DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance

Abstract

We report a major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast) strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of themore » background-specific effects of gene fitness contributions in synthetic hydrolysate. Lastly, our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms.« less

Authors:
 [1];  [2];  [2];  [3]
  1. Univ. of Wisconsin, Madison, WI (United States). Great Lakes Bioenergy Research Center and Microbiology Training Program
  2. Univ. of Wisconsin, Madison, WI (United States). Great Lakes Bioenergy Research Center
  3. Univ. of Wisconsin, Madison, WI (United States). Great Lakes Bioenergy Research Center and Laboratory of Genetics
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1427694
Grant/Contract Number:  
FC02-07ER64494
Resource Type:
Accepted Manuscript
Journal Name:
Applied and Environmental Microbiology
Additional Journal Information:
Journal Volume: 82; Journal Issue: 19; Journal ID: ISSN 0099-2240
Publisher:
American Society for Microbiology
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Sardi, Maria, Rovinskiy, Nikolay, Zhang, Yaoping, and Gasch, Audrey P. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance. United States: N. p., 2016. Web. doi:10.1128/AEM.01603-16.
Sardi, Maria, Rovinskiy, Nikolay, Zhang, Yaoping, & Gasch, Audrey P. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance. United States. https://doi.org/10.1128/AEM.01603-16
Sardi, Maria, Rovinskiy, Nikolay, Zhang, Yaoping, and Gasch, Audrey P. Fri . "Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance". United States. https://doi.org/10.1128/AEM.01603-16. https://www.osti.gov/servlets/purl/1427694.
@article{osti_1427694,
title = {Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance},
author = {Sardi, Maria and Rovinskiy, Nikolay and Zhang, Yaoping and Gasch, Audrey P.},
abstractNote = {We report a major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast) strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of the background-specific effects of gene fitness contributions in synthetic hydrolysate. Lastly, our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms.},
doi = {10.1128/AEM.01603-16},
journal = {Applied and Environmental Microbiology},
number = 19,
volume = 82,
place = {United States},
year = {Fri Jul 22 00:00:00 EDT 2016},
month = {Fri Jul 22 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase
journal, April 2002

  • Modig, Tobias; LidÉN, Gunnar; Taherzadeh, Mohammad J.
  • Biochemical Journal, Vol. 363, Issue 3
  • DOI: 10.1042/bj3630769

Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran
journal, July 2004

  • Liu, Z. L.; Slininger, P. J.; Dien, B. S.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 31, Issue 8, p. 345-352
  • DOI: 10.1007/s10295-004-0148-3

Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass
journal, October 2012


Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
journal, January 2007

  • Almeida, Joao; Modig, Tobias; Petersson, Anneli
  • Journal of Chemical Technology & Biotechnology, Vol. 82, Issue 4, p. 340-349
  • DOI: 10.1002/jctb.1676

Fluidization of Membrane Lipids Enhances the Tolerance of Saccharomyces cerevisiae to Freezing and Salt Stress
journal, October 2006

  • Rodriguez-Vargas, S.; Sanchez-Garcia, A.; Martinez-Rivas, J. M.
  • Applied and Environmental Microbiology, Vol. 73, Issue 1, p. 110-116
  • DOI: 10.1128/AEM.01360-06

Quantitative Analysis of the Modes of Growth Inhibition by Weak Organic Acids in Saccharomyces cerevisiae
journal, September 2012

  • Ullah, Azmat; Orij, Rick; Brul, Stanley
  • Applied and Environmental Microbiology, Vol. 78, Issue 23
  • DOI: 10.1128/AEM.02126-12

Effect of cinnamic acid on the growth and on plasma membrane H+–ATPase activity of Saccharomyces cerevisiae
journal, September 1999

  • Chambel, Alexandra; Viegas, Cristina A.; Sá-Correia, Isabel
  • International Journal of Food Microbiology, Vol. 50, Issue 3
  • DOI: 10.1016/S0168-1605(99)00100-2

Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
journal, August 2004

  • Klinke, H. B.; Thomsen, A. B.; Ahring, B. K.
  • Applied Microbiology and Biotechnology, Vol. 66, Issue 1, p. 10-26
  • DOI: 10.1007/s00253-004-1642-2

Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
journal, October 2009


Plant Maturity Effects on the Physicochemical Properties and Dilute Acid Hydrolysis of Switchgrass ( Panicum virgatum , L.) Hemicelluloses
journal, April 2013

  • Bunnell, Kris; Rich, Ashley; Luckett, Curtis
  • ACS Sustainable Chemistry & Engineering, Vol. 1, Issue 6
  • DOI: 10.1021/sc4000175

Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling
journal, November 1992


Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae
journal, January 2010

  • Allen, Sandra A.; Clark, William; McCaffery, J. Michael
  • Biotechnology for Biofuels, Vol. 3, Issue 1
  • DOI: 10.1186/1754-6834-3-2

Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae
journal, March 2009


Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways
journal, June 2009

  • Lewis Liu, Z.; Ma, Menggen; Song, Mingzhou
  • Molecular Genetics and Genomics, Vol. 282, Issue 3
  • DOI: 10.1007/s00438-009-0461-7

Variations in Stress Sensitivity and Genomic Expression in Diverse S. cerevisiae Isolates
journal, October 2008


Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates
journal, January 2013

  • Franden, Mary Ann; Pilath, Heidi M.; Mohagheghi, Ali
  • Biotechnology for Biofuels, Vol. 6, Issue 1
  • DOI: 10.1186/1754-6834-6-99

Genetic Dissection of Ethanol Tolerance in the Budding Yeast Saccharomyces cerevisiae
journal, December 2006


Trimmomatic: a flexible trimmer for Illumina sequence data
journal, April 2014


Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate
journal, November 2014


Combining functional genomics and chemical biology to identify targets of bioactive compounds
journal, February 2011

  • Ho, Cheuk Hei; Piotrowski, Jeff; Dixon, Scott J.
  • Current Opinion in Chemical Biology, Vol. 15, Issue 1
  • DOI: 10.1016/j.cbpa.2010.10.023

Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
journal, September 2008

  • Lewis Liu, Z.; Moon, Jaewoong; Andersh, Brad J.
  • Applied Microbiology and Biotechnology, Vol. 81, Issue 4, p. 743-753
  • DOI: 10.1007/s00253-008-1702-0

Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates
journal, January 2013

  • Skerker, Jeffrey M.; Leon, Dacia; Price, Morgan N.
  • Molecular Systems Biology, Vol. 9, Issue 1
  • DOI: 10.1038/msb.2013.30

Genetic Engineering of Industrial Strains of Saccharomyces cerevisiae
book, November 2011


Conversion of furfural into furfuryl alcohol by saccharomyces cervisiae 354
journal, January 1992

  • Diaz De Villegas, M. E.; Villa, P.; Guerra, M.
  • Acta Biotechnologica, Vol. 12, Issue 4
  • DOI: 10.1002/abio.370120420

NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae
journal, March 2008

  • Almeida, João R. M.; Röder, Anja; Modig, Tobias
  • Applied Microbiology and Biotechnology, Vol. 78, Issue 6
  • DOI: 10.1007/s00253-008-1364-y

Evaluation of industrial S accharomyces cerevisiae strains as the chassis cell for second‐generation bioethanol production
journal, January 2015


Genomic Sequence Diversity and Population Structure of Saccharomyces cerevisiae Assessed by RAD-seq
journal, October 2013

  • Cromie, Gareth A.; Hyma, Katie E.; Ludlow, Catherine L.
  • G3: Genes|Genomes|Genetics, Vol. 3, Issue 12
  • DOI: 10.1534/g3.113.007492

Furfural Inhibits Growth by Limiting Sulfur Assimilation in Ethanologenic Escherichia coli Strain LY180
journal, August 2009

  • Miller, E. N.; Jarboe, L. R.; Turner, P. C.
  • Applied and Environmental Microbiology, Vol. 75, Issue 19
  • DOI: 10.1128/AEM.01187-09

Pathway connectivity and signaling coordination in the yeast stress‐activated signaling network
journal, November 2014

  • Chasman, Deborah; Ho, Yi‐Hsuan; Berry, David B.
  • Molecular Systems Biology, Vol. 10, Issue 11
  • DOI: 10.15252/msb.20145120

Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals
journal, July 2011


Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae
journal, May 2015

  • Clowers, Katie J.; Heilberger, Justin; Piotrowski, Jeff S.
  • Molecular Biology and Evolution, Vol. 32, Issue 9
  • DOI: 10.1093/molbev/msv112

Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
journal, July 1992

  • Verduyn, Cornelis; Postma, Erik; Scheffers, W. Alexander
  • Yeast, Vol. 8, Issue 7
  • DOI: 10.1002/yea.320080703

Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae
journal, June 2000

  • Taherzadeh, M. J.; Gustafsson, L.; Niklasson, C.
  • Applied Microbiology and Biotechnology, Vol. 53, Issue 6
  • DOI: 10.1007/s002530000328

Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae
journal, January 2014

  • Nguyen, Trinh Thi My; Iwaki, Aya; Ohya, Yoshikazu
  • Journal of Bioscience and Bioengineering, Vol. 117, Issue 1
  • DOI: 10.1016/j.jbiosc.2013.06.008

Population genomics of domestic and wild yeasts
journal, February 2009

  • Liti, Gianni; Carter, David M.; Moses, Alan M.
  • Nature, Vol. 458, Issue 7236
  • DOI: 10.1038/nature07743

Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates
journal, March 2011


Trait Variation in Yeast Is Defined by Population History
journal, June 2011


Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation
journal, June 1998

  • Hohmann, Stefan; Meacock, Peter A.
  • Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, Vol. 1385, Issue 2
  • DOI: 10.1016/S0167-4838(98)00069-7

Epistatic Interaction Maps Relative to Multiple Metabolic Phenotypes
journal, February 2011


Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview
journal, April 2002


Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis
journal, June 2015

  • Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.
  • Applied and Environmental Microbiology, Vol. 81, Issue 17
  • DOI: 10.1128/AEM.01324-15

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
journal, November 2009


Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes
journal, December 2000

  • Gasch, Audrey P.; Spellman, Paul T.; Kao, Camilla M.
  • Molecular Biology of the Cell, Vol. 11, Issue 12
  • DOI: 10.1091/mbc.11.12.4241

Cluster analysis and display of genome-wide expression patterns
journal, December 1998

  • Eisen, M. B.; Spellman, P. T.; Brown, P. O.
  • Proceedings of the National Academy of Sciences, Vol. 95, Issue 25
  • DOI: 10.1073/pnas.95.25.14863

The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen
journal, April 2015

  • Strope, Pooja K.; Skelly, Daniel A.; Kozmin, Stanislav G.
  • Genome Research, Vol. 25, Issue 5
  • DOI: 10.1101/gr.185538.114

TRANSLATIONAL REGULATION OF GCN4 AND THE GENERAL AMINO ACID CONTROL OF YEAST
journal, October 2005


Hydrolysis of lignocellulosic materials for ethanol production: a review
journal, May 2002


HTSeq--a Python framework to work with high-throughput sequencing data
journal, September 2014


Variability of the response ofSaccharomyces cerevisiae strains to lignocellulose hydrolysate
journal, January 2008

  • Modig, Tobias; Almeida, João R. M.; Gorwa-Grauslund, Marie F.
  • Biotechnology and Bioengineering, Vol. 100, Issue 3
  • DOI: 10.1002/bit.21789

Absence of Dbp2p Alters Both Nonsense-Mediated mRNA Decay and rRNA Processing
journal, November 2001


Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production
journal, October 2009


Fast gapped-read alignment with Bowtie 2
journal, March 2012

  • Langmead, Ben; Salzberg, Steven L.
  • Nature Methods, Vol. 9, Issue 4
  • DOI: 10.1038/nmeth.1923

Metabolic Response to Iron Deficiency in Saccharomyces cerevisiae
journal, March 2010

  • Shakoury-Elizeh, Minoo; Protchenko, Olga; Berger, Alvin
  • Journal of Biological Chemistry, Vol. 285, Issue 19
  • DOI: 10.1074/jbc.M109.091710

Biosynthesis of Thiamin Thiazole in Eukaryotes:  Conversion of NAD to an Advanced Intermediate
journal, March 2007

  • Chatterjee, Abhishek; Jurgenson, Christopher T.; Schroeder, Frank C.
  • Journal of the American Chemical Society, Vol. 129, Issue 10
  • DOI: 10.1021/ja067606t

The Reference Genome Sequence of Saccharomyces cerevisiae : Then and Now
journal, December 2013

  • Engel, Stacia R.; Dietrich, Fred S.; Fisk, Dianna G.
  • G3: Genes|Genomes|Genetics, Vol. 4, Issue 3
  • DOI: 10.1534/g3.113.008995

Complex Physiology and Compound Stress Responses during Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an Escherichia coli Ethanologen
journal, March 2012

  • Schwalbach, Michael S.; Keating, David H.; Tremaine, Mary
  • Applied and Environmental Microbiology, Vol. 78, Issue 9, p. 3442-3457
  • DOI: 10.1128/AEM.07329-11

Growth Rates Made Easy
journal, October 2013

  • Hall, B. G.; Acar, H.; Nandipati, A.
  • Molecular Biology and Evolution, Vol. 31, Issue 1
  • DOI: 10.1093/molbev/mst187

[2] Micromanipulation and dissection of asci
book, January 1991


Java Treeview--extensible visualization of microarray data
journal, June 2004


Studies on the mechanism of the antifungal action of benzoate
journal, September 1983

  • Krebs, H. A.; Wiggins, D.; Stubbs, M.
  • Biochemical Journal, Vol. 214, Issue 3
  • DOI: 10.1042/bj2140657

Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors
journal, March 2014


Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding
journal, April 1994


Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments
journal, November 2010


Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
journal, October 2005

  • Gorsich, S. W.; Dien, B. S.; Nichols, N. N.
  • Applied Microbiology and Biotechnology, Vol. 71, Issue 3
  • DOI: 10.1007/s00253-005-0142-3

Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
journal, August 2000


Thiamine Biosynthesis in Saccharomyces cerevisiae Is Regulated by the NAD+-Dependent Histone Deacetylase Hst1
journal, May 2010

  • Li, Mingguang; Petteys, Brian J.; McClure, Julie M.
  • Molecular and Cellular Biology, Vol. 30, Issue 13
  • DOI: 10.1128/MCB.01590-09

Comparison of Different Methods for the Detoxification of Lignocellulose Hydrolyzates of Spruce
journal, January 1999

  • Larsson, Simona; Reimann, Anders; Nilvebrant, Nils-Olof
  • Applied Biochemistry and Biotechnology, Vol. 77, Issue 1-3
  • DOI: 10.1385/ABAB:77:1-3:91

A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds
journal, April 2009

  • Ho, Cheuk Hei; Magtanong, Leslie; Barker, Sarah L.
  • Nature Biotechnology, Vol. 27, Issue 4
  • DOI: 10.1038/nbt.1534

Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell
journal, May 2011

  • Magtanong, Leslie; Ho, Cheuk Hei; Barker, Sarah L.
  • Nature Biotechnology, Vol. 29, Issue 6
  • DOI: 10.1038/nbt.1855

Yeast genomic expression studies using DNA microarrays
book, January 2002


Improving industrial yeast strains: exploiting natural and artificial diversity
journal, September 2014

  • Steensels, Jan; Snoek, Tim; Meersman, Esther
  • FEMS Microbiology Reviews, Vol. 38, Issue 5
  • DOI: 10.1111/1574-6976.12073

A 5-hydroxymethyl furfural reducing enzyme encoded by theSaccharomyces cerevisiae ADH6 gene conveys HMF tolerance
journal, January 2006

  • Petersson, Anneli; Almeida, João R. M.; Modig, Tobias
  • Yeast, Vol. 23, Issue 6, p. 455-464
  • DOI: 10.1002/yea.1370

Assessing the complex architecture of polygenic traits in diverged yeast populations: YEAST COMPLEX TRAITS
journal, January 2011


Analysis of the Seven-Member AAD Gene Set Demonstrates That Genetic Redundancy in Yeast May Be More Apparent Than Real
journal, December 1999


Works referencing / citing this record:

Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization
journal, March 2019

  • Alonso‐del‐Real, Javier; Pérez‐Torrado, Roberto; Querol, Amparo
  • Environmental Microbiology, Vol. 21, Issue 5
  • DOI: 10.1111/1462-2920.14536

PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production
journal, May 2019


PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production
posted_content, February 2019

  • Wagner, Ellen R.; Myers, Kevin S.; Riley, Nicholas M.
  • PLOS ONE
  • DOI: 10.1101/540534