DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New Rh 2 (II,II) Architecture for the Catalytic Reduction of H +

Abstract

Formamidinate-bridged Rh2II,II complexes containing diimine ligands of the formula cis-[Rh2II,II(μ-DTolF)2(NN)2]2+ (Rh2-NN2), where DTolF = p-ditolylformamidinate and NN = dppn (benzo[i]dipyrido[3,2-a:2',3'-h]quinoxaline), dppz (dipyrido[3,2-a:2',3'-c]phenazine), and phen (1,10-phenanthroline), electrocatalytically reduce H+ to H2 in DMF solutions containing CH3COOH at a glassy carbon electrode. Cathodic scans in the absence of acid display a RhIII,II/II,II reduction at -0.90 V vs Fc+/Fc followed by NN0/– reduction at -1.13, -1.36, and -1.65 V for Rh2-dppn2, Rh2-dppz2, and Rh2-phen2, respectively. Upon the addition of acid, Rh2-dppn2 and Rh2-dppz2 undergo reduction–protonation–reduction at each pyrazine-containing NN ligand prior to the Rh2II,II/II,I reduction. The Rh2II,I species is thus protonated at one of the metal centers, resulting in the formation of the corresponding Rh2II,III-hydride. In the case of Rh2-phen2, the reduction of the phen ligand is followed by intramolecular electron transfer to the Rh2II,II core in the presence of protons to form a Rh2II,III-hydride species. Further reduction and protonation at the Rh2 core for all three complexes rapidly catalyzes H2 formation with varied calculated turnover frequencies (TOF) and overpotential values (η): 2.6 × 104 s–1 and 0.56 V for Rh2-dppn, 2.8 × 104 s–1 and 0.50 V for Rh2-dppz2, and 5.9 × 104 s–1 and 0.64 V for Rh2-phen2. Bulk electrolysis confirmedmore » H2 formation, and further CH3COOH addition regenerates H2 production, attesting to the robust nature of the architecture. The cis-[Rh2II,II(μ-DTolF)2(NN)2]2+ architecture benefits by combining electron-rich formamidinate bridges, a redox-active Rh2II,II core, and electron-accepting NN diimine ligands to allow for the electrocatalysis of H+ substrate to H2 fuel.« less

Authors:
 [1];  [1];  [2];  [2];  [1]
  1. The Ohio State Univ., Columbus, OH (United States). Dept. of Chemistry and Biochemistry
  2. Texas A & M Univ., College Station, TX (United States). Dept. of Chemistry
Publication Date:
Research Org.:
The Ohio State Univ., Columbus, OH (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1430201
Grant/Contract Number:  
SC0010542; SC0010721
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 54; Journal Issue: 20; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; electrocatalysis; dirhodium; formamidinate; diimine ligands; hydrogen

Citation Formats

White, Travis A., Witt, Suzanne E., Li, Zhanyong, Dunbar, Kim R., and Turro, Claudia. New Rh 2 (II,II) Architecture for the Catalytic Reduction of H +. United States: N. p., 2015. Web. doi:10.1021/acs.inorgchem.5b01823.
White, Travis A., Witt, Suzanne E., Li, Zhanyong, Dunbar, Kim R., & Turro, Claudia. New Rh 2 (II,II) Architecture for the Catalytic Reduction of H +. United States. https://doi.org/10.1021/acs.inorgchem.5b01823
White, Travis A., Witt, Suzanne E., Li, Zhanyong, Dunbar, Kim R., and Turro, Claudia. Fri . "New Rh 2 (II,II) Architecture for the Catalytic Reduction of H +". United States. https://doi.org/10.1021/acs.inorgchem.5b01823. https://www.osti.gov/servlets/purl/1430201.
@article{osti_1430201,
title = {New Rh 2 (II,II) Architecture for the Catalytic Reduction of H +},
author = {White, Travis A. and Witt, Suzanne E. and Li, Zhanyong and Dunbar, Kim R. and Turro, Claudia},
abstractNote = {Formamidinate-bridged Rh2II,II complexes containing diimine ligands of the formula cis-[Rh2II,II(μ-DTolF)2(NN)2]2+ (Rh2-NN2), where DTolF = p-ditolylformamidinate and NN = dppn (benzo[i]dipyrido[3,2-a:2',3'-h]quinoxaline), dppz (dipyrido[3,2-a:2',3'-c]phenazine), and phen (1,10-phenanthroline), electrocatalytically reduce H+ to H2 in DMF solutions containing CH3COOH at a glassy carbon electrode. Cathodic scans in the absence of acid display a RhIII,II/II,II reduction at -0.90 V vs Fc+/Fc followed by NN0/– reduction at -1.13, -1.36, and -1.65 V for Rh2-dppn2, Rh2-dppz2, and Rh2-phen2, respectively. Upon the addition of acid, Rh2-dppn2 and Rh2-dppz2 undergo reduction–protonation–reduction at each pyrazine-containing NN ligand prior to the Rh2II,II/II,I reduction. The Rh2II,I species is thus protonated at one of the metal centers, resulting in the formation of the corresponding Rh2II,III-hydride. In the case of Rh2-phen2, the reduction of the phen ligand is followed by intramolecular electron transfer to the Rh2II,II core in the presence of protons to form a Rh2II,III-hydride species. Further reduction and protonation at the Rh2 core for all three complexes rapidly catalyzes H2 formation with varied calculated turnover frequencies (TOF) and overpotential values (η): 2.6 × 104 s–1 and 0.56 V for Rh2-dppn, 2.8 × 104 s–1 and 0.50 V for Rh2-dppz2, and 5.9 × 104 s–1 and 0.64 V for Rh2-phen2. Bulk electrolysis confirmed H2 formation, and further CH3COOH addition regenerates H2 production, attesting to the robust nature of the architecture. The cis-[Rh2II,II(μ-DTolF)2(NN)2]2+ architecture benefits by combining electron-rich formamidinate bridges, a redox-active Rh2II,II core, and electron-accepting NN diimine ligands to allow for the electrocatalysis of H+ substrate to H2 fuel.},
doi = {10.1021/acs.inorgchem.5b01823},
journal = {Inorganic Chemistry},
number = 20,
volume = 54,
place = {United States},
year = {Fri Sep 25 00:00:00 EDT 2015},
month = {Fri Sep 25 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Photochemical Conversion of Solar Energy
journal, February 2008

  • Balzani, Vincenzo; Credi, Alberto; Venturi, Margherita
  • ChemSusChem, Vol. 1, Issue 1-2
  • DOI: 10.1002/cssc.200700087

Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen
journal, March 1995

  • Bard, Allen J.; Fox, Marye Anne
  • Accounts of Chemical Research, Vol. 28, Issue 3
  • DOI: 10.1021/ar00051a007

The Artificial Leaf
journal, January 2012

  • Nocera, Daniel G.
  • Accounts of Chemical Research, Vol. 45, Issue 5
  • DOI: 10.1021/ar2003013

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies
journal, January 2013

  • Frischmann, Peter D.; Mahata, Kingsuk; Würthner, Frank
  • Chem. Soc. Rev., Vol. 42, Issue 4
  • DOI: 10.1039/C2CS35223K

Fuel from Water: The Photochemical Generation of Hydrogen from Water
journal, June 2014

  • Han, Zhiji; Eisenberg, Richard
  • Accounts of Chemical Research, Vol. 47, Issue 8
  • DOI: 10.1021/ar5001605

Electrocatalytic pathways towards sustainable fuel production from water and CO2
journal, November 2012

  • Inglis, Jane L.; MacLean, Brian J.; Pryce, Mary T.
  • Coordination Chemistry Reviews, Vol. 256, Issue 21-22
  • DOI: 10.1016/j.ccr.2012.05.002

Earth-abundant hydrogen evolution electrocatalysts
journal, January 2014

  • McKone, James R.; Marinescu, Smaranda C.; Brunschwig, Bruce S.
  • Chem. Sci., Vol. 5, Issue 3
  • DOI: 10.1039/C3SC51711J

Photocatalytic hydrogen production
journal, January 2011

  • Teets, Thomas S.; Nocera, Daniel G.
  • Chemical Communications, Vol. 47, Issue 33
  • DOI: 10.1039/c1cc12390d

Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts
journal, January 2012

  • Wang, Mei; Chen, Lin; Sun, Licheng
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee03309g

Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges
journal, January 2012

  • Du, Pingwu; Eisenberg, Richard
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee03250c

A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production
journal, August 2011

  • Helm, M. L.; Stewart, M. P.; Bullock, R. M.
  • Science, Vol. 333, Issue 6044, p. 863-866
  • DOI: 10.1126/science.1205864

Photochemical and thermal hydrogen production from water catalyzed by carboxylate-bridged dirhodium(ii) complexes
journal, January 2010

  • Tanaka, Saya; Masaoka, Shigeyuki; Yamauchi, Kosei
  • Dalton Transactions, Vol. 39, Issue 46
  • DOI: 10.1039/c0dt00741b

Stability-enhanced hydrogen-evolving dirhodium photocatalysts through ligand modification
journal, January 2012

  • Elgrishi, Noémie; Teets, Thomas S.; Chambers, Matthew B.
  • Chemical Communications, Vol. 48, Issue 76
  • DOI: 10.1039/c2cc34691e

A Photocycle for Hydrogen Production from Two-Electron Mixed-Valence Complexes
journal, November 2005

  • Esswein, Arthur J.; Veige, Adam S.; Nocera, Daniel G.
  • Journal of the American Chemical Society, Vol. 127, Issue 47
  • DOI: 10.1021/ja054371x

Halogen photoelimination from dirhodium phosphazane complexes via chloride-bridged intermediates
journal, January 2013

  • Powers, David C.; Chambers, Matthew B.; Teets, Thomas S.
  • Chemical Science, Vol. 4, Issue 7
  • DOI: 10.1039/c3sc50462j

Halide-Bridged Binuclear HX-Splitting Catalysts
journal, August 2014

  • Powers, David C.; Hwang, Seung Jun; Zheng, Shao-Liang
  • Inorganic Chemistry, Vol. 53, Issue 17
  • DOI: 10.1021/ic501136m

Photoinduced One-Electron Reduction of Alkyl Halides by Dirhodium(II,II) Tetraformamidinates and a Related Complex with Visible Light
journal, July 2005

  • Lutterman, Daniel A.; Degtyareva, Natalya N.; Johnston, Dean H.
  • Inorganic Chemistry, Vol. 44, Issue 15
  • DOI: 10.1021/ic048377j

Electrosynthesis of Rh2(dpf)4(R) where dpf = N,N′-diphenylformamidinate anion and R = CH3, C2H5, C3H7, C4H9 or C5H11
journal, January 2011

  • Bear, J. L.; Caemelbecke, E. Van; Ngubane, S.
  • Dalton Transactions, Vol. 40, Issue 11
  • DOI: 10.1039/c0dt01453b

Synthesis, x-ray crystal structure, and electrochemical properties of the dirhodium(4+) complex Rh2(form)4 (form = N,N'-di-p-tolylformamidinate anion)
journal, July 1987

  • Piraino, Pasquale; Bruno, Giuseppe; Lo Schiavo, Sandra
  • Inorganic Chemistry, Vol. 26, Issue 14
  • DOI: 10.1021/ic00261a009

Dirhodium Formamidinate Compounds with Bidentate Nitrogen Chelating Ligands
journal, December 2003

  • Chifotides, Helen T.; Catalan, Kemal V.; Dunbar, Kim R.
  • Inorganic Chemistry, Vol. 42, Issue 26
  • DOI: 10.1021/ic034737b

Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems.
journal, April 1964

  • Nicholson, R. S.; Shain, Irving
  • Analytical Chemistry, Vol. 36, Issue 4, p. 706-723
  • DOI: 10.1021/ac60210a007

Molecular Catalysis of Electrochemical Reactions. Mechanistic Aspects
journal, July 2008

  • Savéant, Jean-Michel
  • Chemical Reviews, Vol. 108, Issue 7, p. 2348-2378
  • DOI: 10.1021/cr068079z

Evaluation of Homogeneous Electrocatalysts by Cyclic Voltammetry
journal, September 2014

  • Rountree, Eric S.; McCarthy, Brian D.; Eisenhart, Thomas T.
  • Inorganic Chemistry, Vol. 53, Issue 19
  • DOI: 10.1021/ic500658x

Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis
journal, June 2012

  • Costentin, Cyrille; Drouet, Samuel; Robert, Marc
  • Journal of the American Chemical Society, Vol. 134, Issue 27, p. 11235-11242
  • DOI: 10.1021/ja303560c

Benchmarking of Homogeneous Electrocatalysts: Overpotential, Turnover Frequency, Limiting Turnover Number
journal, April 2015

  • Costentin, Cyrille; Passard, Guillaume; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 137, Issue 16
  • DOI: 10.1021/jacs.5b00914

Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions
journal, January 2013

  • Thoi, V. Sara; Sun, Yujie; Long, Jeffrey R.
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35272A

Minor groove intercalation of Δ-[Ru(Me2phen)2dppz]2+ to the hexanucleotide d(GTCGAC)2
journal, January 2002

  • Greguric, Antun; Greguric, Ivan D.; Hambley, Trevor W.
  • Journal of the Chemical Society, Dalton Transactions, Issue 6
  • DOI: 10.1039/b105689c

Efficient DNA photocleavage by [Ru(bpy)2(dppn)]2+ with visible light
journal, January 2010

  • Sun, Yujie; Joyce, Lauren E.; Dickson, Nicole M.
  • Chemical Communications, Vol. 46, Issue 14
  • DOI: 10.1039/b925574e

Excited State Redox Potentials of Ruthenium Diimine Complexes; Correlations with Ground State Redox Potentials and Ligand Parameters
journal, March 1995

  • Vlcek, A. A.; Dodsworth, Elaine S.; Pietro, William J.
  • Inorganic Chemistry, Vol. 34, Issue 7
  • DOI: 10.1021/ic00111a043

Tuning the electronic properties of dppz-ligands and their palladium(ii) complexes
journal, January 2010

  • Butsch, Katharina; Gust, Ronald; Klein, Axel
  • Dalton Transactions, Vol. 39, Issue 18
  • DOI: 10.1039/b926233d

Stretching the phenazine MO in dppz: the effect of phenyl and phenyl–ethynyl groups on the photophysics of Re( i ) dppz complexes
journal, January 2014

  • van der Salm, Holly; Larsen, Christopher B.; McLay, James R. W.
  • Dalton Trans., Vol. 43, Issue 47
  • DOI: 10.1039/C4DT01415D

Electrochemical, spectroscopic and EPR study of transition metal complexes of dipyrido[3,2-a:2′,3′-c]phenazine
journal, January 1999

  • Fees, Jörg; Ketterle, Michael; Klein, Axel
  • Journal of the Chemical Society, Dalton Transactions, Issue 15
  • DOI: 10.1039/a903417j

H 2 Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation
journal, November 2010

  • Fourmond, Vincent; Jacques, Pierre-André; Fontecave, Marc
  • Inorganic Chemistry, Vol. 49, Issue 22
  • DOI: 10.1021/ic101187v

Catalytic hydrogen production by a Ni–Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step
journal, January 2013

  • Canaguier, Sigolène; Fourmond, Vincent; Perotto, Carlo U.
  • Chemical Communications, Vol. 49, Issue 44
  • DOI: 10.1039/c3cc40987b

Voltammetric determination of the pKa of various acids in polar aprotic solvents using 1,4-benzoquinone
journal, February 2001


Electrochemical Generation of Rhodium Porphyrin Hydrides. Catalysis of Hydrogen Evolution
journal, August 1997

  • Grass, Valérie; Lexa, Doris; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 119, Issue 32
  • DOI: 10.1021/ja964100+

Electrochemical Insights into the Mechanisms of Proton Reduction by [Fe2(CO)6{μ-SCH2N(R)CH2S}] Complexes Related to the [2Fe]H Subsite of [FeFe]Hydrogenase
journal, February 2008

  • Capon, Jean-François; Ezzaher, Salah; Gloaguen, Frédéric
  • Chemistry - A European Journal, Vol. 14, Issue 6
  • DOI: 10.1002/chem.200701454

Catalytic proton reduction with transition metal complexes of the redox-active ligand bpy2PYMe
journal, January 2013

  • Nippe, Michael; Khnayzer, Rony S.; Panetier, Julien A.
  • Chemical Science, Vol. 4, Issue 10
  • DOI: 10.1039/c3sc51660a

Biomimetic model for [FeFe]-hydrogenase: asymmetrically disubstituted diiron complex with a redox-active 2,2′-bipyridyl ligand
journal, January 2013

  • Roy, Souvik; Groy, Thomas L.; Jones, Anne K.
  • Dalton Transactions, Vol. 42, Issue 11
  • DOI: 10.1039/c2dt32457a

Determining the Overpotential for a Molecular Electrocatalyst
journal, December 2013

  • Appel, Aaron M.; Helm, Monte L.
  • ACS Catalysis, Vol. 4, Issue 2
  • DOI: 10.1021/cs401013v

Deactivation in Homogeneous Transition Metal Catalysis: Causes, Avoidance, and Cure
journal, November 2014


Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis?
journal, January 2013

  • Artero, Vincent; Fontecave, Marc
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35334B

Electrochemical hydrogenation of a homogeneous nickel complex to form a surface adsorbed hydrogen-evolving species
journal, January 2015

  • Martin, Daniel J.; McCarthy, Brian D.; Donley, Carrie L.
  • Chemical Communications, Vol. 51, Issue 25
  • DOI: 10.1039/C4CC08662G

Visible Light-Driven Hydrogen Evolution from Water Catalyzed by A Molecular Cobalt Complex
journal, March 2014

  • Tong, Lianpeng; Zong, Ruifa; Thummel, Randolph P.
  • Journal of the American Chemical Society, Vol. 136, Issue 13
  • DOI: 10.1021/ja501257d

Mechanistic insights into electrocatalytic CO 2 reduction within [Ru II (tpy)(NN)X] n+ architectures
journal, January 2014

  • White, Travis A.; Maji, Somnath; Ott, Sascha
  • Dalton Trans., Vol. 43, Issue 40
  • DOI: 10.1039/C4DT01591F

Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes
journal, January 2011

  • Chen, Zuofeng; Chen, Chuncheng; Weinberg, David R.
  • Chemical Communications, Vol. 47, Issue 47
  • DOI: 10.1039/c1cc15071e

A Molecular Ruthenium Electrocatalyst for the Reduction of Carbon Dioxide to CO and Formate
journal, June 2015

  • Machan, Charles W.; Sampson, Matthew D.; Kubiak, Clifford P.
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b03913

Molecular mechanisms of cobalt-catalyzed hydrogen evolution
journal, September 2012

  • Marinescu, S. C.; Winkler, J. R.; Gray, H. B.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 38
  • DOI: 10.1073/pnas.1213442109

Works referencing / citing this record:

Electrocatalytic Hydrogen Production by a Nickel(II) Complex with a Phosphinopyridyl Ligand
journal, March 2016

  • Tatematsu, Ryo; Inomata, Tomohiko; Ozawa, Tomohiro
  • Angewandte Chemie International Edition, Vol. 55, Issue 17
  • DOI: 10.1002/anie.201511621

Electrocatalytic Hydrogen Production by a Nickel(II) Complex with a Phosphinopyridyl Ligand
journal, March 2016

  • Tatematsu, Ryo; Inomata, Tomohiko; Ozawa, Tomohiro
  • Angewandte Chemie, Vol. 128, Issue 17
  • DOI: 10.1002/ange.201511621