/jp3019815

Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries
journal, November 2015


Nucleation and growth of thin films
journal, April 1984

  • Venables, J. A.; Spiller, G. D. T.; Hanbucken, M.
  • Reports on Progress in Physics, Vol. 47, Issue 4
  • DOI: 10.1088/0034-4885/47/4/002

Imaging XPS—a new technique. 2—Experimental verification
journal, June 1987

  • Gurker, N.; Ebel, M. F.; Ebel, H.
  • Surface and Interface Analysis, Vol. 10, Issue 5
  • DOI: 10.1002/sia.740100504

Imaging XPS?A new technique, I?principles
journal, February 1983

  • Gurker, N.; Ebel, M. F.; Ebel, H.
  • Surface and Interface Analysis, Vol. 5, Issue 1
  • DOI: 10.1002/sia.740050105

Works referencing / citing this record:

Anode Interface Engineering and Architecture Design for High‐Performance Lithium–Sulfur Batteries
journal, January 2019


High-Energy Aqueous Lithium Batteries
journal, June 2018


Mesoscale Physicochemical Interactions in Lithium–Sulfur Batteries: Progress and Perspective
journal, October 2017

  • Liu, Zhixiao; Mistry, Aashutosh; Mukherjee, Partha P.
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 15, Issue 1
  • DOI: 10.1115/1.4037785

Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes
journal, January 2019

  • Deng, Kuirong; Han, Dongmei; Ren, Shan
  • Journal of Materials Chemistry A, Vol. 7, Issue 21
  • DOI: 10.1039/c9ta02407g

Electrode Edge Effects and the Failure Mechanism of Lithium-Metal Batteries
journal, October 2018


In Situ/Operando Spectroscopic Characterizations Guide the Compositional and Structural Design of Lithium–Sulfur Batteries
journal, September 2019


Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode
journal, January 2017

  • Camacho-Forero, Luis E.; Balbuena, Perla B.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 45
  • DOI: 10.1039/c7cp06485c

Lithium Benzenedithiolate Catholytes for Rechargeable Lithium Batteries
journal, June 2019

  • Li, Fengli; Si, Yubing; Liu, Bingjie
  • Advanced Functional Materials, Vol. 29, Issue 32
  • DOI: 10.1002/adfm.201902223

Performance evaluation of zero-valent iron nanoparticles (NZVI) for high-concentration H 2 S removal from biogas at different temperatures
journal, January 2018

  • Su, Lianghu; Liu, Chenwei; Liang, Kangkang
  • RSC Advances, Vol. 8, Issue 25
  • DOI: 10.1039/c7ra12125c

Sequestration of Sulphide from Biogas by thermal-treated iron nanoparticles synthesized using tea polyphenols
journal, August 2018


Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
journal, March 2018


Tailored Reaction Route by Micropore Confinement for Li-S Batteries Operating under Lean Electrolyte Conditions
journal, May 2018

  • Wang, Hui; Adams, Brian D.; Pan, Huilin
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201800590

Lowering the charge overpotential of Li 2 S via the inductive effect of phenyl diselenide in Li–S batteries
journal, January 2019

  • Fan, Qianqian; Li, Baohua; Si, Yubing
  • Chemical Communications, Vol. 55, Issue 53
  • DOI: 10.1039/c8cc09565e