
SAND2017-10597 J
Continuously differentiable PIC shape functions for triangular meshes

D. C. Barnesa

Sandia National Laboratory, P.O. Box 5800, Mail stop 0878, Albuquerque, NM 87185

Abstract

A new class of continuously-differentiable shape functions is developed and applied to two-dimensional
electrostatic PIC simulation on an unstructured simplex (triangle) mesh. It is shown that troublesome alias-
ing instabilities are avoided for cold plasma simulation in which the Debye length is as small as 0.01 cell
sizes. These new shape functions satisfy all requirements for PIC particle shape. They are non-negative,
have compact support, and partition unity. They are given explicitly by cubic expressions in the usual trian-
gle logical (areal) coordinates. The shape functions are not finite elements because their structure depends
on the topology of the mesh, in particular, the number of triangles neighboring each mesh vertex. Neverthe-
less, they may be useful as approximations to solution of other problems in which continuity of derivatives
is required or desired.

∗Corresponding author
Email address: dbarnes@sandia.gov (D. C. Barnesa)
aPermanent address: Coronado Consulting, Lamy, NM 87540

Accepted for publication in J. Comp. Phys. March 6, 2018

1. Introduction

Plasma simulation using the Particle-in-cell (PIC) method is one of the most valuable tools for describing
kinetic phenomena.[1][2] Some applications of PIC to two-dimensional (2D) geometries employ triangular
elements.[3, 4, 5] The use of triangles allows almost complete flexibility in obtaining a mesh for domains
with complex shapes and/or which contain internal structures of complex shape, and are unmatched in this
flexibility by any alternative meshing of such domains.

In these previous approaches, the particle shape function, which provides interpolation between the
particles and mesh in both directions is usually a linear “tent” function which is continuous but has discon-
tinuous derivative(s). Thus, for example, if the electromagnetic field is assumed to be electrostatic only,
the electrical potential will be continuous, but its derivative which gives the electric field used to advance
particle velocities is not. In this way, particles receive piece-wise constant accelerations as they move within
a triangular element and experience jumps in this acceleration as they cross element boundaries. These
jumps lead to increased particle noise and are suspected to exacerbate the aliasing instabilities which limit
application of PIC to cold, drifting plasmas (e.g. beam problems).

In fact, it has become evident in practice that a much superior algorithm results from the use of continuously-
differentiable particle shape functions, and it is often the case that the optimum continuity is realized by the
use of C1 elements, such as tensor-product, quadratic B-splines for regular rectangular meshes. That is to
say, there appears empirically to be a great advantage to the use of quadratic splines for PIC shape functions,
and the advantages of higher-order splines (with more continuous derivatives) is only of marginal advantage
in usual applications. Recent work has shed more light on this observation by quantitative analysis of several
methods.[6]

The reason for choosing linear, C0 elements for triangular mesh PIC is, of course, not because the ad-
vantages of C1 elements do not apply, but simply because such elements are not readily available. Only a
few practical C1 interpolation schemes are known for triangular meshes,[7][8] and these do not actually im-
prove the usual PIC algorithms because of the following limitation. These C1 schemes introduce additional
quantities per triangle to describe the elements. For example, the relatively economical scheme of Ref. [7]
requires 6 quantities per vertex to determine the shape functions. If such a scheme is applied to a given
number of particles per element, there will then be fewer PIC markers per degree-of-freedom, increasing the
noise by the square root of this multiplicity. In this way, the additional advantages accrued by the increased
smoothness are largely or completely canceled by this increase in noise. In contrast, consider the application
of the usual quadratic B-spline on a rectangular mesh. In this case, there is but a single degree-of-freedom
per vertex, and the shape function extends over a larger portion of the mesh. In this case, there are actu-
ally more PIC markers per degree-of-freedom, so the advantages of smoothness are supplemented by the
reduction of noise associated with this gain.

There has been significant related work on this subject, both within PIC applications and in related finite-
element applications to continuum problems. Unstructured PIC has been extended to three dimensional
domains with complicated boundary conditions using usual C0 elements [9][10], while other authors have
employed direct numerical convolution of smooth particle shapes to move toward C1 elements.[11, 12]
These applications might benefit from the reduced noise and improved dispersion properties of C1 elements
given by analytic (polynomial) expressions, with obvious potential computational advantages. All of these
PIC algorithms employ a “momentum conserving” algorithm in which forces are interpolated from mesh
to particles using the same shape functions as used to deposit charge from particles to mesh, and hence are
restricted in cell size to a small multiple of Debye length. [6]

There have also been a large body of work on higher-order polynomial elements within the general
FEM framework. [see for example the nice summary in [13]] In the present work, we have borrowed
heavily from some of the methods used in this work, including our pseudo-polar coordinates used later.
Such approaches, when applies to unstructured meshes, are formally C0 but offer higher-order convergence

2

because of providing a better approximation to a smooth solution. Introduction of additional degrees of
freedom limits the advantages of smoother fields, as already noted. This is avoided in the present approach
which broadens the support of a single particle.

In this paper, a new class of C1 interpolation is developed and applied as shape functions to triangular
PIC. The shape functions described here are perhaps the direct analog of the rectangular mesh quadratic
B-spline. The development follows a simple observation, which is that the quadratic B-spline is obtained
as a moving average of the linear B-spline, in which the window for averaging is a simple square wave
(often referred to as “boxcar” averaging). It is shown how to generalize this to the triangular case, and how
to resolve difficulties which arise because of the intrinsically unstructured nature of the mesh, which then
presents a multiplicity of cases of different connectivity which must be resolved. This first paper is focused
on the mechanics of obtaining the desired functions. Nevertheless, their application to a full nonlinear PIC
simulation is illustrated by a single application and a cursory comparison with usual C0 elements. Such
testing cannot provide a full verification and/or validation of the method, nor quantify many of its (low)
collisional properties, but space does not permit a deeper study and presentation, which subjects is left for
future investigation.

While our discussion is focused on the application of the resulting interpolation functions to PIC and
the development accordingly described in the language of PIC, many other applications of these functions
are possible. For example, the finite-element solution of higher-order partial differential equations is most
conveniently done using elements with higher continuity. The C1 elements derived here are useful for
solution of fourth-order elliptic problems, for example. Some additional applications are mentioned in the
discussion section here.

The remainder of this paper is organized as follows. The following section describes the mathematics
of the approach, while section 3 works out the details for all required cases. Section 4 gives examples of
the resulting shape functions, and section 5 shows their prototype application to triangular PIC. The final
section contains a discussion and conclusions and points toward generalization of this approach to three
dimensions.

2. The moving window approach

2.1. 1D formulation
Consider first the case of a 1D non-uniform (trivially) rectangular grid. There is a “logical coordinate”

ξ which assumes integer values at each mesh point and varies continuously between, so that a continuous
mapping from logical (L-space) to Cartesian (C-space) coordinate x(ξ) exists. We derive a (the usual) set
of C1 (functions of a single variable with continuous derivative) useful for interpolation on this mesh. For
this, we will first consider the usual linear interpolation which provides a C0 interpolation and then modify
this accordingly. Consider the usual “tent functions” which span the space of linear interpolation functions.
The i-th such function is simply

X0
i (ξ) =


ξ − i+1, i−1 < ξ < i
i+1−ξ , i < ξ < i+1

0, elsewhere
(1)

We then have a C0 interpolate in C-space of a nodal field {φi} given parametrically by

φ
0

[
∑

i
X0

i (ξ)xi

]
= ∑

i
X0

i (ξ)φi (2)

To obtain a similar C1 interpolate, we replace the basis functions
{

X0
i

}
by a set with continuous deriva-

tive. This leads to some differences in the representation. In particular, the nodal values of the independent

3

Figure 1: Quadratic splines on non-uniform 1D mesh. Mesh nodes are shown by vertical tick marks. Notice that splines are not
maximum at nodes.

(x) and dependent (φ) variables are not the coefficients {xi,φi} because it is not possible to obtain a set of
basis functions which are simultaneously nodal (non-zero only at a single node), positive, and C1. In order to
obtain a useful PIC method, we require positivity for our interpolation functions, so we are forced to adopt
a non-nodal basis set.

We describe now an algorithm for obtaining the desired C1 set of basis functions from the lower conti-
nuity set

{
X0

i

}
which algorithm may be generalized to higher dimensions and eventually to un-structured

meshes. The method is to average the lower continuity set over the logical coordinate. Thus,

X1
i (ξ) =

∫
ξ+1/2

ξ−1/2
dξ
′X0

i
(
ξ
′) (3)

It is easy to show that the functions
{

X1
i
}

satisfy the following, ∀i:

• X1
i is non-negative

• X1
i has compact support and vanishes for |ξ −1| ≥ 3/2

• X1
i is continuous and has continuous derivative

• X1
i is an interpolation set; ∑i X1

i (ξ) = 1,∀ξ .

In fact, it is clear that the X1
i are just the quadratic B-splines with knots at 1/2-integer ξ values. We have

thus described the usual PIC quadratic interpolation scheme, using the elements shown in Fig. 1.

2.2. 2D formulation

To extend the previous discussion to the case of 2D rectangular meshes, we just consider the tensor prod-
uct of 1D formulations for each of the Cartesian coordinates. Thus, there are now two logical coordinates
ξx and ξy. We construct a C0 basis using the basis functions

Zi j (ξx,ξy) = X0
i (ξx)X0

j (ξy) (4)

4

Figure 2: Logical coordinates for triangle

and then smooth this by averaging over an appropriate region in (2D) L-space.
To define this region in a way that will be subsequently useful for extension to the un-structured case,

we introduce the concept of a metric on the logical space. For any two points (ξx,ξy) and
(
ξ ′x,ξ

′
y
)
, we define

the distance between these in terms of the L∞ norm

D
[
(ξx,ξy) ,

(
ξ
′
x,ξ
′
y
)]

= max
{∣∣ξx−ξ

′
x

∣∣ , ∣∣ξy−ξ
′
y

∣∣} (5)

and then define the region of integration for averaging as D
[
(ξx,ξy) ,

(
ξ ′x,ξ

′
y
)]
≤ 1/2. It is easy to verify that

this again leads to the usual 2D PIC quadratic interpolation scheme. Notice that the neighborhood defined
by D is topologically a “circle” with center at the field point (ξx,ξy).

2.3. Triangular case
If we can find an appropriate metric for a general triangular mesh, we can attempt the same program

discussed previously to obtain C1 elements for triangular PIC applications. It is natural to use the usual
logical coordinates for triangular elements as shown in Fig. 2. With the PIC application in mind, we will
subsequently refer to the mesh nodes as “vertices” and the interior of the elements as “cells”.

A natural generalization of the previous metric is to define the distance as

D∆

[
(ξ0,ξ1,ξ2) ,

(
ξ
′
0,ξ
′
1,ξ
′
2
)]

= max
{∣∣ξ0−ξ

′
0
∣∣ , ∣∣ξ1−ξ

′
1
∣∣ , ∣∣ξ2−ξ

′
2
∣∣} (6)

The unstructured nature of the triangular mesh makes it necessary to interpret the definition of Eq. (6)
as follows:

• Two points within the same cell have distance as defined literally by Eq. (6).

• This is then extended to neighboring cells by finding the geodesic. Consider all possible paths joining
two points P and P′ by traveling from P to a point on the boundary of its triangle t, then across the
neighboring cell to another boundary point, and so on until reaching the boundary of t ′, the triangle to
which P′ belongs, and finally joining this last boundary point with P′. The length of this path is then

5

Figure 3: Neighborhood of triangle barycenter.

computed as the sum of the lengths of each of its segments, each of which share a common triangle,
so that Eq. (6) can be used to evaluate these segment lengths. The (a) geodesic is then the path which
minimizes this total travel distance between P and P′ and the distance between P and P′ is the length
of this path.

It develops that we are interested in only a small set of cases, since we need compute an average over a small
neighborhood of the mesh. We illustrate for the specific case of the neighborhood defined by D∆ ≤ 1/3,
which is the triangular analog of the 2D rectangular case. We denote this region of L-space as Hrv (`), where
` is the L-space location of the field point [consisting apparently of a home cell index and a triad of logical
coordinates (ξ0,ξ1,ξ2)], and rv = 1/3 is the “radius” of the neighborhood. For this choice, a field point at
the exact center (barycenter) of a triangle has a H which is completely contained within the “home” triangle.
This is illustrated in Fig. 3 where the neighborhood of size 1/3 of the barycenter point (marked with a “*”) is
shown. As is seen, this neighborhood is defined by the inequalities 0≤ ξi ≤ 2/3,∀i, and forms a hexagonal
region about the barycenter ξ0 = ξ1 = ξ2 = 1/3.

Because we restrict the radius of our averaging region to be ~ 1/3, Hrv (`) extends from any field point
only over a small number of neighboring cells. For the purposes of this paper, the resulting topologies will
simply be stated, as the arguments by which these are determined are complex and somewhat irrelevant to
the main results.

To begin, there are two distinct cases.

• When the field point lies within the central hexagon shown in Fig. 3, the neighborhood may be
represented as a rigid shift of the hexagon as shown in Fig. 4. This is referred to as the “C-reg” case.

• When the field point lies within one of the three triangles outside the central hexagon and close to a
vertex, the neighborhood assumes a shape which may be very complicated, and which depends on the
number of neighbors of the subject vertex. This is referred to as the “V-reg” case.

Both of these cases are considered in detail in the next section. In order to carry out the averages over the
L-space region of interest, it is necessary to make specific the area measure on this space, which is somewhat
arbitrary, since there is no real connection to Euclidean geometry here. The area element is chosen to be

dA = dξ0dξ1dξ2δ (1−ξ0−ξ1−ξ2) (7)

6

Figure 4: L-space representation of cell region case

This is the slant plane area element when the logical coordinates are represented as three space orthogonal
coordinates.

Next, super-coordinates for the neighborhood of the home cell shown in Fig. 4 are introduced. These
super-coordinates are just the logical coordinates of the home cell extended into the domain shown in Fig.
4, and thus ranging over the interval [−1,1]. We denote these coordinates by upper-case Greek letters to
distinguish from the local (to each cell) coordinates denoted by lower-case Greek letters. Thus, we have the
mappings from super-coordinates(Ξ0,Ξ1,Ξ2) to cell local logical coordinates

M0,1,2: ξ0 = Ξ0,ξ1 = Ξ1,ξ2 = Ξ2

M0,2′,1: ξ0 = 1−Ξ1,ξ2′ =−Ξ2,ξ1 = 1−Ξ0

M1,0′,2: ξ1 = 1−Ξ2,ξ0′ =−Ξ0,ξ2 = 1−Ξ1 (8)

M0,2,1′ : ξ0 = 1−Ξ2,ξ2 = 1−Ξ0,ξ1′ =−Ξ1

3. The triangular elements

The C1 elements may now be obtained by the moving window method. Each such element will be
associated with a vertex of the mesh, in a manner which will become clear soon. At any given field point,
the elements associated with only a few nearby vertices will be non-zero. Explicit expressions for these will
be obtained by direct integration or by alternative means.

3.1. C-reg

In the C-reg case, required integrals can be computed analytically. The development is outlined here.
The resulting formulas have been checked by using the Mathematica[14] symbolic manipulation software.
It is convenient to differentiate six sub-cases, depending on the location of the field point within the central
hexagon, as indicated in Fig. 5, because each of these cases has a distinct stencil of non-zero vertex elements.
The six sub-regions are:

7

Figure 5: Division of the home cell

• Up (U) 1/3 < ξ0 < 2/3 & 0 < ξi < 1/3, i = 1,2

• Left-up (LU) 1/3 < ξ j < 2/3, j = 0,1 & 0 < ξ2 < 1/3

• Left-down (LD) 1/3 < ξ1 < 2/3 & 0 < ξi < 1/3, i = 0,2Left (L) 2/3 < ξ1 < 1

• Down (D) 1/3 < ξ j < 2/3, j = 1,2 & 0 < ξ0 < 1/3

• Right-down (RD) 1/3 < ξ2 < 2/3 & 0 < ξi < 1/3, i = 0,1

• Right-up (RU) 1/3 < ξ2 < 2/3,0,2 & 0 < ξ1 < 1/3

Only two of the six C-reg sub-regions are distinct, with the remaining four determined from these by
cyclic permutations of the vertices. For the LU sub-region, only vertices of the home cell (0,1,2), and the
opposite vertex (2′) of the neighbor opposite vertex 2 have non-zero elements.

In case the field point lies within LU, the neighborhood extends only over 2 cells, the home cell and the
neighbor opposite vertex #2 (Fig. 7) which is M0,2′,1. The extended coordinates of the field point [Eq. (8)]
are (Ξ0,Ξ1,Ξ2) = (ξ0,ξ1,ξ2), and the neighborhood in the extended coordinate space is ξ j− 1/3 < Ξ j <
ξ j +1/3, j = 1,2,3. The area of the neighborhood is

A =
∫

ξ0+1/3

ξ0−1/3
dΞ0

∫
ξ1+1/3

ξ1−1/3
dΞ1

∫
ξ2+1/3

ξ2−1/3
dΞ2δ (1−Ξ0−Ξ1−Ξ2) (9)

In order that the δ function’s argument vanish, we require the argument to be negative at the upper limit
and positive at the lower limit, or

1−Ξ0− (ξ2 +1/3)< Ξ1 < 1−Ξ0− (ξ2−1/3) (10)

Using ξ0 +ξ1 +ξ2 = 1, we see that Eq. (10) becomes

ξ0 +ξ1−1/3−Ξ0 < Ξ1 < ξ0 +ξ1 +1/3−Ξ0 (11)

8

When Ξ0 < ξ0, the lower limit of Eq. (11) is more restrictive than that coordinate limit of Eq. (9) in the
integral over Ξ1. Similarly, when Ξ0 > ξ0, the upper limit of Eq. (11) is more restrictive than that coordinate
limit of Eq. (9) in the integral over Ξ1. Thus,

A =
∫

ξ0

ξ0−1/3
dΞ0

∫
ξ1+1/3

ξ0+ξ1−1/3−Ξ0

dΞ1 +
∫

ξ0+1/3

ξ0

dΞ0

∫
ξ0+ξ1+1/3−Ξ0

ξ1−1/3
dΞ1

=
1
3

(12)

We have given the details here because this sort of integral is of a standard form which will recur in the
sequel. Notice that the area of the neighborhood is independent of its position, as long as the entire neigh-
borhood is within the integration region. This will be true for the entire C-reg.

With this area as normalization, we can then compute the C1 elements. Consider first vertex #0 (of Figs.
6 & 7). The C0 basis for this vertex is just ξ0 = Ξ0 in the home triangle and ξ0 = 1−Ξ1 in M0,2′,1. Thus, we
find

AX1
0 =

∫
ξ2+1/3

0
dΞ2

∫
ξ1+1/3

ξ1−1/3
dΞ1

∫
ξ0+1/3

ξ0−1/3
dΞ0Ξ0δ (1−Ξ0−Ξ1−Ξ2)

+
∫ 0

ξ2−1/3
dΞ2

∫
ξ1+1/3

ξ1−1/3
dΞ1 (1−Ξ1)

∫
ξ0+1/3

ξ0−1/3
dΞ0δ (1−Ξ0−Ξ1−Ξ2) (13)

Carefully carrying out the indicated integrals and using A = 1/3, we find the final form

X1
0 =

25
27
−ξ1−

ξ2

2
−ξ

2
2 +

ξ 3
2
2

(14)

In an exactly analagous manner, we obtain the shape functions for vertex 1, 2, and 2’ giving the result:
LU'

&

$

%

X1
0 =

25
27
−ξ1−

ξ2

2
−ξ

2
2 +

ξ 3
2
2

X1
1 =− 2

27
+ξ1 +

ξ2

2
−ξ

2
2 +

ξ 3
2
2

X1
2 =

2
27

+
ξ2

2
+ξ

2
2 −

ξ 3
2
2

X1
2′ =

2
27
− ξ2

2
+ξ

2
2 −

ξ 3
2
2

If the field point is located in the upper triangle of the central hexagon (U of Fig. 8) there is a contribution
to the desired overlap integrals from the home cell, and from the two neighboring cells opposite to vertices
#1 and #2. In complete analogy to the derivation of Eq. (13), we find

AX1
0 =

∫
ξ2+1/3

0
dΞ2

∫
ξ1+1/3

0
dΞ1

∫
ξ0+1/3

ξ0−1/3
dΞ0Ξ0δ (1−Ξ0−Ξ1−Ξ2)

+
∫ 0

ξ2−1/3
dΞ2

∫
ξ1+1/3

0
dΞ1 (1−Ξ1)

∫
ξ0+1/3

ξ0−1/3
dΞ0δ (1−Ξ0−Ξ1−Ξ2) (15)

+
∫

ξ2+1/3

0
dΞ2

∫ 0

ξ1−1/3
dΞ1 (1−Ξ2)

∫
ξ0+1/3

ξ0−1/3
dΞ0δ (1−Ξ0−Ξ1−Ξ2)

9

Carrying out the algebra as earlier, we find the final form

X1
0 =

23
27
− ξ1

2
− ξ2

2
−ξ

2
1 −ξ

2
2 +

ξ 3
1
2

+
ξ 3

2
2

(16)

There is no modification to the element associated with vertex #2’, while the element associated with
vertex #1’ is exactly the same with the interchange 1←→ 2. Vertex #1 is treated in analogy with the earlier
calculation for the LU region and vertex #2 is the same as vertex #1 with the interchange 1←→ 2.

Summarizing, the non-zero C1 elements are:
U'

&

$

%

X1
0 =

23
27
− ξ1

2
− ξ2

2
−ξ

2
1 −ξ

2
2 +

ξ 3
1
2

+
ξ 3

2
2

X1
1 =

ξ1

2
+

ξ2

2
+ξ

2
1 −ξ

2
2 −

ξ 3
1
2

+
ξ 3

2
2

X1
2 =

ξ1

2
+

ξ2

2
−ξ

2
1 +ξ

2
2 +

ξ 3
1
2
−

ξ 3
2
2

X1
1′ =

2
27
− ξ1

2
+ξ

2
1 −

ξ 3
1
2

X1
2′ =

2
27
− ξ2

2
+ξ

2
2 −

ξ 3
2
2

The 4 remaining sub-regions of the cell region of Fig. 7 have elements which can be obtained by cyclic
permutations of the logical coordinates. These are

LD'

&

$

%

X1
0 =

ξ0

2
+

ξ2

2
+ξ

2
0 −ξ

2
1 −

ξ 3
0
2

+
ξ 3

1
2

X1
1 =

23
27
− ξ0

2
− ξ2

2
−ξ

2
0 −ξ

2
2 +

ξ 3
0
2

+
ξ 3

2
2

X1
2 =

ξ0

2
+

ξ2

2
−ξ

2
0 +ξ

2
1 +

ξ 3
0
2
−

ξ 3
1
2

X1
0′ =

2
27
− ξ0

2
+ξ

2
0 −

ξ 3
0
2

X1
2′ =

2
27
− ξ2

2
+ξ

2
2 −

ξ 3
2
2

D'

&

$

%

X1
0 =

2
27

+
ξ0

2
+ξ

2
0 −

ξ 3
0
2

X1
1 =

25
27
−ξ2−

ξ0

2
−ξ

2
0 +

ξ 3
0
2

X1
2 =− 2

27
+ξ2 +

ξ0

2
−ξ

2
0 +

ξ 3
0
2

X1
0′ =

2
27
− ξ0

2
+ξ

2
0 −

ξ 3
0
2

10

RD'

&

$

%

X1
0 =

ξ0

2
+

ξ1

2
+ξ

2
0 −ξ

2
1 −

ξ 3
0
2

+
ξ 3

1
2

X1
1 =

ξ0

2
+

ξ1

2
−ξ

2
0 +ξ

2
1 +

ξ 3
0
2
−

ξ 3
1
2

X1
2 =

23
27
− ξ0

2
− ξ1

2
−ξ

2
0 −ξ

2
1 +

ξ 3
0
2

+
ξ 3

1
2

X1
0′ =

2
27
− ξ0

2
+ξ

2
0 −

ξ 3
0
2

X1
1′ =

2
27
− ξ1

2
+ξ

2
1 −

ξ 3
1
2

RU'

&

$

%

X1
0 =− 2

27
+ξ0 +

ξ1

2
−ξ

2
1 +

ξ 3
1
2

X1
1 =

2
27

+
ξ1

2
+ξ

2
1 −

ξ 3
1
2

X1
2 =

25
27
−ξ0−

ξ1

2
−ξ

2
1 +

ξ 3
1
2

X1
1′ =

2
27
− ξ1

2
+ξ

2
1 −

ξ 3
1
2

3.2. V-reg

In principle, it is possible to extend the method of the previous discussion to the V-reg. There are
however, grave difficulties in this approach. First of all, the hexagon of Fig. 4 may extend into regions of
L-space which do not correspond to any cell, in case there are less than 6 cells in the vertex region. At the
same time, it may extend into cells which are “images” of actual cells, which are covered more than once by
the mapping from L-space. For example, if there are 3 cells at a given vertex, the hexagonal neighborhood
becomes distorted as shown in Fig. 6. In this case, the neighborhood is obtained by picturing the vertex as
having 6 triangle neighbors and then identifying the three not shown with the three shown in the Fig. The
dotted line portion of the hexagonal neighborhood results from this identification, and the red triangle is an
additional region of the neighborhood.

In addition to the complex shape of the neighborhood, there are additional difficulties here. The area of
the neighborhood is no longer constant, nor does shifting the field point correspond to a rigid shift of the
neighborhood, considerably complicating the calculations of the average-over-neighborhood C1 functions.

For various reasons, we seek a more straightforward method to represent the C1 functions in the ver-
tex region. An alternative approach is to notice that the vertex region consists of a polygon of three or
more sides which is subdivided into triangular elements, 1/3 of each neighboring cell. Further, the func-
tions and their gradients are known on the edges of these triangles opposite the vertex of interest and are
continuous all around the perimeter formed by joining these into the polygonal shape. Suppose then that
we interpolate these functions directly into the vertex region using a consistent interpolation, which as-
sures continuity of the functions and their derivatives. This is sufficient to assure that the interpolate differs
from the brute force average described previously by a very small amount (3rd order in the mesh spacing).
Such an interpolate is then useful for PIC applications and results will be indistinguishable from the actual
average-over-neighborhood functions.

11

Figure 6: Logical space representation of the vertex region when only 3 cells intersect at the vertex.

We can obtain such an interpolation rule by considering each ray extending from V to an arbitrary point
on the perimeter (Fig. 10), and finding formula for the value and directional derivative along the ray at each
end, and then using Hermite cubic interpolation in the single coordinate along the ray.

We have thus reduced the problem to finding the value of the functions and their derivatives at the
central point V (the vertex of interest). In contrast to the complexly-shaped neighborhood at field points
intermediate between the cell region and V, the neighborhood assumes a very simple shape for field points
close to V. In this locale of L-space, the neighborhood over which averages are to be computed is simply the
region pictured in Fig. 7, the 1/3 of all cells neighboring V which is closest to V. It is then straightforward
to compute the required average, leading to

〈Q〉V =
7
9

QV +
2

9Nv

NV

∑
i=1

Qi (17)

where Nv is the number of cells meeting at vertex V, and {Qi} the values at the vertices neighboring V.
Obviously, the value of the vertex shape functions at V are 7/9 for vertex V and 2/9NV for each of the
neighbors of V.

Computing the gradient of a given field at V by performing a virtual displacement of the field point
shows that our prescription needs a small modification. In order to obtain a consistent interpolation, we
allow the radius rv of the neighborhood to vary with the position of the field point in such a way that the
volume of the averaging region remains constant. This will assure that the gradient of X1

V vanish at V and
allow a consistent interpolation up to what will be the pole of our coordinates. Now, suppose that the field
point of interest lies within a particular triangle neighboring V, the “home” cell (shown in green in Fig. 7)
and is infinitesimally near V. The neighborhood of integration is then nearly the polygon of Fig. 10, formed
by the Nv triangles which consist of points within a distance rv of V, but the boundary of H is shifted slightly
from this and the average is changed as a result.

For clarity, we will omit the details of calculating these shifts for all possible cases, as these details
depend on the topology of the V-region (namely on Nv), but roughly speaking, the shifts are rigid normal to
the boundary of integration and are given for the home cell and its two direct (edge) neighbors by rigidly
shifting the boundary normally by the virtual displacement. For other triangles not edge neighbors of the
home cell, the situation can become more complicated, because the distance associated with a path through
several neighboring cells does not correspond to a rigid shift of the boundary. In these cells, the normal shift
of the boundary will be either zero or the negative of the virtual displacement.

To complete our calculation of the gradient at V, we introduce pseudo-polar coordinates in the logical
space near V. For this, we introduce an angle-like coordinate in the home cell as shown in Fig. 8, where ξ

varies from 0 to 1 for points adjacent to edge #2 (pointing toward vertex #1) to edge #1, with ξ constant

12

Figure 7: Vertex region

Edge Displacement Modified Displacement
1 1 1/2
2 ξ ξ −1/2
3 0 −1/2
4 1−ξ 1/2−ξ

Table 1: Edge displacements for Nv = 4

along a ray from V. The remaining radial-like coordinate is ρ = 1−ξ0.
If we label the edge of H in the home cell as 1 and continue lexically around the boundary in order

up to Nv, we can work out the virtual displacement of all edges in terms of a displacement along the ray
ξ by a change of ρ = δ . For example, the result for Nv = 4 “normalized” to the radial displacement δ are
summarized in Table 1.

The condition that the area of H = 1/3 gives the radius at V

rv =

√
2

3Nv
(18)

and the value of the average given by Eq. (17) is modified to

〈Q〉V =

(
1− 2rV

3

)
QV +

2rV

3NV

NV

∑
i=1

Qi (19)

so that the value of the vertex shape functions at V are 1−2rv/3 for vertex V and 2rv/3NV for each of the
neighbors of V.

13

Figure 8: Pseudo-polar coordinates for home cell. Green lines are constant ρ , while red arrows are constant ξ .

i Nv∂ρX1
i

0 0
1 2/3−ξ

2 ξ −1/3
3 −1/3

Table 2: ρ derivatives of basis functions for Nv = 3

We can now complete the calculation of the gra-
dient of the C1 functions which enter the V-region
calculation. Those of the function associated with
V vanishes by construction. The remaining vertices
labeled 1,2, . . . ,Nv beginning with 1 and 2 of the
home element and proceeding counter-clockwise
around V are given by Tables 2 – 6. Because the
virtual displacement is along a ray away from V,
these derivatives correspond to ∂ρ

∣∣
ξ
= − ∂ξ0

∣∣
ξ
= −d0 +(1−ξ)d1 + ξ d2, where we have introduced the

notation di to indicate the formal partial derivative with respect to ξi. Since these are not independent of one
another (being required to sum to unity) and since expressions can be transformed (using this property), we
use this unconventional notation to remind us of these constraints.

i Nv∂ρX1
i

0 0
1 1−ξ

2 ξ

3 ξ −1
4 −ξ

Table 3: ρ derivatives of basis functions for Nv = 4

The remainder of the calculation is straightfor-
ward. One takes the expression for the shape func-
tions in the U region and forms these and their nor-
mal (ρ) derivative into a polynomial in ξ along the
boundary ρ = 1/3 of the V-region’s home cell. The
derivative at V is given by A0 +A1ξ . The value of
the interpolate is known at V from Eq. (19). This
allows the construction of the interpolation function
according to

X (ρ,ξ) = 27ρ
2 (1−2ρ)X (2/3,ξ)+ρ

2 (3−9ρ)∂ρX (2/3,ξ) (20)

+9(2/3−ρ)2 (1+6ρ)XV −ρ (1−3ρ)2 (A0 +A1ξ)

We have written XV for the ξ -independent value of the function at V.

14

i Nv∂ρX1
i

0 0
1 8/5−ξ

2 ξ +3/5
3 2ξ −7/5
4 −7/5
5 −2ξ +3/5

Table 4: ρ derivatives of basis functions for Nv = 5

For convenience, we express all these resulting
functions in terms of the field point logical coordi-
nates (ξ1,ξ2), and a remarkable result is that all de-
nominators involving ρ = 1− ξ0 = ξ1 + ξ2 (which
occur up to the third power!) cancel, leaving finally
simple polynomials as the shape functions in the
V-region. It is convenient to separate the resulting
functions into an Nv-independent part and an Nv-
dependent part. The former is associated with data
at ρ = 1/3 and is

XNNV
V = 1−8ξ

2
1 −8ξ

2
2 −14ξ1ξ2 +13ξ

3
1 +13ξ

3
2 +

75
2

ξ
2
1 ξ2 +

75
2

ξ1ξ
2
2

− 2rv

3
(1+6ξ1 +6ξ2)(1−3ξ1−3ξ2)

2

XNNV
1 = 4ξ

2
1 +2ξ

2
2 +6ξ1ξ2−5ξ

3
1 −4ξ

3
2 −

27
2

ξ
2
1 ξ2−

27
2

ξ1ξ
2
2

XNNV
2 = 2ξ

2
1 +4ξ

2
2 +6ξ1ξ2−4ξ

3
1 −5ξ

3
2 −

27
2

ξ
2
1 ξ2−

27
2

ξ1ξ
2
2 (21)

XNNV
3 = ξ2

(
ξ1 +2ξ2−3ξ

2
1 −4ξ

2
2 −

15
2

ξ1ξ2

)
XNNV

Nv
= ξ1

(
2ξ1 +ξ2−4ξ

2
1 −3ξ

2
2 −

15
2

ξ1ξ2

)
The case Nv = 3 is special in that the last members of Eq. (21) should be summed and the result associated
with the single vertex #3.

The Nv-dependent part is associated with data at ρ = 0 and is

XNV = [A0ξ1 +(A0 +A1)ξ2] (1−3ξ1−3ξ2)
2 (22)

+
2rv

3Nv
(1−3ξ1−3ξ2)

2 (1+6ξ1 +6ξ2)

where the coefficients are given in Tables 2 – 6 and are summarized in Table 7.
In most applications, the topology of the mesh is fixed for all time. In this case, these coefficients can be

evaluated at the initial problem time and stored per vertex, allowing a speed-up of evaluation of the required
elements.

i Nv∂ρX1
i

0 0
1 2−ξ

2 1+ξ

3 2ξ −1
4 ξ −2
5 −1−ξ

6 1−2ξ

Table 5: ρ derivatives of basis functions for Nv = 6

15

i Nv∂ρX1
i

0 0
1 2−ξ +2(Nv−6)/Nv

2 1+ξ +2(Nv−6)/Nv

3 2ξ −1+2(Nv−6)/Nv

4 ξ −2+2(Nv−6)/Nv

5—Nv−2 −2+2(Nv−6)/Nv

Nv−1 −1−ξ +2(Nv−6)/Nv

Nv 1−2ξ +2(Nv−6)/Nv

Table 6: ρ derivatives of basis functions for Nv > 6

Nv 0 1 2 3 4 5—Nv−2 Nv−1 Nv

3 0
0

−1/3
1

2/3
−1

−1/3
0 – – – –

4 0
0

1
−1

1
0

−1
1

−1
0 – – –

5 0
0

8/5
−1

3/5
1

−7/5
2

−7/5
0

3/5
−2 – –

6 0
0

2
−1

1
1

−1
2

−2
1

−1
−1

1
−2 –

>6 0
0

4−12/Nv
−1

3−12/Nv
1

1−12/Nv
2

−12/Nv
1

−12/Nv
0

1−12/Nv
−1

3−12/Nv
−2

Table 7: Coefficients of Nv-dependent part of shape functions. The rows correspond to different values of Nv. The columns
correspond to vertex number around V. For each case, A0 is written as the numerator and A1 as the denominator. All coefficients
are divided by Nv.

4. PIC application

The elements derived here are used as shape functions for charge deposition and for interpolation of
the electrostatic potential in a two-dimensional (2D) PIC code. Azimuthal symmetry is assumed, so that
all quantities are assumed functions of the C-space cylindrical coordinates r,z. The resulting SUSIE code
(for Sandia UnStructured Ion-Electron), following previous work, uses time-implicit differencing and also
incorporates a digital filter to remove mesh-scale modes. These details are described in the Appendices,
while here our focus is placed on the spatial differencing only.

Particles are advanced using leap-frog time differencing with position and velocity in 3D Cartesian,
using a standard transformation

vn+1/2
p = vn−1/2

p − q∆t
m

∇φ
n (xn

p
)

xn+1
p = xn

p +∆tvn+1/2
p (23)

The gradient of the electrostatic potential φ is evaluated using the C1 elements as shape functions

∇φ
(
xn

p
)
= ∇∑

i
φiX1

i
[
ξ
(
xn

p
)]

(24)

This, in turn, requires the location of the particle in L-space and the evaluation of the gradient of the
logical coordinates. Recall that the C-space position is given by

r(ξ) = ∑
i

riX1
i (ξ) (25)

16

so that the L-space particle location is found by Newton’s method inverting r
(
ξ p
)
=
(√

x2
p + y2

p,zp

)
. The

Newton update is

ξ p← ξ p−
[
r
(
ξ p
)
−
(√

x2
p + y2

p,zp

)]
•∇ξ

(
ξ p
)

(26)

where the gradient of the logical coordinates is evaluated from Eq. (25). This step requires a special
treatment because there are three L-space coordinates but only two C-space coordinates. The resolution is
to note that the three L-space coordinates are constrained to sum to unity.

The formal derivatives of the shape functions are directly computed from the expressions of the previous
section. Then, we have the system of differential forms

dr =
3

∑
j=1

(
∑

i
rid jX1

i

)
dξ j

dz =
3

∑
j=1

(
∑

i
zid jX1

i

)
dξ j (27)

0 =
3

∑
j=1

dξ j

which can be inverted to give the solution

dξ j = (∂rξ j)dr+(∂zξ j)dz (28)

which is the desired ∇ξ in component form.
The gradient of the shape functions then follows directly from the chain rule.
Charge deposition to the vertices is done with the same shape functions

ρi =
1
Vi

∑
p

X1
i (xp) (29)

where the vertex volumes {Vi} are obtained by the method of Verboncouer[15] using the shape functions.
The method outlined here is energy conserving in the limit of ∆t→ 0 because of the choice of the same

shape functions for interpolation of the charge and electrostatic potential.
It is useful, before considering the PIC application, to visualize the shape functions. One of them is

shown in Fig. 9 for a test mesh of a few triangles. The methods of this section were used to tabulate values
of this shape function on a uniform Cartesian mesh, from which the contour plot was generated. Horizontal
line-outs, shown in Fig. 10, are similar to the quadratic B-splines used on regular, rectangular meshes.

SUSIE has been applied to the spherical expansion of a cool plasma (Debye length << system size)
sourced at an inner radius and allowed to freely expand outward. The quality of the solution is monitored
by several figures of merit:

• Spherical symmetry should be maintained

• Quasi-neutrality should hold over the entire plasma domain

• Ions, which are injected cold (and supersonically) should remain a cold beam

The solution is also compared with an analytic two-temperature calculation which neglects collisions en-
tirely.

17

Figure 9: Test mesh with contours of single shape function.

Figure 10: Line-outs of shape function of Fig. 9.

18

Figure 11: Triangle mesh used for spherical expansion.

The mesh used is shown in Fig. 11. The inner radius is 1 cm (0.01 m). The outer radius is 10 cm
(0.1 m). The triangle mesh is constructed with uniform divisions of the spherical radius (50) and uniform
divisions of the cosine of the polar angle (25). This tessellation results in approximately equal number of
particles per cell for this expansion problem. Symmetry is imposed at both the vertical axis (r = 0) and the
horizontal axis (z = 0). Ghost triangles are constructed by reflection about the four boundaries, so that the
shape functions can be applied without modification near the boundaries.

A spherical expansion was simulated by uniformly injecting cold ions at the ion acoustic speed (104

m/s) at such a rate as to maintain a density of 2× 1017 m−3. Electrons were uniformly injected at the
inner boundary from a one-sided Maxwellian with Te= 1 eV to maintain overall neutrality. A potential
difference of 1.75 V, with the inner boundary as the anode, was determined to be that required to avoid
a sheath at the outer boundary when the steady state was reached. The time step was allowed to change
slowly (so that the leap-frog centering was not materially disturbed) until the streaming parameter reached
a specified value of 0.3. The streaming parameter was defined as the average number of cells moved by an
electron in a time step, with this number measured as the number of cells traversed when locating an average
electron. The calculation reached a steady state in a physical time of 9 µs. In this steady state, the time step
reached approximately 6×10−10 s, which corresponded to ωpe∆t = 15., while the Debye length at the inner
boundary corresponded to ∆/λD ≈ 100.

The quality of the solution is shown by an examination of Figs. 12 – 15. Figure 12 shows contours of
the natural logarithm of electron number density. The total variation is approximately 150 times, as may be
seen in Fig. 13, where the polar-angle-averaged electron and ion densities are compared. As can be seen,
both quasi-neutrality and spherical symmetry are excellent.

The ion phase space is summarized in Fig. 14, where the kinetic energy of individual ions is plotted
against their spherical radius. The ion temperature in the beam frame is very cold, of order 0.1 eV, nor
is there evidence of collective modes associated with small Debye length finite grid instabilities. The ion
energy vs. spherical radius compares favorably with the model of App. B. There is an offset of 0.5 eV added
to the energy of Fig. 14 which is the injection kinetic ion energy.

As a direct comparison, the same calculation was carried-out with the conventional, piece-wise linear
C0 shape functions. In order to run the calculation beyond a few time steps, it was necessary to reduce the
time step (and streaming limit) by a factor of 6. Even then, strong aliasing instabilities appeared. Reducing

19

Figure 12: Contours of logarithm of electron number density. Colors are assigned arbitrarily, with each contour representing a
density ratio of 1.54. Absolute density values are better displayed by Fig. 13.

Figure 13: Polar-angle-averaged (logarithmic) electron and ion density vs. spherical radius.

20

Figure 14: Ion phase space for spherical expansion problem.

the time step by an overall factor of 10 was required to reduce these to a managable level. The resulting ion
phase space is shown in Fig. 15, which may be compared directly with Fig. 14 with the conclusion that
beam heating is still considerably increased for this comparison case. The reduction of time step resulted
in a significant increase in run time. Using an OpenMP implementation with (up to) 32 hyperthreads on a
modest, dedicated Xeon machine gave a wall clock run time of 91.1 hrs for the C0 calculation, compared
with 15.3 hrs for the C1 calculation. While additional optimization of the C0 code is likely possible (e.g.
some nonlinear location is not required) it is clear that use of the new C1 shape functions is computationally
advantageous for quasi-neutral problems of the sort considered here.

5. Summary and conclusion

A new set of continuously-differentiable (C1) particle shape functions for applications to unstructured,
triangle mesh PIC have been developed. By the method of averaging the usual C0shape functions over
a neighborhood, with the neighborhood defined as a “circle” in logical space with an appropriate metric,
explicit cubic forms in the usual logical coordinates are obtained. This method is not so useful for field
points near a vertex, so a different interpolation strategy is adopted there, yielding again a cubic expression.

It is good to keep in mind that the approach of this work does not provide a unique solution to the
problem of obtaining C1 shape functions useful for PIC and other possible applications on an unstructured
simplex mesh. A particular strong point of the present approach is the introduction of a metric and area
(volume) on the (logical) L-space. Working in L-space seems a natural solution to the issue of widely
varying cell sizes which is common in applications, as it occurs in our spherical expansion problem because
of spherical symmetry. Approachs which average in (configuration) C-space[12][11] probably need to vary
the particles physical size to match the mesh in some sense. The conforming of the shape functions to the
mesh geometry (Fig. 9) would be surprising if not engineered by this approach. On the other hand, there
is nothing unique about choosing the L∞distance of Eq. (6) to define the averaging circle. In initial work
toward 3-D generalizations, for example, it seems that the L2 distance may be more natural. This could
be done in 2-D as well, giving a circle instead of the hexagon (in the proper rendering) in L-space for the

21

Figure 15: Ion phase space using C0 shape functions.

averaging. The present functions may not yet be optimal, but appear to offer large advantages for PIC on
unstructured triangle meshes.

These shape functions may have general applicability to problems where a C1approximation is required,
but are shown here specifically to be extremely useful for PIC simulation of cold plasmas. Usually trouble-
some aliasing instabilities are avoided by use of these shape functions, combined with an energy-conserving
(in limit of ∆t→ 0) differencing, time-implicit differencing and digital filtering to remove mesh-scale modes
from the calculations. A case which is robustly unstable using usual C0shape functions is shown to be stable
for ∆/λD ≈ 100 when the new C1 shape functions are applied.

Extension of these techniques to three-dimensions appears possible but introduces new difficulties asso-
ciated with the richer mesh topology possible there. These extensions are beyond the present scope and will
be considered in subsequent publications.

Acknowledgment:

This work was supported by Sandia National Laboratory under purchase order #1581115. The author
gratefully acknowledges the constant encouragement and many useful conversations with Tom Hughes of
Sandia National Laboratory and many important suggestions from the Referees. Sandia National Laborato-
ries is a multimission laboratory managed and operated by National Technology and Engineering Solutions
of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA0003525.

References:

[1] C. Birdsall and A. Langdon, Plasma Physics via Computer Simulation. New York: McGraw-Hill,
1985.

[2] R. Hockney and J. Eastwood, Computer Simulation Using Particles. Bristol, UK: Taylor & Francis,
Inc, 1988.

22

[3] M. Matsumoto and S. Kawata, “Tripic: Triangular-mesh particle-in-cell code,” J. Comput. Phys.,
vol. 87, pp. 488–493, 1990.

[4] D.-Y. Na, Y. A.Omelchenko, H. Moon, B.-H. V. Borges, and F. L.Teixeiraa, “Axisymmetric charge-
conservative electromagnetic particle simulation algorithm on unstructured grids: Application to mi-
crowave vacuum electronic devices,” J. Comput. Phys., vol. 346, pp. 295–317, 2017.

[5] H. Moon, F. L. Teixeira, and Y. A. Omelchenko, “Exact charge-conserving scatter-gather algorithm
for particle-in-cell simulations on unstructured grids: A geometric perspective,” Computer Physics
Communications, vol. 194, pp. 43–53, 2015.

[6] D. C. Barnes and L. Chacón, “Finite spatial-grid effects in the fully implicit, energy and charge con-
serving, electrostatic particle-in-cell algorithm,” J. Comput. Phys., vol. To Appear, 2018.

[7] S. Jardin, “A triangular finite element with first-derivative continuity applied to fusion MHD applica-
tions,” J. Comput. Phys., vol. 200, pp. 133–152, 2004.

[8] J. Argyris, I. Fried, and D. Scharpf, “The tuba family of plate elements for the matrix displacement
method„” Aero. J. Roy. Aero. Soc, vol. 72, pp. 701–709, 1968.

[9] D. Han, P. Wang, X. He, T. Lin, and J. Wang, “A 3d immersed finite element method with non-
homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar sur-
face interactions,” J. Comp. Phys., pp. 965–980, 2016.

[10] N. A. Gatsonis and A. Spirkin, “A three-dimensional electrostatic particle-in-cell methodology on
unstructured delaunay-voronoi grids,” J. Comp. Phys., pp. 3742–3761, 2009.

[11] G. Jacobs and J. Hesthaven, “High-order nodal discontinuous galerkin particle-in-cell method on un-
structured grids,” J. Comp. Phys., pp. 96–121, 2006.

[12] E. M. Wolf, M. Causley, A. Christlie, and M. Bettencourt, “A particle-in-cell method for the simulation
of plasmas based on an unconditionally stable field solver,” J. Comp. Phys., pp. 342–372, 2016.

[13] R. M. Kirby and G. E. Karniadakis, Encyclopedia of Computational Mechanics, ch. Volume 3: Fluids,
pp. 61–90. John Wiley & Sons, Ltd., 2004.

[14] Wolfram Research Inc., Mathematica. Champaign, Illinois: Wolfram Research Inc., version 11.1 ed.,
2017.

[15] J. P. Verboncoeur, “Symmetric spline weighting for charge and current density in particle simulation,”
J. Comput. Phys., vol. 174, no. 1, pp. 421 – 7, 2001.

[16] J. Denavit, “Time-filtering particle simulations with ωpe∆t � 1,” J. Comput. Phys., vol. 42, no. 2,
pp. 337 – 66, 1981.

[17] R. J. Mason, “Implicit moment particle simulation of plasmas,” J. Comput. Phys., vol. 41, no. 2, pp. 233
– 44, 1981.

[18] J. Brackbill and D. Forslund, “An implicit method for electromagnetic plasma simulation in two di-
mensions,” Journal of Computational Physics, vol. 46, p. 271, 1982.

[19] B. I. Cohen, A. B. Langdon, and A. Friedman, “Implicit time integration for plasma simulation,” J.
Comput. Phys., vol. 46, no. 1, pp. 15 – 38, 1982.

23

Figure A.1: Time-step loop for SUSIE.

Appendices

A. Implicit time differencing and spatial filter

Because analysis shows that absence of aliasing instabilities results from any scheme which is energy-
conserving in the limit of zero time step, we adopt here the semi-implicit method of “classical” implicit PIC
developed first shortly after 1980.[16][17][18][19] The flow of the time step is as shown in Fig. A1. A single
corrector step is applied to the particle motion using a corrected time-advanced electric field. The correction
to the time-advanced electric field, in turn, is computed using the simplest plasma response, included either
by cold-fluid moment equations or equivalently by direct-implicit calculation of the response, with suitable
compromises of the resulting expressions.

We first observe that the correct time centering for energy conservation is given by using the time- and
space-filtered potential φ̄ = F

(
φ n−1 +φ n +φ n+1

)
/4, where superscripts indicate time levels and where F

is the spatial filter. For, suppose the filter is applied to the potential to obtain a smoother potential, which is
then used to advance the particles. The energy-conserving particle push uses the gradient of the interpolated
potential to accelerate the particles, Eq. (23) of the main text.

To make the scheme energy-conserving, it is necessary to use an implicit time-averaged potential. Sup-
pose that the potential corresponding to the density at time n is φ n, so that Poisson is satisfied (in difference
form). The required potential for the advance of Eq. (23) is then

Fφ = F
φ n−1 +2φ n +φ n+1

4
(A.1)

To show energy conservation (for ∆t→ 0), take the dot product of the velocity advance part of Eq. (23)
with the time-averaged velocity, and sum over particles to obtain

24

∆Kn ≡ m
2 ∑

p

(
vn+1/2

p

)2
− m

2 ∑
p

(
vn+1/2

p

)2

=−q
2 ∑

i
(Fφ)i ∑

p

(
xn+1

p −xn−1
p
)
•∇X1

i
(
xn

p
)

≈−q
2 ∑

i
(Fφ)i ∑

p

[
X1

i
(
xn+1

p
)
−X1

i
(
xn−1

p
)]

(A.2)

=−∑
i
(Fφ)i

Qn+1
i −Qn−1

i
2

where Q is the PIC-deposited charge.
Now, forgetting for the moment the filter, notice that the time-centering gives

Qn+1
i −Qn−1

i
2

= Qn+1/2−Qn−1/2

=−ε0V Lφ
n+1/2 + ε0V Lφ

n−1/2 (A.3)

φ =
φ n+1/2 +φ n−1/2

2

where the intermediate time levels are defined as simple averages of the integer time levels, where L is the
discrete Laplacian, and V is the node volume.

Because the discrete Laplacian is adjoint with respect to the vertex volume sum (discrete representation
of the volume integral), combining the above gives the energy conservation

∆Kn =−ε0

2 ∑
i

Vi

∣∣∣Gφ
n+1/2

∣∣∣2 + ε0

2 ∑
i

Vi

∣∣∣Gφ
n−1/2

∣∣∣2 (A.4)

where G is the discrete gradient operator. Hence, time n+1/2 energy is conserved for small ∆t.
To deal with inaccuracies introduced by non-time-centered boundary conditions, etc., it is desirable to

add a small and controlled amount of dissipation by changing the time-centering to a slightly time-advanced
one. We introduce the additional parameter θ , and use the forward-biased form

Fφ =
(1−θ)φ n−1 +2φ n +(1+θ)φ n+1

4
(A.5)

A value of θ between zero and 0.1 is sufficient for all problems considered to date. Notice that this corre-
sponds to a forward bias of less than 0.025∆t, with negligible effect on energy conservation.

The required relations hold with the filter if the discrete Poisson equation is replaced by one using a
filtered charge, in which the filter is the adjoint of that used in Eq. (23). Thus, the discrete Poisson equation
should be written as

−ε0V Lφ = F†Q (A.6)

One is encouraged to use a filter which is self-adjoint, so that the same filter is applied to the potential
as is applied to the mesh charge. This is not always possible. For example, in the geometry of SUSIE, the
symmetry boundaries break the self-adjoint property which otherwise would naturally be produced by the
edge-based average. Hence, it is important to use the adjoint of the potential filter for the charge.

25

A straightforward way to achieve the filtering on a triangular mesh is to use an edge-based approach. In
this case, the value of the filtered vertex field is obtained by adding and subtracting a multiple of the edge
difference of the un-filtered field. The corresponding equation is

(FQ)i = Qi−λ ∑
e∈i

(Qi−Qi′)e (A.7)

The band pass of the filter depends on the gain λ . For a triangular mesh, the choice λ = 1/12 gives
the equivalent (on average) of the two-dimensional binomial filter, which replaces each vertex quantity with
1/2 the un-filtered value plus 1/2 the average of un-filtered values of nearest neighbors. This filter will
completely eliminate the “2D Nyquist” mode, which is one in which alternate vertices have alternating
values (this is the “red-black” mode for rectangular meshes). This choice is not optimal for all applications,
as often the flow is mostly one-dimensional and the most troublesome modes are those which alternate in
this one direction, with no structure in the orthogonal direction.

The solution adopted for SUSIE is to increase the gain to over damp the 2D Nyquist mode and then
apply the filter twice (i.e. twice to Q and twice to φ). The SUSIE implementation uses λ = 1/8 so that
the 2D mode is replaced by -1/2 its amplitude each filter pass, giving a total response suppression of 1/16.
The 1D Nyquist mode has k2 smaller by 1/2 and is thus replaced by 1/2 its amplitude per filter pass, so is
also suppressed by a total factor of 1/16. This choice seems to give good results for the spherical expansion
problem and has not been troublesome for other applications.

26

B. Spherical expansion analytic solution

Consider a spherical expansion of a cold ion beam with the electrons having two temperatures, Tr and
T⊥. The electron pressure tensor is

←→
P e = nkB

[
Trr̂r̂+T⊥

(←→
1 − r̂r̂

)]
(B.1)

This produces the force density

−∇•←→P e =−
(

1
r2 ∂rr2nkBTr−

2nkBT⊥
r

)
r̂ (B.2)

Neglecting electron mass, this gives for the electrostatic potential φ

en∂rφ =
1
r2 ∂rr2nkBTr−

2nkBT⊥
r

(B.3)

As an example, consider the case where electrons are completely collisionless and are injected at a
source radius r0 with a isotropic temperature T0. In this case, the radial temperature remains constant
with expansion (because of conservation of energy) while the perpendicular temperature decreases as 1/r2

(because of conservation of total angular momentum). In this case, Eq. (B.3) becomes

e∂rφ = kBT0

(
∂r logr2n−

2r2
0

r3

)
(B.4)

which can be integrated to

eφ

kBT0
=

r2
0

r2 −1+ log
r2n
r2

0n0
(B.5)

assuming without loss of generality that φ (r0) = 0.
The ions, by assumption, flow outward with all having the same radial velocity, given by

u =
√

u2
0−2eφ/M (B.6)

and conservation of particles implies that nur2 is a constant.
Combining these, we find

ξ = log

√
1+

2ξ

M2
#
+1−

r2
0

r2 (B.7)

where the normalized potential ξ = −eφ/kBT0, and M# = u0/
√

kBT0/M is the ion Mach number at the
injection radius.

One can solve Eq. (B.7) for the normalized potential at large radius for any M#, but physical solutions
only exist for M# ≥ 1, just as in the single temperature, isothermal case. Some solutions are shown in Figs. 1
and 2. Figure 1 shows the applied potential for large expansion as a function of the injection Mach number.

27

Figure B.1: Normalized total potential vs. injection Mach number.

Figure B.2: Normalized potential vs. radius for various Mach numbers (1.0,2.0)

28

