DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-Ion Batteries

Abstract

To address the increasing demand for energy density, the Ni-rich layered Ni0.90Co0.05Mn0.05]O2 cathode has been synthesized and its electrochemical performance in lithium-ion cells has been benchmarked against a lower Ni-content Li[Ni0.6Co0.2Mn0.2]O2. Li[Ni0.90Co0.05Mn0.05]O2 delivers a high discharge capacity of 227 mA h g-1 compared to 189 mA h g-1 for Li[Ni0.6Co0.2Mn0.2]O2 when cycled up to a lower cutoff voltage of 4.3 V, making it an appealing candidate for electric vehicles. On increasing the charge cutoff voltage to 4.5 V, Li[Ni0.90Co0.05Mn0.05]O2 displays a capacity of 238 mA h g-1 compared to 208 mA h g-1 for Li[Ni0.6Co0.2Mn0.2]O2. Although Li[Ni0.90Co0.05Mn0.05]O2 suffers during cycling from the usual rapid capacity fade similar to LiNiO2, 87% and 81% of the initial capacity could still be retained after 100 cycles even after cycling to a higher cutoff voltage of 4.3 and 4.5 V, respectively. A comparison of Li[Ni0.90Co0.05Mn0.05]O2 and Li[Ni0.6Co0.2Mn0.2]O2 reveals that the capacity fade of Li[Ni0.90Co0.05Mn0.05]O2 originates largely from the anisotropic volume change and subsequent microcrack propagation in the bulk and NiO-like rock salt impurity phase formation on the particle surface, which are exacerbated at 4.5 V. Future work with appropriate doping and surface modification could improve further the performance of Li[Ni0.90Co0.05Mn0.05]O2.

Authors:
 [1]; ORCiD logo [1]
  1. Univ. of Texas, Austin, TX (United States). Materials Science and Engineering Program and Texas Materials Institute
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1430488
Alternate Identifier(s):
OSTI ID: 2217288
Grant/Contract Number:  
EE0007762
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 19; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; batteries; cathodes

Citation Formats

Sun, Ho-Hyun, and Manthiram, Arumugam. Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-Ion Batteries. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.7b03268.
Sun, Ho-Hyun, & Manthiram, Arumugam. Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-Ion Batteries. United States. https://doi.org/10.1021/acs.chemmater.7b03268
Sun, Ho-Hyun, and Manthiram, Arumugam. Wed . "Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-Ion Batteries". United States. https://doi.org/10.1021/acs.chemmater.7b03268. https://www.osti.gov/servlets/purl/1430488.
@article{osti_1430488,
title = {Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-Ion Batteries},
author = {Sun, Ho-Hyun and Manthiram, Arumugam},
abstractNote = {To address the increasing demand for energy density, the Ni-rich layered Ni0.90Co0.05Mn0.05]O2 cathode has been synthesized and its electrochemical performance in lithium-ion cells has been benchmarked against a lower Ni-content Li[Ni0.6Co0.2Mn0.2]O2. Li[Ni0.90Co0.05Mn0.05]O2 delivers a high discharge capacity of 227 mA h g-1 compared to 189 mA h g-1 for Li[Ni0.6Co0.2Mn0.2]O2 when cycled up to a lower cutoff voltage of 4.3 V, making it an appealing candidate for electric vehicles. On increasing the charge cutoff voltage to 4.5 V, Li[Ni0.90Co0.05Mn0.05]O2 displays a capacity of 238 mA h g-1 compared to 208 mA h g-1 for Li[Ni0.6Co0.2Mn0.2]O2. Although Li[Ni0.90Co0.05Mn0.05]O2 suffers during cycling from the usual rapid capacity fade similar to LiNiO2, 87% and 81% of the initial capacity could still be retained after 100 cycles even after cycling to a higher cutoff voltage of 4.3 and 4.5 V, respectively. A comparison of Li[Ni0.90Co0.05Mn0.05]O2 and Li[Ni0.6Co0.2Mn0.2]O2 reveals that the capacity fade of Li[Ni0.90Co0.05Mn0.05]O2 originates largely from the anisotropic volume change and subsequent microcrack propagation in the bulk and NiO-like rock salt impurity phase formation on the particle surface, which are exacerbated at 4.5 V. Future work with appropriate doping and surface modification could improve further the performance of Li[Ni0.90Co0.05Mn0.05]O2.},
doi = {10.1021/acs.chemmater.7b03268},
journal = {Chemistry of Materials},
number = 19,
volume = 29,
place = {United States},
year = {Wed Sep 13 00:00:00 EDT 2017},
month = {Wed Sep 13 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 312 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density
journal, June 1980


Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries
journal, November 2001


Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C
journal, March 1992

  • Gummow, R. J.; Thackeray, M. M.; David, W. I. F.
  • Materials Research Bulletin, Vol. 27, Issue 3, p. 327-337
  • DOI: 10.1016/0025-5408(92)90062-5

Electrochemistry and Structural Chemistry of LiNiO[sub 2] (R3m) for 4 Volt Secondary Lithium Cells
journal, January 1993

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 140, Issue 7
  • DOI: 10.1149/1.2220730

Relationship between non-stoichiometry and physical properties in LiNiO2
journal, May 1995


Synthesis and properties of LiNiO2 as cathode material for secondary batteries
journal, April 1995


Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells
journal, August 2002


High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni 0.85 Co 0.05 Mn 0.10 ]O 2 cathode
journal, January 2016

  • Lee, Joo Hyeong; Yoon, Chong S.; Hwang, Jang-Yeon
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C6EE01134A

Microstructural Changes in LiNi0.8Co0.15Al0.05O2 Positive Electrode Material during the First Cycle
journal, January 2011

  • Zheng, Shijian; Huang, Rong; Makimura, Yoshinari
  • Journal of The Electrochemical Society, Vol. 158, Issue 4
  • DOI: 10.1149/1.3544843

Structural Stability of LiNiO 2 Cycled above 4.2 V
journal, April 2017


Compositionally Graded Cathode Material with Long-Term Cycling Stability for Electric Vehicles Application
journal, August 2016

  • Kim, Un-Hyuck; Lee, Eung-Ju; Yoon, Chong S.
  • Advanced Energy Materials, Vol. 6, Issue 22
  • DOI: 10.1002/aenm.201601417

Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material
journal, January 2017

  • Lim, Jin-Myoung; Hwang, Taesoon; Kim, Duho
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep39669

Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries
journal, November 2002


Synthesis of Nanostructured Li[Ni 1/3 Co 1/3 Mn 1/3 ]O 2 via a Modified Carbonate Process
journal, January 2005

  • Park, S. -H.; Shin, H. -S.; Myung, S. -T.
  • Chemistry of Materials, Vol. 17, Issue 1
  • DOI: 10.1021/cm048433e

Future generations of cathode materials: an automotive industry perspective
journal, January 2015

  • Andre, Dave; Kim, Sung-Jin; Lamp, Peter
  • Journal of Materials Chemistry A, Vol. 3, Issue 13
  • DOI: 10.1039/C5TA00361J

Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method
journal, February 2004


High-voltage positive electrode materials for lithium-ion batteries
journal, January 2017

  • Li, Wangda; Song, Bohang; Manthiram, Arumugam
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/C6CS00875E

Effects of Chemical versus Electrochemical Delithiation on the Oxygen Evolution Reaction Activity of Nickel-Rich Layered Li M O 2
journal, September 2015


Review—High-Capacity Li[Ni 1- x Co x /2 Mn x /2 ]O 2 ( x = 0.1, 0.05, 0) Cathodes for Next-Generation Li-Ion Battery
journal, January 2015

  • Yoon, Chong S.; Choi, Moon Ho; Lim, Byung-Beom
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0101514jes

Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation
journal, September 2006


Effect of Ni 2+ Content on Lithium/Nickel Disorder for Ni-Rich Cathode Materials
journal, April 2015

  • Wu, Feng; Tian, Jun; Su, Yuefeng
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 14
  • DOI: 10.1021/acsami.5b00645

Progress in High-Capacity Core–Shell Cathode Materials for Rechargeable Lithium Batteries
journal, January 2014

  • Myung, Seung-Taek; Noh, Hyung-Joo; Yoon, Sung-June
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 4
  • DOI: 10.1021/jz402691z

Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi 0.8– x Co 0.1 Mn 0.1+ x O 2 (0.0 ≤ x ≤ 0.08) Cathodes for Lithium-Ion Batteries
journal, March 2015

  • Zheng, Jianming; Kan, Wang Hay; Manthiram, Arumugam
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 12
  • DOI: 10.1021/acsami.5b00788

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions (Adv. Mater. 35/2010)
journal, September 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201090116

In situ x-ray diffraction and electrochemical studies of Li1−xNiO2
journal, December 1993


Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries
journal, February 2017

  • Kondrakov, Aleksandr O.; Schmidt, Alexander; Xu, Jin
  • The Journal of Physical Chemistry C, Vol. 121, Issue 6
  • DOI: 10.1021/acs.jpcc.6b12885

Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy
journal, May 2013

  • Miller, Dean J.; Proff, Christian; Wen, J. G.
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300015

Thermal stability of Li1−yNixMn(1−x)/2Co(1−x)/2O2 layer-structured cathode materials used in Li-Ion batteries
journal, August 2011


Phase Relationships and Structural and Chemical Stabilities of Charged Li[sub 1−x]CoO[sub 2−δ] and Li[sub 1−x]Ni[sub 0.85]Co[sub 0.15]O[sub 2−δ] Cathodes
journal, January 2003

  • Venkatraman, S.; Shin, Y.; Manthiram, A.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 1
  • DOI: 10.1149/1.1525430

Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries
journal, April 2017

  • Li, Wangda; Dolocan, Andrei; Oh, Pilgun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14589

Works referencing / citing this record:

Hin und zurück – die Entwicklung von LiNiO 2 als Kathodenaktivmaterial
journal, May 2019

  • Bianchini, Matteo; Roca‐Ayats, Maria; Hartmann, Pascal
  • Angewandte Chemie, Vol. 131, Issue 31
  • DOI: 10.1002/ange.201812472

Mechanism of Capacity Fading in the LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries
journal, April 2019

  • Ahn, Yong-keon; Jo, Yong Nam; Cho, Woosuk
  • Energies, Vol. 12, Issue 9
  • DOI: 10.3390/en12091638

There and Back Again-The Journey of LiNiO 2 as a Cathode Active Material
journal, May 2019

  • Bianchini, Matteo; Roca-Ayats, Maria; Hartmann, Pascal
  • Angewandte Chemie International Edition, Vol. 58, Issue 31
  • DOI: 10.1002/anie.201812472

Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction
journal, January 2019

  • Bartsch, Timo; Kim, A-Young; Strauss, Florian
  • Chemical Communications, Vol. 55, Issue 75
  • DOI: 10.1039/c9cc04453a

Surface/Interface Structure Degradation of Ni‐Rich Layered Oxide Cathodes toward Lithium‐Ion Batteries: Fundamental Mechanisms and Remedying Strategies
journal, December 2019

  • Liang, Longwei; Zhang, Wenheng; Zhao, Fei
  • Advanced Materials Interfaces, Vol. 7, Issue 3
  • DOI: 10.1002/admi.201901749

Improved Cycling Stability of Li[Ni 0.90 Co 0.05 Mn 0.05 ]O 2 Through Microstructure Modification by Boron Doping for Li-Ion Batteries
journal, July 2018

  • Park, Kang-Joon; Jung, Hun-Gi; Kuo, Liang-Yin
  • Advanced Energy Materials, Vol. 8, Issue 25
  • DOI: 10.1002/aenm.201801202

New Insights for the Abuse Tolerance Behavior of LiMn 2 O 4 under High Cut‐Off Potential Conditions
journal, September 2018


The Role of Electrolyte in the First-Cycle Transformations of LiNi 0.6 Mn 0.2 Co 0.2 O 2
journal, January 2019

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.1561912jes

In‐Depth TEM Investigation on Structural Inhomogeneity within a Primary Li x Ni 0.835 Co 0.15 Al 0.015 O 2 Particle: Origin of Capacity Decay during High‐Rate Discharge
journal, February 2020

  • Lee, Hyesu; Jo, Eunmi; Chung, Kyung Yoon
  • Angewandte Chemie International Edition, Vol. 59, Issue 6
  • DOI: 10.1002/anie.201910670

High‐Voltage Charging‐Induced Strain, Heterogeneity, and Micro‐Cracks in Secondary Particles of a Nickel‐Rich Layered Cathode Material
journal, March 2019

  • Mao, Yuwei; Wang, Xuelong; Xia, Sihao
  • Advanced Functional Materials, Vol. 29, Issue 18
  • DOI: 10.1002/adfm.201900247

Laboratory-Based X-ray Absorption Spectroscopy on a Working Pouch Cell Battery at Industrially-Relevant Charging Rates
journal, January 2019

  • Jahrman, Evan P.; Pellerin, Lisa A.; Ditter, Alexander S.
  • Journal of The Electrochemical Society, Vol. 166, Issue 12
  • DOI: 10.1149/2.0721912jes

Mechanistic understanding of intergranular cracking in NCM cathode material: mesoscale simulation with three-dimensional microstructure
journal, January 2018

  • Min, Kyoungmin; Cho, Eunseog
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 42
  • DOI: 10.1039/c8cp04927k

Controllable Cathode–Electrolyte Interface of Li[Ni 0.8 Co 0.1 Mn 0.1 ]O 2 for Lithium Ion Batteries: A Review
journal, August 2019

  • Maleki Kheimeh Sari, Hirbod; Li, Xifei
  • Advanced Energy Materials, Vol. 9, Issue 39
  • DOI: 10.1002/aenm.201901597

Probing the Nature of Li + /Ni 2+ Disorder on the Structure and Electrochemical Performance in Ni-Based Layered Oxide Cathodes
journal, January 2019

  • Zhang, Jicheng; Zhou, Dong; Yang, Wenyun
  • Journal of The Electrochemical Society, Vol. 166, Issue 16
  • DOI: 10.1149/2.0641916jes

Ni-Rich Oxide LiNi 0.85 Co 0.05 Mn 0.1 O 2 for Lithium Ion Battery: Effect of Microwave Radiation on Its Morphology and Electrochemical Property
journal, January 2019

  • Liu, Yong; Yao, Wenli; Lei, Chao
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.0151908jes

Simultaneously Dual Modification of Ni‐Rich Layered Oxide Cathode for High‐Energy Lithium‐Ion Batteries
journal, February 2019

  • Yang, Huiping; Wu, Hong‐Hui; Ge, Mingyuan
  • Advanced Functional Materials, Vol. 29, Issue 13
  • DOI: 10.1002/adfm.201808825

Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction
text, January 2019


Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction
text, January 2019

  • Bartsch, Timo; Kim, A-Young; Strauss, Florian
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-03489

Designation of a binocular structure for complex sources of x-rays and neutron source
preprint, January 2020