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Abstract: A system model is developed to investigate independent and coupled effects of
resolution, noise, and data processing algorithms on the accuracy of the scalar gradient and
dissipation measurements in turbulent flows. Finite resolution effects are simulated by
spectral filtering, noise is modeled as an additive source in the model spectrum, and
differencing stencils are analyzed as digital filters. In the current study, the effective
resolution is proposed to be a proper criterion for quantifying the resolution requirement
for scalar gradient and dissipation measurement. Both effective resolution and
noise-induced apparent dissipation are mainly determined by the system transfer function.
The finite resolution results, based upon a model scalar energy spectrum, are shown to
agree with non-reacting experimental data. The coupled resolution-noise results show
three regions in the mean scalar dissipation rate measurement: noise-dominant region,
noise-resolution correlated region, and resolution-dominant region. Different noise levels
lead to different resolution error curves for the measured mean scalar dissipation rate.

Experimental procedures and guidelines to improve the scalar gradient and dissipation



experiments are proposed, based on these model study results. The proposed system
approach can also be applied to other derived quantities involving complex transfer

functions.
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Greek symbols

o, p

g

Br

coefficients in the high-order spectral-like stencil
box filter

constant in the model spectrum of Smith-Reynolds
constant in the model spectrum of Corssin-Pao
constants in the model spectrum of Pope

C, =k, /K

scalar diffusivity [m’s™']

1D and 3D scalar dissipation spectrum

3D kinetic energy spectrum

1D and 3D scalar energy spectrum

1D noise floor

Batchelor frequency, f; =<U >/ 27, [s ']

non-dimensional functions in the model spectrum of Pope

gradient

noise gain factor for the numerical stencil
effective system filter, 4, =h, *h, *h,

numerical stencil for gradient calculation
post-processing filter, e.g. smoothing

filter to simulate resolution effect

effective system transfer function, H,=H H H,
Fourier transforms of #,, h, and 4, , respectively

Fourier transforms of g and n

turbulent kinetic energy

turbulent outer length scale

turbulent outer length scale for scalar

parameter in the model spectrum of Smith-Reynolds
noise

general coordinate component [m]

Cartesian coordinates [m]

coefficients in the high-order spectral-like stencil
parameter in the model spectrum of Smith-Reynolds

parameter in the model spectrum of Pope



X 3D scalar dissipation rate [s ']

X 1D scalar dissipation rate [s7]

X apparent scalar dissipation rate [s ']

A sampling resolution [m]

AN, LA, characteristic length scales of filters #,, 4, and A, , respectively [m]

€ turbulent kinetic energy dissipation rate

€ measurement error for quantity &

y resolving efficiency for the numerical stencil

Y, resolving dissipation efficiency for the numerical stencil

r Gamma function

n Kolmogorov length scale, [m]

K wavenumber [rad m™]

K, wavenumber along x, direction [rad m™]

Kic cutoff wavenumber along x, direction, k,. = 7/A =k /2 [rad m™]

Kig sampling wavenumber along x, direction [m™]

Ky Batchelor wavenumber [rad/m™], x, =1/4,

K, characteristic wavenumber of numerical stencil g [rad m’]

K,,K,, K, characteristic wavenumber of filter 4,, i, and &, , respectively [rad m‘l]
Kk, =7n/A,, k., =n/A, and k, =7/A,

K, wavenumber corresponds to the integral length scale / [rad m™]

Ay Batchelor scale [m]

v kinematic viscosity of fluid [m’s ']

0 scalar (e.g. mixture fraction, temperature)

0, scalar after data-reduction

0, measured scalar

0, scalar after post-processing
Fourier transform of scalar 0

O gr standard deviation of LSF [m]

ol variance of noise

® non-dimensional wavenumber, o = 7k, /K,

é general quantity of interest, e.g. <92>, ( )51>

Dimensionless numbers

Re Reynolds number
Re, outer-scale Reynolds number, Re, = <k>2 / (v
Re, Taylor microscale Reynolds number



Sc Schmidt number, Sc =v/D

Mathematical operators

<> mean quantity
* convolution operator
\% gradient operator

Abbreviations

DNS direct-numerical-simulation

FWHM full width half maximum

H12B Ist-order 2-point one-side backward difference

H23C 2nd-order 3-point central difference

H67C 6th-order 7-point central difference

HA7I1 10th-order 7-point high-order spectral-like implicit scheme
H471 4th-order 7-point high-order spectral-like implicit scheme
H47] 4th-order 7-point high-order spectral-like implicit scheme (optimized)
LES large eddy simulation

LSF line spread function

MTF modulation transfer function

NF noise floor

PIV particle image velocimetry

PSF point spread function

rms root mean square

SGS sub-grid scale

SNR signal-to-noise ratio

SS sharp-spectral filter

Superscripts and subscripts

fluctuation quantity

normalized quantity
m measured quantities
i,(0) coordinate components in the x, -direction, i =1, 2 and 3



1 Introduction

2 . .
, where O is a conserved scalar and D is

The scalar dissipation rate — defined as y = 2D|V9

the molecular diffusivity — is important in scalar mixing because it is a measure of the rate at
which inhomogeneities in the scalar property are removed by diffusion [1]. Furthermore, y is
particularly important in combustion because it is fundamentally related to the structure of
turbulent nonpremixed flames and appears directly or indirectly in most turbulent combustion
models [2-4]. Owing to its importance in turbulent mixing, a great deal of work has been directed
at its measurement in turbulent flows and flames by applications of single- or two-point time-
series measurement [5-13], 1D time-series measurements [14], 1D line imaging [15, 16], 2D
planar and 3D imaging [17-22]. The accurate measurement of the scalar dissipation rate is very
challenging, especially in turbulent reacting flows, due to the limited spatial resolution and low
signal levels. Experimental and analytical results have shown that resolution and noise have
opposite effects, since limited resolution acts to reduce scalar gradients [23, 24], whereas noise
tends to increase the measured dissipation [25]. These coupled but opposing effects make the
assessment of the experimental accuracy in dissipation measurements extremely difficult, which
is illustrated in the recent study of spatial resolution and noise effects in scalar imaging
experiments using Monte Carlo simulations [26].

Wyngaard [23] studied the effect of the hot-wire length on the spectra and variances of
the stream-wise velocity and temperature fluctuations and gradients by using the model energy
spectrum of Corrsin [27] and Pao [28]. The results suggest that the measured values of both
velocity and scalar gradients decrease significantly as the probe length increases. Wyngaard [24]

further found that the 1D spectrum is attenuated significantly when the wire length is sufficiently



long. Antonia and Mi [29] conducted spectral corrections for all the measured spatial derivatives
of velocity and temperature fluctuations by using the isotropic relations to infer the 3D energy
spectrum from the measured 1D spectrum of temperature. Their results showed that the
measured derivative variances are highly sensitive to the separation between sensors. A model
was developed to enable the prediction of resolution-induced errors in scalar gradients for
individual dissipation structures [30]. The optical resolution effects on the measured dissipation
layer thickness, peak gradient, and peak dissipation rate were determined for the case where the
dissipation layer profile and the optical line spread function (LSF) can be approximated as
Gaussian. It was concluded that, for a single dissipation layer structure, the layer thickness
should be 7.5 times larger than the standard deviation of the LSF in order for the peak dissipation
rate measurement error to be less than 10%.

Several studies have investigated the important effects of noise on scalar dissipation
measurements. Noise effects are particularly important for laser scattering measurements,
especially those that use Rayleigh or Raman scattering, since they tend to suffer from relatively

low signal-to-noise ratio (SNR). Mi and Antonia [25] showed that the measured squared-gradient
term for a passive scalar 6 is <(89/ 8x)2> =<(89/ 8x)2>+<n12 +n22> / A . Here () indicates a

time- or ensemble-averaging process, subscript m denotes the measured quantity, », and n, are

the noise levels at two adjacent points, and A is the separation between the two points. The

noise-induced dissipation rate in practical measurements has been termed the “apparent
dissipation” [31] and is given by <n12 +n3 > / A’ . The apparent dissipation is always positive, and
so the measured squared-gradient is always higher than its true mean value. In fact, the apparent

dissipation will tend to dominate at arbitrarily high resolution since <(89/ 8x)2> — constant and



<n12 +n; > / AN — o as A— 0. The effect of noise on the measured mean scalar dissipation is

particularly important in relatively low SNR measurements, such as those that employ gas-phase
Raman [15, 16] and Rayleigh scattering [32, 33] in reacting flows.

The major difference between measurements of a scalar quantity as opposed to its
gradient/dissipation is that the effects of the data processing, such as the smoothing filter and
numerical stencil, are significant in the latter case and must be considered. Numerical stencil
effects have been thoroughly investigated in computational fluid dynamics [34-38], but their
influence on the accuracy of quantities derived from measurements has received less attention.
Depending on the implicit or explicit nature of the numerical stencil used, the differentiation
accuracy is not only affected by the sampling resolution, but the specific scheme as well, e.g. the
resolving efficiency [34]. Pruett [39] pointed out that the finest physical scale is determined by
the underlying physics, but the numerical differentiation accuracy is mandated by the chosen
numerical stencil. The numerical stencil effects have been recognized in gradient related
experiments, e.g. vorticity measurements using the Particle Image Velocimetry (PIV)
technique [40-42].

In this context it should be emphasized that the measurement of the scalar dissipation rate
is a system problem in which experimental factors, like optical system resolution, experimental
noise, post processing filter, and numerical stencils act together to determine the measured value.
Specifying only the experimental probe resolution, such as determined by the effects of probe
length [23, 24, 29, 43, 44] and optical system blur [30], is not adequate for quantifying the
resolution error of gradient-based measurements. It is the effective resolution, characterized by
the overall system transfer function, that determines the true resolution of the measurement. This

system view also suggests that grid convergence studies, which are sometimes used to determine



the finest dissipation scale [21], may only reflect the resolution for specific numerical schemes,
i.e., the numerical resolution. Such tests may or may not be able to determine the underlying
physical scale, and the measured dissipation rate may or may not be claimed to be fully-resolved.
Furthermore, the noise-induced apparent dissipation is more complicated than assumed in the
analysis by Mi and Antonia [25], because the effect of the specific numerical differentiation
stencil was not considered. The numerical stencil affects both the effective resolution and
apparent dissipation, and its effect must be accounted for.

The objective of the current study is to develop a more thorough understanding of the
independent and/or coupled effects of the factors that influence dissipation measurements. The
system model developed here is more comprehensive than previous models [23, 24, 29, 43, 44]
and can be used for either time-series or spatially-resolved imaging data. The physical scales that
are to be measured are modeled by using a model turbulent energy spectrum. The resolution
effect is simulated by filtering the model spectrum in the spectral domain, similar to Mi and
Nathan [45], and the noise effect is modeled as the additive uncorrelated noise floor
superimposed on the model energy spectrum [25]. Reynolds number effects on the resolution
requirements are compared with experimental data from nonreacting jets [45]. The available
numerical schemes are so numerous that the range of possible combinations is
overwhelming [34]. Therefore, procedures to select or design the optimum numerical stencil
under certain experimental circumstances are presented. Among the various experimental
techniques that are available to measure or derive the scalar dissipation rate [46], the current
system model is focused on the direct approach where the scalar quantity is measured at adjacent

points and its gradient is then calculated numerically.
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Though the numerical results are limited by use of the model spectrum, the system model
is generic, and some of these results apply to general gradient and dissipation related
experiments. This study will be particularly important for scalar dissipation rate measurements
where the dissipation length scale is unknown (e.g. turbulent flows in complex geometry,

turbulent reacting flows) and the signal level is low [15, 16, 47, 48].

2 System model

Figure 1 shows a diagram of the system model for the measurement of the scalar dissipation rate

x » starting from the scalar distribution 6. The model is developed for 1D experiments, but it

can be readily extended to the 2D and 3D cases. The system model incorporates several sub-
models that represent experimental and numerical processes involved in obtaining the scalar
gradient and dissipation. In the current system model there are several key processes: (1) The
measured scalar signal is processed by an analog filter before being digitally sampled by the
analog-to-digital converter. The analog filtering includes effects of anti-aliasing filters,
averaging owing to finite probe/pixel length [23, 24, 29, 43], and optical blurring [30]. (2)
Post-processing filters may be applied, for example to smooth noisy data. (3) Some data
reduction procedure may be used, such as converting a Rayleigh scattering signal to temperature
or mixture fraction. Such a procedure will be specific to a given experiment. (4) The sampled
data are numerically differentiated to obtain the squared gradient of the measured scalar. (5) The
squared gradient is multiplied by the diffusivity.

For 1D linear operations, these sub-models can be characterized as

Measurement: 6, =h *0 +n, (1)

Post-processing: 0, =h, *0,,, (2)
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Data-reduction: 6, - 0,, 3)
Gradient: g =h,*0,, 4)

Dissipation: y =2D|g [, )

where /. is the filter to simulate the resolution effect, n the noise, * the convolution operator,

0,, the measured scalar quantity, 4, the post-processing filter, 6, the post-processed scalar, 6,

the scalar after data-reduction, 4, the filter used to represent the gradient calculation, and g the

computed gradient.
The measurement sub-model (1) includes resolution and noise effects. The resolution

effect is modeled as a convolution of the scalar distribution with the analog filter, /.. The noise

effect is modeled as uncorrelated additive source. For example, photon shot noise can be
approximated as an additive random source whose variance is proportional to the signal intensity
for high signal levels. The post-processing sub-model (2) considers the effect of the
post-processing filters, e.g. averaging, smoothing, pixel-binning, etc. Since the data reduction
sub-model (3) is measurement technique dependent and it is not included in the development of
the system model. The gradient sub-model (4) evaluates the effect of the numerical
differentiation stencils. The gradient filter depends on both the sampling resolution and the
specific numerical stencil used. The dissipation sub-model (5) mainly considers the effect of
diffusivity, which is primarily important in flows with variable properties such as reacting flows.
The importance of this is easily overlooked, but Geyer [49] showed that errors in the diffusivity
may have a significant impact on the calculated mixture fraction dissipation in reacting flows.

In the following analysis, it is assumed that: (i) the data reduction process (3) is ignored;

(if) the diffusivity is constant, and so the mean squared-gradient term is used as a proxy for the

12



dissipation; (7ii) noise is uncorrelated with the scalar quantity. Under these assumptions, the

measured gradient may be expressed as
g =h,*h,*(h %0 +n). (6)

It can be seen that the derived gradient is affected jointly by the resolution, noise,
post-processing filter, and the numerical scheme. Therefore, the effective system transfer

function may be defined as
h,=h,*h,*h,, (7)

In most optical diagnostics measurements, the noise and resolution are coupled. For
example, larger pixel size of an array detector will lead to better SNR under the same incident
light level because of the larger number of photons collected per pixel. For resolution-dependent

noise, the system model can be written as,
g =h,*h,*h *(0 +n). (8)

These two gradient models are shown schematically in Fig. 2. In the Fourier domain, the

above system models can be expressed as,

G,=H,H, (H O+N ), for resolution independent noise source, 9)

G,=H,H,H, (@ + N ), for resolution dependent noise source. (10)

where G,, H,, H,, H,, ® and N are Fourier transforms of g, , &

mo g o

h,, h., 0 and n,

respectively. In the following sections, it will be shown how these independent and/or coupled

processes affect the measured gradient and dissipation rate.
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3 Model scalar spectrum

For isotropic turbulent flow, Corrsin [27] and Pao [28] developed a 3D scalar energy spectrum,
-1/3  _5/3 3 -1/3 473
F(K‘)=CCP<)(><8> K exp _ECCPD<8> K for k >k, , (11)

where k =,/k; +k; +k; is the magnitude of the wavenumber vector, C,, =1.7 [29, 50], (x)

is the mean scalar dissipation rate, <g> is the mean kinetic energy dissipation rate, x is the

wavenumber (with units of radians/length), and «, is the wavenumber corresponding to the
integral length scale. This form was widely used in the correction of the finite probe length
effects by Wyngaard [24], Antonia and Mi [29], and Mi and Nathan [45], and spatial averaging

effects in reacting flows by Mansour et al. [51]. For small Schmidt number flows (Sc=v/D),

the smallest spatial length scale is the Obukhov-Corrsin scale nSc™'* [52]. For large Schmidt

numbers, the smallest length scale is the Batchelor scale [53], defined as A, =n Sc™"'?.

Batchelor scale is commonly referred as the finest mixing scale in turbulent mixing even though
its definition is valid only for large Schmidt numbers [52]. In the current study, it is not
necessary to distinguish between the Batchelor and Obukhov-Corrsin scales because we limit our
discussion to the case of near unity Schmidt numbers when both scales are the same as the
Kolmogorov scale.

The normalized wavenumber is calculated as " =«x/x,, where k, =1/A, is the
“Batchelor wavenumber”, and corresponds to the cutoff frequency of the dissipation range. For

gas flows with Sc ~ 1, the normalized energy spectrum is
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F)=Col)™” exp[—%CCP (K*)M}j . (12)

A modified version of this equation was developed by Smith and Reynolds [50] for the
kinetic energy spectrum. However, it can be assumed that the normalized scalar energy
spectrum is of the same form as the normalized kinetic energy spectrum for flows with Sc ~1.

The Smith-Reynolds model spectrum is

—5/

F*(K*)=CSR(K*) 36Xp{—O£SR(K*)m}fOI‘ K>K,, (13)

3m/4
where Cq, =2, ag = {CSRE F[?)ij } , I' is the Gamma function , m is an appropriately
m m

chosen constant, and it is found that m =2 matches experimental data better. The Corrsin-Pao
spectrum is just a special case of the Smith-Reynolds model with m =4/3 and C, =1.7.

Both the Corrsin [27]-Pao [28] and Smith-Reynolds [50] model scalar energy spectra
have an exponential decay in the high wavenumber region, a slope of -5/3 in the intermediate to
low wavenumber range, and are accurate only in the high wavenumber range x >«,. It is well

known that for isotropic turbulence, the 3D spectrum approaches zero at low wavenumber,
which is not reflected in either the Corrsin-Pao or Smith-Reynolds models. Therefore, these
models are of limited value for studying quantities, such as the scalar variance, which are
strongly affected by low wavenumber fluctuations. Using these energy spectrum models to
analyze the measurement error in scalar variance due to finite resolution effects is questionable
(e.g. Ref. [51]).

A correct model must consider the low wavenumber region to include relatively large

scale turbulent motions. Pope [38] developed such a the model for the kinetic energy spectrum,

15



2/3

E(x)=C,(e)" k" f,(kL) f, (xn), (14)

where f, and f,7 are non-dimensional functions defined as

5/3+po
ﬁ(@—{#} : (15)
(L) +C,
£ 6em=expl = B, {[ (en)* + ] =, |, (16)

where L = <k>3/2 / <8> is a characteristic large-scale length scale, <k> is the mean kinetic energy,

and n = (v3 / <8>)”4 is the Kolmogorov scale. Pope [38] suggests the following values for the
constants in Egs. (14)-(16): p,=2, B,=52, C,=1.5. C, and C, are determined by the
requirement that the integrals of the energy and dissipation spectra over all wavenumbers are the
mean kinetic energy and dissipation rate, respectively. At very high Reynolds number, the
asymptotic values are C, =0.40 and C, =6.78. This model spectrum has p, scaling for low
wavenumber, the classical —5/3 Kolmogorov scaling in the inertial range, and exponential
decay in the dissipation range. With the knowledge of the model energy spectrum, the
corresponding homogeneous dissipation spectrum is given by 2v1<2E(1<). An outer-scale

Reynolds number can be defined based on the turbulence kinetic energy and dissipation as

Re, =<k>2 / <g>v, which related to the Taylor scale Reynolds number by Re, :1/%Re , as

in [38]. For high Reynolds number turbulent flow, the relation between the large-scale length

scale and the Kolmogorov scale is n/L=Re,”*. Following the same argument as in the
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Smith-Reynolds model spectrum for flows with Sc ~1, the normalized scalar energy spectrum is

assumed to have the same form as the normalized kinetic energy spectrum [54],

—5/3

Fle)=c, ()" o0 %)f,,(x*x (17)

where L, = L. The model energy spectrum is mainly a function of the normalized wavenumber
" and the length scale ratio Z,/A, , which can be expressed in terms of the Reynolds number as
L,/A, ~L/n=Re}* for Sc~1.

For the case of large Schmidt number, the spectrum exhibits a viscous-convective
subrange with a x~' scaling [52], and so the model spectra of Corrsin [27]-Pao [28],
Smith-Reynolds [50] and Pope [38] are not appropriate. Model scalar energy spectra including
Schmidt number effects have been proposed by Kraichnan [55], McComb [56] and Fox [57].
However, these models are relevant to high Sc¢ number flows and so are not necessarily
appropriate for gas phase studies. Nevertheless, the major objective of the current study is to
introduce the system model approach, and so an appropriate model, such as Fox’s, could be used
to study the experimental effects of noise, resolution, data processing algorithms and numerical
stencils on dissipation measurements in high Schmidt number flows.

With the definition of the 3D energy spectrum, the corresponding 1D scalar energy
spectrum can be calculated as [38, 52, 58]

Fk)=[" F(K)dKZdK3. (18)

2
© 4K

The scalar dissipation spectrum and its normalized form are
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D(k)=2Dx’F(x), (19)

D (") =2(c"f F*(ic"). (20)

Figure 3 shows a comparison of the 3D model energy and dissipation spectra of
Corrsin-Pao [27, 28], Smith-Reynolds [50] and Pope [38]. It can be seen clearly that both
Corrsin-Pao and Smith-Reynolds 3D model spectra only capture the high wavenumber region
(x >k, ) of the energy spectrum. Pope’s model includes Reynolds number effects and matches
experimental data in the literature [38]. Also, as expected, the dissipation spectra from all three

models agree much better than the energy spectra, especially for the model from

Smith-Reynolds [50] and Pope [38].

4 Results and discussion
The proposed system model will be used to study the independent and coupled effects of finite
resolution, noise and numerical stencil, on the measured scalar gradient and dissipation rate. The

analytic results and discussions are mainly for 1D data, but the system model can be easily

extended to the 2D and 3D cases.

4.1 Resolution effect

The isolated effect of resolution is investigated by assuming that noise is negligible, and the
differentiation is exact without numerical artifacts. For a measurement with finite resolution, the

measured 1D scalar energy and dissipation spectra are related to corresponding true spectra as,

“Flx,), 1)

[Fili) ], =| H,(x0.x,)

"Dy (x,), (22)

[DI(KI) ]m = | HV(KI’KV)

18



where HV(KI,KV) is the filter that represents the finite resolution effect and x, 1is the

characteristic cutoff wavenumber of the filter. In the literature, various filter models have been
used in the literature to approximate finite resolution as summarized in Table 1. They are similar
to the low-pass filters used in large eddy simulation (LES) [37, 38]. Resolution effects are
related both to “averaging” over the finite probe volume and ‘“sampling” at known spatial
frequency by the detector(s). Averaging is a common problem in practical experiments, such as
finite wire length, array-detector pixel size, pixel binning, etc. In previous studies by
Wyngaard [23, 24, 43], Antonia and Mi [29], and Mi and Nathan [45], averaging was modeled as
a box filter, which implies that the signal is uniformly distributed along the finite wire length. In
imaging experiments the averaging is due to the blurring effect of the imaging system, which is
quantified by the optical system point spread function (PSF) and modulation transfer function
(MTF) [30, 59]. The resolution effect due to finite sampling can be modeled by the sharp
spectral filter if a relatively sharp spectral cutoff anti-aliasing filter is used.

By using the 1D model spectrum as the “true” spectrum, we can determine the ratio of

the measured to the true variance from 1D measurements,

(l0).}/(0) =

O ey 8

[F(x,)],, dx, / TE(m)dm : (23)

and the ratio of the measured to the true 1D mean scalar dissipation is

<(7(1)m>/<751> =

S —38

[D,(k,)],, dx, / I D, (ie,) dx, . (24)

It can be seen clearly that both ratios are functions of the filter 4 . These forms have been

used [24, 29, 45] with A represented by a box filter.

19



Using Egs. (23) and (24), the measurement error due to finite resolution can be expressed

as,

e=1-¢,/¢, (25)

where & = <92> and & = < )51> for scalar variance and 1D mean dissipation rate, respectively.

To simulate the resolution effect, three filter forms were used: box, sharp-spectral (SS)

and Gaussian. Figure 4 shows the transfer functions of these filters for a normalized cutoff

wavenumber of k= 0.5. It can be seen that both box and Gaussian filters still have finite gain of
0.4 at k, =0.5 and approach zero near k= 1. This is different from the ideal sharp spectral

filter, which exhibits no leakage for wavenumbers higher than the designed cutoff x; = 0.5.
Figure 5 shows the filtered dissipation spectra using the same three low-pass filters with cut-off
wavenumber of k= 0.5. The leakage of the spectral energy beyond the cut-off wavenumber is
expected considering Fig. 4. Figures 4 and 5 show that the box and Gaussian filters have nearly
the same spectral behavior.

Figure 6 compares the averaging and sampling effects of different analog filters on the
turbulent scalar variance and mean 1D scalar dissipation rate. To obtain the results in Fig. 6, it
was assumed that the sampling resolution is high enough that there is no aliasing problem for
averaging effects. Figure 6 shows that the finite resolution effects are nearly the same for the
box and Gaussian filter, but are different for the sharp-spectral filter. At high resolution (large
k), the averaging error in the scalar dissipation is much larger for the box and Gaussian filters
than for the sharp-spectral filter. Figure 6 essentially demonstrates that the effect of spatial

averaging is much larger than that of finite sampling rate. Though the scalar variance is not very
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sensitive to the finite resolution effect, Fig. 6a shows that the specific filter type does affect the
error curve. This may be important when comparing experimental data with LES resolved fields
and validating sub-grid-scale (SGS) modeling because the effective experimental filter may
affect the results.

The measured data can be corrected for averaging effects due to filters shown in Fig. 6.
For example, the finite wire length effect may be corrected before calculating the energy and
dissipation spectrum in hot/cold wire experiments [29, 45]. Knowing the filter transfer function,

the true energy spectrum can be corrected via

2

Fk)=[F(x)],/

HV(KI’KV)

; (26)

Several studies have been aimed at optimizing this deconvolution. The main difficulties are
associated with the accurate measurement of the transfer function % and the presence of
noise [60]. Various algorithms have been developed that reflect different ways to recover a best
estimate of the frue value. Wiener and regularized filters are better for the case where both the
transfer function and noise characteristics are known [61, 62]. Some iterative restoration
techniques [63], e.g. expectation maximization algorithms, work better for the case of a known

transfer function but unknown noise characteristics. It should also be noted that in the presence

? behaves like a high-pass filter which amplifies

of noise the transfer function of 1/ | H, (KI,K,)

noise. Some of these issues will be discussed further in section 4.5.
Figure 7 compares the resolution effects simulated using different model spectra. These
curves are referred as error curves for the variance and mean dissipation rate since they are

directed related to the measurement error defined in Eq. (25). In the figure, f. and f, are the

filter cut-off frequency and Batchelor frequency, respectively, and therefore k. = £, where
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/7 =f./fs. The Batchelor frequency is defined as f, =(U)/27mA,, where (U) is the mean
convection velocity [45]. Four different Reynolds numbers, Re, =50, 130, 500 and 1500, are
used for Pope’s model spectrum. As shown in Fig. 7, the ratio of <(92)m> / <92> and
<(x1)m> / <x1> , decrease roughly linearly for the former and exponentially for the latter case with

decreasing resolution (increasing 1/ k. ). As discussed in section 3 (Fig. 3a), the Corrsin-Pao and

Smith-Reynolds model spectra do not consider the low wavenumber effects, and thus studying
resolution effects on the measured variance using these two model spectra will not give the

correct trend, which is clearly shown in Fig. 7a. Pope’s model spectrum with Re, =130 can
match the jet flow experimental data (Re, =180) in Mi and Nathan [45]. Using Pope’s model

with different Reynolds numbers as in Fig. 7a, it is seen that the resolution effect on the scalar
variance is Reynolds number dependent, i.e. smaller error at higher Reynolds number. However,
the resolution effect on mean scalar dissipation rate is not so sensitive to the Reynolds number,
as seen in Fig. 7b. This is expected since the variance is mainly affected by the large scales
whose characteristics are more sensitive to Reynolds number. Figure 7b also shows that results
from different models can give nearly the same resolution error curve for the 1D mean
dissipation rate.

Note that the large scales can depend strongly on the flow geometry, so the model
spectrum used here is not expected to be universally applicable with regard to large turbulent
scales and the associated effect of resolution on the variance. This is not a limitation of the
present work, because the system model presented here may be applied to any model spectrum or

to experimental data.
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4.2 Noise effect

If noise is uncorrelated with the signal, it may be modeled as an additive source to the measured

spectrum. In this case the measured scalar is 6, =60 +n, and the measured scalar energy and

dissipation spectra can be expressed as,

[F(,) ], = F<)+ F, (), 27)

[D,(,) ], = 2D «}[ F(,)+ F, (i,)]. (28)

For white noise, the noise spectrum is flat in the spectral domain (noise floor), as illustrated in

Fig. 8a. The noise spectrum is modeled as
F()=0)/xc, (29)

where k,.=n/A and A is the sampling resolution. Equation (29) satisfies the relation

ol = .[ OKIC F () dx,, and so the noise-induced apparent dissipation may be calculated as

2= %Doixfc - (30)

From these relations, the SNR for turbulence variance can be defined to quantify the noise

induced error for the scalar variance measurement as
SNR, =(0°) /o . 31)

Similarly, the SNR for the dissipation rate can be expressed as
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The definitions of SNR, and SNR, are illustrated in Fig. 8.
The SNR, and SNR, are similar to the conventional SNR, SNR = <9> / o, , In that all of
them are inversely proportional to the standard deviation of the noise. However, the SNR, is

highly resolution dependent as it also depends on the sampling wavenumber, i.e., SNR, o l/ Kl .

It can be seen clearly in Fig. 8 that the apparent dissipation increases without bound with

increasing resolution. Once the cut-off wavenumber «,. is higher than the dissipation cut-off
wavenumber (i.e., k. >1), then the mean value of the true dissipation rate < )51> will remain

constant with further increase in the wavenumber. Therefore, the unnecessary high resolution

will significantly amplify the noise induced apparent dissipation rate and reduce the SNR , as

illustrated by Fig. 8.
To further illustrate the noise effect on the scalar energy and dissipation spectra, Pope’s

model spectrum with Re, =130 is used to generate Fig. 9. We note that the model energy and

dissipation spectra shown in the figure exhibit strong resemblance to experimentally measured

spectra that exhibit significant noise effects [10, 64]. For SNR, =5, 20, 50, 100 and 500, the

corresponding SNR, = 0.05, 0.22, 0.55, 1.1 and 5.81, respectively. To calculate the SNR, in

*

Fig. 9, the sampling frequency is taken as twice the cut-off wavenumber, ie., «k,.=1.
SNR,, = 100 implies that the noise induced variance is only about 1% of the true scalar variance.
However, the corresponding SNR, = 1.1 suggests that the noise induced dissipation is 91% of the

true scalar dissipation, or equivalently, the apparent dissipation is about 48% of the measured
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total dissipation rate. Figure 9 clearly illustrates this effect, small noise effects in the scalar

variance can lead to significant measurement error in the mean 1D scalar dissipation rate.

4.3 Combined resolution and noise effect

In most laser diagnostics experiments, changing resolution will affect the noise
characteristics, for example, by changing CCD pixel size, laser beam thickness or pixel binning.

Here the energy and dissipation spectra may be modeled as

[F)+F, ()], (33)

[Fili,)], =|H. (.,

[R()+F, (k). (34)

[%1 (Kl )]m = 2DK12|HV (Kl’ Kr)

It can be seen from section 4.1 and 4.2 that insufficient resolution will result in a
measured scalar dissipation rate below the true value. Conversely, noise induced apparent
dissipation always adds to the measured dissipation rate. The combined effect of resolution and
noise makes the assessment of the experimental accuracy in dissipation measurements
particularly challenging. Figure 10 shows the measurement error in the scalar variance and mean
dissipation rate as a function of resolution for different levels of noise using Eq. (33) and (34),
which assume that the noise is resolution dependent. The noise effect is smaller for the scalar
variance than for the scalar dissipation because the variance is dominated by large-scale high-

magnitude fluctuations, which are relatively insensitive to all but the lowest SNR, . In contrast,

the dissipation is much more sensitive to the noise and the noise effect increases greatly at high

bandwidth as shown in Eq. (30). Figure 10b shows that if there is noise present in the signal, the
measured dissipation greatly overshoots the true dissipation as resolution improves (large «, ). It

is seen that the noisier the data, the more improved resolution comes at the cost of increased
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error. All noise error curves collapse at low resolution because the averaging effects at low
bandwidth effectively increase the SNR of the measurements as seen in Eq. (33) and (34).

These same effects are shown schematically in Fig. 11. For noise-free scalar dissipation
measurements, the resolution error is represented by the solid line in Fig. 11, which is similar to

the curve in Fig. 2 of Mi and Nathan [45]. For the noise-free case there is no measurement error
when the spatial resolution is smaller than or equal to x; =1. However, in the presence of noise,

the ratio of the measured to the true scalar dissipation grows without bound as the spatial
resolution becomes higher, which agrees with the analysis of Mi and Antonia [25]. This is the
noise-dominant regime, denoted as I in Fig. 11, where the measured scalar dissipation is always
higher than the true scalar dissipation and the error generally increases with increasing noise
level. In the noise and resolution dominant regime, denoted as II in Fig. 11, the effects of finite
resolution and noise compete with each other to determine the measurement error. Interestingly,
the measurement error is smaller than the noise-free (i.e., resolution only) error curve as shown
in Fig. 11. This illustrates that at moderate resolution and moderate noise level, the measurement
of mean scalar dissipation can be brought closer to the true mean value by the presence of noise.
This seemingly counter-intuitive result is because noise-induced apparent dissipation offsets the
attenuated dissipation resulting from finite resolution. However, it is not a useful strategy to
improve the accuracy of a dissipation measurement by working in this regime because it is hard

to know the noise level and resolution in actual experiments, and so the accuracy would be
difficult to determine. At low resolution (large 1/ k), the averaging effect is so dominant that

the noise is not important at all. This is the resolution-dominant regime. In this case, the error

curve collapses to the noise-free error curve and the measured mean dissipation rate is much
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smaller than the true value. Figure 11 clearly illustrates the intricate relation between resolution

and noise in scalar dissipation measurements.

4.4 Gradient Stencil Effect

The theoretical relationship between the scalar energy and dissipation spectra given by Eq. (19)
assumes ideal differentiation in the spectral domain. For data analysis in the spatial or time
domains, numerical stencils must be used to approximate the derivative. Furthermore, numerical
differentiation is usually applied after the experimental data are measured, therefore it will affect
both the resolution and noise-induced apparent dissipation for the calculated dissipation rate. For
simplicity we first ignore the effects of the stencil on the noise, in which case the dissipation

spectrum can be approximated as
[DI(KI) ]m :2D |Hg(K1’KlC)|2[F1(K1) ]m’ (35)

where k,. =n/A=kK,;/2 is the cutoff wavenumber, k,, the sampling wavenumber, and A is the
sampling resolution.

First order two-point backward difference stencils (H12B) and second-order central
difference stencils (H23C), are commonly used to calculate the gradient. High-order
spectral-like stencils have also been developed to evaluate the scalar derivatives in computational
fluid dynamics [34, 65], which may be expressed as

0.,—-0 0. .,-0. 0. -0
) +oago. . +9o +oo. .+ ) =c i+3 i-3 + b i+2 i-2 +a i+l i—1 , 36
Bgin+ag +8& +og, + P, A A A (36)

where parameters a, 3, a, b, and ¢ are determined by substituting Taylor series expansion

coefficients, and g represents the implicitly determined local derivative of the scalar. The
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parameters o, B, a, b, and ¢ are different for different order of accuracy and number of
stencil points used. Table 2 lists coefficients for several high-order schemes, for example H67C
denotes 6th-order 7-point central difference, HA7I thel0Oth-order 7-point implicit scheme, H471
4th-order 7-point implicit scheme and H47J the optimized 4th-order 7-point implicit scheme.

The system transfer function of the high-order stencil is

H (k0 ) = JL asin(w)+ bsin(20)/2 + csin(30)/3
T 1+ 2a cos(w)+ 2B cos(2w)

; (37)

where ® =71k, /K, and j=+/-1. Theideal 1D stencilis H, (k,,%, )= jK,. The capability of a

particular numerical stencil to match the ideal stencil can be quantified by its resolving efficiency

y [34],
v =K, [Kic, (38)

where i, is the wavenumber at which the error between the filter magnitude transfer function

and the ideal stencil is less than a certain tolerance, for example 1—|H p (KI,KIC )/ K1| =1%. The

numerical schemes discussed by Lele [34] have relatively higher resolving efficiency than the
H23C and H12B. Table 3 lists several numerical stencils for gradient calculation, and their
characteristics are compared in Fig 12. It can be clearly seen that all these numerical stencils are
essentially digital filters and mainly differ at the high wavenumber end. For example, the ideal
and H12B stencils are high pass filters, and the high-order spectral-like filters are band-pass
filters, which can match the ideal stencil in the low wavenumber region and attenuate the
spectrum at the high wavenumber end. The H23C central differencing is band-pass as well, but

its attenuation is significantly larger than the high-order spectral-like stencils. Following the
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same optimizing procedure as in Lele [34] and Kim and Lee [65], a set of new coefficients
(H47J) was found with resolving efficiency of 0.90 which is higher than those from the filter
coefficients of Lele [34] (y =0.84) and Kim and Lee [65] (y =0.89).

If we assume that the physical cut-off wavenumber is the Batchelor wavenumber, and we

want wavenumbers below this cut-off to be free of stencil affects, then we require k, >k, or

equivalently,

Kie2K,/7 - (39)

Using this criterion, the implicit sharp-spectral like high order stencils H471 and HA7I in Table 3
have a less demanding for the required sampling resolution to resolve the Batchelor
wavenumber.

The stencil effect should be considered especially when the sampling resolution is
smaller than or close to the physical limiting length scale. This is because the characteristic

transfer function of the numerical stencil (4, ) is directly linked to the cutoff wavenumber x,..
Figure 13 shows stencil effects on the dissipation spectra for two cases of digital sampling: “fully
resolved” and “over-resolved”. In the fully resolved case the filter cut-off is at the physical
limiting scale, i.e. k,. =1, and the sampling wavenumber is &, =2 (Nyquist sampling). The
over-resolved case is over-sampled by a factor of two, ie., k,.=2 and K, =4. Figure 13

shows that both the H12B and H23C stencils significantly attenuate the true dissipation spectrum
for the “fully resolved” case. The central difference stencil (H23C) does particularly poorly, and
the figure shows that the use of such a stencil can significantly degrade the mean dissipation
even though the measurements may be nominally fully resolved. Figure 13 further shows that

the dissipation spectrum is reproduced better for both H12B and H23C when over-resolved by a
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factor of two, but the central difference stencil still exhibits non-negligible error. Also shown in

Fig. 13 is the H47I scheme, which reproduces the dissipation spectrum very accurately at both
resolutions. It can be concluded that if the data are sampled at Nyquist rate K, =2, the 4™ order

scheme can be used to faithfully reproduce the dissipation scales.
To quantify the capability of a numerical stencil to resolve the mean 1D dissipation rate,

the dissipation resolving efficiency y, may be defined as

V2= <(751)m>(’<1*c )/<X1> ) (40)

where <(;¢1)m >(1<1C): J‘OKIC 2D |H p (i, 5, |2Fl(1<1 )dic, . Smaller values of y , correspond to poorer
resolving capability.
It should be noted that the resolving efficiency y is different from the dissipation

resolving efficiency y,, since the former is determined by the ratio of wavenumbers as in

Eq. (38), whereas the latter is based on the mean dissipation rate. The resolving efficiency y

may be more appropriate for numerical simulations, since the numerical stencil will not only
affect the resolved mean dissipation, but the accumulation and propagation of numerical errors as
well [37]. Therefore, it should be expected that for the same turbulent flow, numerical
simulations using finite difference stencils should have relatively more stringent resolution

requirements than corresponding experiments. Table 3 and Fig. 14 also compare the resolving
capabilities of several numerical stencils in the literature. It can be seen that at k. =1, there will
be a 27% and 9% error in the measured mean dissipation rate for the H23C and H12B stencils,

respectively. To fully resolve the total mean dissipation rate (e.g. y,=99%), the sampling

wavenumbers are 13.1 and 6.5 for H23C and H12B stencils. Therefore, the central differencing
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scheme H23C is not suggested for the scalar gradient and dissipation calculation when the
sampling resolution is smaller than or close to the required physical resolution. On the other

hand, higher-order spectral-like stencils proposed by Lele [34], have much higher resolving
capabilities. For example, for a sampling frequency of «,, =2, stencils HA7I, H471 and H47J

resolve at least 98% of the total dissipation rate. Hence, when the sampling frequency is low, the
high-order spectral-like schemes are much better than H23C and H12B.

From a resolution point of view, the central difference stencil (H23C) is the worst
performer even compared to the one-sided difference stencil (H12B). However, considering the
effects of noise, the HI12B stencil acts as a high-pass filter that amplifies noise in the measured
mean dissipation rate. In the presence of noise, the capability of the numerical stencil to

amplify/attenuate the apparent dissipation may be expressed as,

Gy = .[OKIC

H, (i) [ i [ w3 (41)

which is the ratio of the noise induced apparent dissipation from numerical stencil to that of the
ideal stencil. It should be noted that the gain factor Gy is independent of the sampling
wavenumber and is purely determined by the stencil type. Gain factors for different stencils are
shown in Fig. 15. All stencils have smaller gain factor than the ideal stencil (Eq. 19), which
suggests that the noise induced apparent dissipation is smaller than that from the ideal stencil.
Considering both resolution and noise effects, the high-order spectral-like stencils [34]
reduce the apparent dissipation due to their band-pass nature, and they largely match the ideal
stencil because of their high resolving efficiency. Therefore, this type of stencil is recommended

for processing of experimental data in scalar gradient and dissipation measurements.
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4.5 Noise reducing techniques

Experimental data are generally contaminated by noise, and some kind of post-processing filter

h, is often applied to remove noise. For example, Mi and Nathan’' used a low pass filter to

eliminate the effect of noise above the Batchelor frequency. Miller and Dimotakis'' used a one-
pole low-pass filter, Dowling'® and Dowling and Dimotakis’ used optimal and Gaussian filters,
respectively. However, filtering essentially forces the high wavenumber end of the dissipation
spectrum to resemble the transfer function of the filter. This is not necessarily a problem,
provided the characteristics of the dissipation spectrum are known as in nonreacting isotropic
turbulent flows. For general flow conditions a proper post processing filter may be designed if
the dissipation spectrum is measured without significant noise effects and the experiment is
fully-resolved. The function of this filter is to suppress noise without attenuating the true

dissipation. The design criteria are to keep the filtered measured scalar 4, *0,, close to its true

value 6, while reducing noise as much as possible. If noise is uncorrelated with the signal, the

filter transfer function may be expressed as,

e - “@

where «, is the characteristic wavenumber of the post-processing filter /,. This implies that a

filter in physical space may be designed to remove the noise effect when the noise floor can be
determined. Eq. (42) is a special type of the Wiener filter [62] and general digital filters may
also be designed to match this transfer function [61].

Some nonlinear filters, such as anisotropic [66] and median filters [61], have been

applied in signal and image processing. However, most of these filters are limited to the scalar
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itself and their effects on the measured scalar dissipation rate and scalar gradient are usually
quantified by “grid convergence” type characterization. Some other noise correction techniques

have also been summarized by Wang et al. [67]

4.6 Effective resolution

It is important to emphasize that the effective resolution of any gradient and dissipation
measurement depends on both the physical (optical) resolution and the processing schemes that
are applied. For example, if a very poor optical system is used, the whole system can be
dominated by this limiting optical resolution rather than the often reported pixel resolution.
Furthermore, the numerical schemes for calculating the gradient should be considered not only in
terms of the order of accuracy (such as the truncation error), but also in terms of their impact on
the resolution, especially in the presence of noise. The system-view also highlights the important
distinction between the dissipation scale and the resolution required to resolve it. The dissipation
scale is determined purely by the underlying physics, while the resolution requirements are
affected by every process in the measurement/analysis system.

To consider coupled effects of these factors, the measured scalar energy and dissipation

spectrum may be expressed as

“F(x,), (43)

[FI(KI)]m :|HP(K1’Kp)|2|Hr(K1’KV)

“F(k,). (44)

[%1(K1)]m :2D|Hg(K1’K1C) |2|Hp(K1’Kp)|2|Hr(K1’KV)

The effective system transfer function may be expressed as H,=H H , H,. A characteristic
filter cut-off wavenumber x, may be defined based on the transfer function H,, which is

analogous to k, for the filter /.. The measured 1D dissipation spectrum may be written as,
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") (45)

[%1(’(1 )]m = 2D|H8(K1’Ke)

The cut-off wavenumber of a filter may be expressed in terms of the sampling wavenumber, such

as k, = C,k,., where C, is a constant. Therefore, the effective resolution requirement to

resolve the physical spatial content up to k, is k, > k,, which may also be written as
ALCr/x,, (46)

This shows that the spatial resolution required to resolve the Batchelor wavenumber «, is not
unique in practical experiments or numerical simulations, and must be determined from an
overall system view as discussed here.

One subtle question is how to determine the characteristic cutoff length scale or
wavenumber of a filter. Pope [38] defines the cutoff of the box and Gaussian filters as the

wavenumber k, where the magnitudes of the transfer functions have the same value, e.g.

|Hr(1<1,1<,) =0.64 as shown in Fig. 4. However, for some time-series experiments, the 3 dB

= 1/ J2 ~0.71. These examples show that even with the

cutoff is adopted, giving |H, (k,,x,)

same filter, different definitions of the characteristic cutoff length scale will result in different
measurement error curves as in Fig. 6 and 7. Furthermore, if we consider two different
experiments where the shapes of the system transfer functions are different, then the two
measurements may have different measurement errors even though the cutoff frequencies for the
two transfer functions are the same. To avoid the ambiguity caused by different definitions of
cutoff frequency, it is probably best to base the resolution requirement on the frequency required
to resolve some fraction of a mean physical quantity (say 99% of the mean kinetic energy). A

similar resolution requirement was previously proposed for LES [68]. Still, even this method is
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not ideal because the resolution requirement will depend on the physical quantity of interest
(e.g., whether the variance or mean dissipation is used). Though such a measure is not unique, it
only depends on the quantity of interest and is not subject to the definition of the characteristic
cutoff length scale.

The dissipation wavenumber k, determined from the dissipation spectrum is an
ensemble of the scalar dissipation rate conditioned on the wavenumber or spatial length scale.
Nonreacting experiments and theory show that the dissipation is highly intermittent [1, 69] and
the dissipation structure thicknesses are generally distributed over a range of length scales [17-
20]. There will be some intense but sparse behavior with significantly higher dissipation rate
than average value [69]. The quantification of the resolution based on the mean dissipation value
is therefore only statistically meaningful and can only give the correct mean dissipation rate.
This criterion may not be adequate for measurements of instantaneous dissipation structures and
higher order moments of the scalar dissipation. Therefore, it is questionable whether it is a
sufficient criterion to measure the PDF of the scalar dissipation or the PDF of the dissipation

structure thickness.

4.7 Example 1: spatial averaging along other directions

The effect of spatial averaging along the non-gradient direction has been widely recognized in
hot/cold-wire experiments in nonreacting flows, but not as much in laser diagnostics
experiments, especially for reacting flows. For example, consider a laser scattering measurement
where the laser beam is relatively large in diameter, but where the averaging effects along the
laser beam (due to optical blurring and pixel averaging) are very small. In other words the
resolution is excellent in the direction of interest but compromised in the two orthogonal

directions. The question to be addressed here is how the measured gradient in the x, direction is
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affected by spatial averaging in the x, and x, directions. This has been studied by

Wyngaard [23], who investigated spatial resolution requirements when measuring vorticity with
hot-wire arrays. He used a box filter to model the spatial averaging effect of the hot-wires. Here
we will show this effect in a more general approach.

The measured 1D energy spectrum, including resolution effects in directions other than
the x, direction, is given by

) = [ s) 2 e, @

(O]

r

where i =1, 2 and 3 corresponds to the x,, x, and x, directions, H fi)(K'i,K' ) and k" are the

filter transfer function and its characteristic cutoff wavenumber in the i direction, respectively.

The case of i =1 corresponds to the case where the resolution effect is in the x, direction only,
i.e., where resolution is perfect in the x, and x, directions. This case was discussed previously
in section 4.1. After substituting Eq. (47) into Egs. (23) and (24), the ratio of the measured to the
true values of the variance and 1D mean dissipation rate may then be determined.

If the averaging effects are in more than one direction, the measured 1D energy spectrum
may be written as

[FG)), = [ [,k ke k@) \2% drdr, (48)
- T

M 4@ 4O

r 2 r 2Ty

where H, (Kl Ky, Ky, K ) is the general form of the filter to simulate the finite resolution

effects. If the resolution effects along different directions are independent, Eq. (48) can be

simplified as
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)], = [ TL [0 .x) |2i’i) dic,dx, . (49)

dri

Figure 16 shows the simulated resolution effects due to averaging in the x, and x;

directions with H?=H® and k=« , and perfect resolution in the x; direction. In the
r r r p

figure, i =2 indicates averaging in one orthogonal direction only, i = 2+3 indicates averaging in
two orthogonal directions. In the simulation, the case i =2+3 assumes that the finite resolution
effects can be separated as in Eq. (49).

Since the model spectrum assumes isotropic turbulence, the results for the i =2 and i =3

will be identical, and thus only i =2 is shown in Fig. 16. It can be seen clearly in Fig. 16 that
spatial averaging in one orthogonal (x, or x;), or both orthogonal directions (x, and x,) has
smaller effect on the x, -gradients than when the averaging occurs in the x, direction only. For
example, for the box filter, at 1/ K‘: = 2, the errors due to finite resolution along x, (direction of
interest), x,, and x,+x,, are 29%, 12% and 21%, respectively.

Figure 16 illustrates an important point for practical measurements. As discussed in
section 4.2 and 4.5, the noise can be reduced by applying a post-processing filter 4,, which may
lead to some averaging effect. An effective way to reduce the noise effect without greatly
sacrificing the resolution is to filter the signal in the directions other than the direction of interest.
In the simulation we assumed the gradients are distributed isotropically. For anisotropic flows,
when the measured gradient is along the major gradient component direction, the resulting finite
resolution error along non-gradient direction will be even smaller than those in Fig. 16. For

example, the radial gradient tends to be much higher than those along the axial and azimuthal

directions in turbulent jet flames at radial locations near the reaction zone. Therefore, in such
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experiments, the resolution along the radial direction should be kept as high as possible, and
resolution in the other two directions can be compromised. These are particularly useful for laser
diagnostic techniques where it may be difficult to reduce the laser beam thickness to smaller than
~200 pm, such as when an extended focal spot (i.e., Rayleigh range) is desired [59]. For planar
and 1D imaging laser diagnostic experiments, the effective approach is to achieve high resolution

along the laser beam direction and align the laser beam with the direction of the highest gradient.

4.8 Example 2: effects due to pixel binning

As another example of the application of the system model, we will model the effect of pixel
binning on 1D imaging measurements of the scalar dissipation. The results from this section
have important implications for the resolution of measurements that utilize on-chip binning of
CCD detectors as well as gated integration with time-series measurements [15, 16, 70, 71]. As
stated previously, a 1D array detector both averages due to the finite pixel size and digitally
samples at a frequency determined by the pixel spacing (pitch). Both these effects lead to
measurement errors since averaging causes gradient smoothing and insufficient sampling
frequency induces aliasing. As a way to distinguish these effects, consider two different 1D
array detectors with the same sampling frequency (i.e., same pixel pitch A) but different pixel
averaging (i.e., different pixel size A ) as shown in Fig. 17. The situation shown schematically
in Fig. 17 can be realized in practice by array-detectors with different fill factors. The fill factor
is defined as the fraction of the pixel area that is photosensitive. In Fig. 17 the cases of 25% and
100% fill factor are shown. A detector that samples with minimal averaging effects will have a

negligible fill factor, but of course will suffer from poor SNR ratios because it will collect very
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few photons. Binning is the process of combining adjacent pixels into an array of superpixels,
and thus it affects both the averaging and sampling frequency.

In 1D imaging, the averaging effects may be modeled as a box filter followed by digital
sampling. This is different from the analysis in section 4.1, where we assumed that the sampling
frequency was high enough that only spatial averaging effects needed to be considered. The box
filter has the characteristic filter width of A (pixel size) and the sampling resolution is A (pixel
pitch). There are two characteristic cutoff frequencies that describe the system, namely, «x, and
k,.. For imaging, the pixel width A can be no larger than the pixel pitch A, and so the cutoff
of the anti-aliasing filter is equal to or higher than the cutoff frequency, i.e. A, <A or k, 2 k,..
In Fig. 17, the small fill-factor array will have four times the value of x, and so have smaller
averaging effects, but both arrays have equal k.. There are three important cases to consider
when an imaging system is used to resolve the dissipation scales: (i) fully resolved, which occurs
for k, <k,. <k,, (ii) resolved / aliased, which occurs for k. <k, <k, , and (iii) under-resolved
/ aliased, which occurs for k. <k, <k;.

To illustrate the imaging system effects on the measured scalar dissipation rate, we
assume that the lens blurring effects are negligible and the pixel fill factor is 100% (k. =k, ).
Figure 18 shows the 1D scalar energy and dissipation spectra for four binning cases
corresponding to cutoff wavenumbers of KI*C =0.2, 0.5, 1.0 and 2.0, respectively. As discussed
in section 4.1, the box filter’s transfer function still has finite response at the cutoff wavenumber

k.. Therefore, when the cutoff wavenumber is less than the Batchelor wavenumber, i.e. K‘I*C <1,

the measured 1D scalar energy spectrum will be aliased. The aliasing leads to a deviation from

the ideal spectrum but is hard to see in Fig. 18a. The aliasing effects are more readily observed
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in the dissipation spectrum as shown in Fig. 18b, because it is in this wavenumber range where
the dissipation is largest. We see that the aliasing manifests itself as a local rise in the spectrum
at wavenumbers just below the cutoff frequency.

Figure 19 compares the measurement error due to pixel binning with that of pure spatial
averaging due to the sharp-spectral and box filters. Owing to aliasing effects, the measurement
errors for the scalar variance and 1D dissipation rate are both smaller than the corresponding
values of the box filter. This is expected since the aliasing will transfer some of the scalar
energy and dissipation from high to low wavenumbers, as shown in Fig. 18. The aliasing
resulting from the unresolved part of the scalar energy spectrum increases experimental
uncertainty, and this uncertainty will be hard to quantify.

The above analysis can also be applied to time-series measurements that employ a gated-
integrator for which an external anti-aliasing filter is not used [33, 72]. In this case the gated
integrator averages all fluctuations over the gate width and serves as an implicit anti-aliasing
filter whose cutoff wavenumber is determined by the gate width. The subsequent number of
gates per second determines the system sampling frequency. In a gated-integrator based
measurement, usually the gate width is usually much smaller than the sampling period, i.e.

A << A, which leads to negligible averaging effects, but significant aliasing errors.

4.9 Summary

It should be emphasized that all experimental data are filtered to some extent. The
characteristics of the effective filter and the quantity of interest determine the measurement
quality. The results developed above are mainly discussed in terms of the spectral domain for
cases where closed-form expressions for the experimental factors like resolution, noise and

numerical stencil can be obtained. For complex systems where non-linear transfer functions may
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be used, such as with the application of a noise-reducing median filter in post-processing, the
system model may not be expressed in the spectral domain. Here, the spatial expressions as in
Egs. (6) and (8) can be used to study these effects by numerical simulations, e.g. Monte Carlo
simulations by Ghandhi [26].

Though the system model is developed mainly for the scalar gradient and dissipation rate
measurement, the model itself is more generic. For example, the system model can be combined
with the kinetic energy spectrum model of Wyngaard [24] and Antonia and Mi [29] to study the
effects of experimental factors on the measurement accuracy of the velocity gradient, vorticity,
kinetic dissipation rate, etc. Furthermore, the proposed system model approach can also be
applied to study other derived quantities, e.g. higher order derivatives. As discussed earlier, the
numerical results are limited by use of the model spectrum. However, if high fidelity DNS data
were available, it could be used to replace the model spectrum, and numerical results could be
obtained following the present system approach.

The proposed system approach may also be useful for preparing experimental or DNS
data for the purpose of validating LES results, and for developing LES sub-grid scale
models [37, 73-75]. Both experimental data and LES results represent filtered flow fields,
though the filters involved may have significant different characteristics. The system approach
can provide more objective validation of the LES by revealing possible artifacts from the

measurements as well as the simulations.

5 Conclusions

A system model was used to study independent and coupled effects of optical resolution, noise,
data processing, and differentiation stencil on the accuracy of scalar gradient and dissipation

measurements. Finite resolution effects were simulated by spectral filtering, noise was modeled
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as an additive source in the model spectrum, and differencing stencils were analyzed as digital
filters. The “effective resolution” is proposed as a useful means of quantifying the resolution
reduction owing to these combined effects. Both effective resolution and noise-induced apparent
dissipation are determined by the system transfer function. The results for the coupled effects of
noise and resolution show three regions in the mean scalar dissipation rate measurement:
noise-dominated region, noise-resolution correlated region, and resolution-dominated region.
Different noise levels lead to different resolution error curves for the measured mean scalar
dissipation rate. The resolution error curve for scalar dissipation is not significantly affected by
Reynolds number (at least for isotropic turbulence), but the error curve for scalar variance is.
The model also shows that spatial averaging in directions orthogonal to the measurement
direction has a smaller effect on resolution than when the averaging occurs in the measurement
direction. These results are an extension to the work by Wyngaard [23, 24, 43], Antonia and
Mi [29], and Mi and Nathan [45], Wang and Clemens [30], and Mueschke and Andrews [44] that
only considered the resolution effect; by Ghandhi [26] on numerical simulation of resolution and
noise effects; and by Lourenco and Krothapalli [42], Etebari and Vlachos [40], and Foucaut and
Stanislas [41] on numerical stencil effects. Experimental procedures and guidelines to improve
the scalar gradient and dissipation experiments are proposed based on these model study results.
The proposed system approach can be applied to other derived quantities involving complex
transfer functions. It can also be useful for the preparation of experimental or DNS data used for

LES validation, and in the development of LES sub-grid scale models.

Acknowledgement

This work was supported by the National Science Foundation under grant CTS-9977481 and the

U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences,

42



Geosciences, and Biosciences. Sandia National Laboratories is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department

of Energy under contract DE-AC04-94-AL85000.

43



References

[1]
[2]

[3]
[4]

[5]

[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

Sreenivasan K R and Antonia R A 1997 Phenomenology of small-scale turbulence Annu.
Rev. Fluid Mech. 29 435-472.

Bilger R W 1976 The structure of diffusion flames Combust. Sci. Technol. 13 (1-6) 155-
170.

Peters N, Turbulent Combustion, Cambridge University Press, Cambridge, UK, 2000.
Veynante D and Vervisch L 2002 Turbulent combustion modeling Prog. Energy
Combust. Sci. 28 (3) 193-266.

Antonia R A, Satyaprakash B R and Hussain A K M F 1980 Measurements of dissipation
rate and some other characteristics of turbulent plane and circular jets Phys. Fluids 23 (4)
695-700.

Antonia R A, Satyaprakash B R and Hussain A K M F 1982 Statistics of fine-sacle
velocity in turbulent plane and circular jets J. Fluid Mech. 119 55-89.

Antonia R A and Mi J 1993 Temperature dissipation in a turbulent round jet J. Fluid
Mech. 250 531-551.

Mi J, Antonia R A and Anselmet F 1995 Joint statistics between temperature and its
dissipation rate components in a round jet Phys. Fluids 7 (7) 1665-1673.

Dowling D R and Dimotakis P E 1990 Similarity of the concentration field of gas-phase
turbulent jets J. Fluid Mech. 218 109-141.

Dowling D R 1991 The estimated scalar dissipation rate in gas-phase turbulent jets Phys.
Fluids A 3 2229-2246.

Miller P L and Dimotakis P E 1996 Measurements of Scalar Power Spectra in High
Schmidt Number Turbulent Jets J. Fluid Mech. 308 129-146.

Tong C and Warhaft Z 1995 Passive scalar dispersion and mixing in a turbulent jet J.
Fluid Mech. 292 1-38.

Wang D and Tong C 2002 Conditionally filtered scalar dissipation, scalar diffusion, and
velocity in a turbulent jet Phys. Fluids 14 2170-2185.

Pitts W M, Richards C D and Levenson M S, Large- and small-scale structures and their
interactions in an axisymmetric jet, NISTIR-6393, National Institute of Standards and
Technology, 1999.

Karpetis A N and Barlow R S 2002 Measurements of scalar dissipation in a turbulent
piloted methane/air jet flame Proc. Combust. Inst. 29 1929-1936.

Barlow R S and Karpetis A N 2004 Measurements of scalar variance, scalar dissipation,
and length scales in turbulent piloted methane/air jet flames Flow, Turb. Combust. 72 (2-
4) 427-448.

Buch K A and Dahm W J A 1996 Experimental study of the fine-scale structure of
conserved scalar mixing in turbulent shear flows. Part 1. Se»1 J. Fluid Mech. 317 21-71.
Buch K A and Dahm W J A 1998 Experimental study of the fine-scale structure of
conserved scalar mixing in turbulent shear flows, Part 2. Sc=1 J. Fluid Mech. 364 1-29.
Su L K and Clemens N T 1999 Planar measurements of the full three-dimensional scalar
dissipation rate in gas-phase turbulent flows Exp. Fluids 27 507-521.

Su L K and Clemens N T 2003 The structure of fine-scale scalar mixing in gas-phase
planar turbulent jets J. Fluid Mech. 488 1-29.

44



[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]
[35]
[36]
[37]

[38]
[39]

[40]

[41]

Dahm W J A and Southerland K B, Quantitative flow visualization via fully-resolved
four-dimensional imaging, in: Smits A J and Lim T T (Eds.), Flow Visualization
Techniques and Examples, Imperial College Press, London, 2000, pp. 289-316.

Tsurikov M S, Experimental Investigation of The Fine Scale Structure in Turbulent Gas-
Phase Jet Flows, Ph.D. thesis, The University of Texas at Austin, 2002.

Wyngaard J C 1969 Spatial resolution of the vorticity meter and other hot-wire arrays J.
Sci. Instrum. 2 983-987.

Wyngaard J C 1971 Spatial resolution of a resistance wire temperature sensor Phys.
Fluids 14 (9) 2052-2054.

Mi J and Antonia R A 1994 Some checks of Taylor's hypothesis in a slightly heated
turbulent circular jet Exp. Thermal Fluid Sci. 8 (4) 328-335.

Ghandhi J B 2006 Spatial resolution and noise considerations in determining scalar
dissipation rate from passive scalar image data Exp. Fluids 40 (4) 577-588.

Corrsin S 1964 Further generalization of Onsager's cascade model for turbulent spectra
Phys. Fluids 7 1156-1159.

Pao Y H 1965 Structure of turbulent velocity and scalar fields in large wave-numbers
Phys. Fluids 8 1063-1075.

Antonia R A and Mi J 1993 Corrections for velocity and temperature derivatives in
turbulent flows Exp. Fluids 14 (3) 203-208.

Wang G-H and Clemens N T 2004 Effects of imaging system blur on measurements of
flow scalars and scalar gradients Exp. Fluids 37 (2) 194-205.

Nandula S P, Brown T M and Pitz R W 1994 Measurements of scalar dissipation in the
reaction zones of turbulent nonpremixed Hj-air flames Combust. Flame 99 (3-4) 775-
783.

Ferrdo P, Heitor M V and Salle R, On the accuracy of scalar dissipation measurements by
laser Rayleigh scattering, 10th International Symposium on Turbulence, Heat and Mass
Transfer, Lisbon, Portugal, 2000.

Wang G-H, Clemens N T and Varghese P L 2005 High-repetition rate measurements of
temperature and thermal dissipation in a non-premixed turbulent jet flame Proc.
Combust. Inst. 30 691-699.

Lele S K 1992 Compact finite difference schemes with spectral like resolution J. Comp.
Phys. 103 (1) 16-42.

Moin P and Mahesh K 1998 Direct numerical simulation: a tool in turbulence research
Annu. Rev. Fluid Mech. 30 539-578.

Mahesh K 1998 A family of high order finite difference schemes with good spectral
resolution J. Comp. Phys. 145 332-358.

Sagaut P, Large Eddy Simulation for Incompressible Flows: An Introduction, Third ed.,
Springer, New York, 2005.

Pope S B, Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.

Pruett C D, Toward the de-mystification of LES, in: Toward the de-mystification of LES,
Liu C, Sakell L and Beutner T, (Eds.), Greyden Columbus, OH, 2001, pp. 231-238.
Etebari A and Vlachos P P 2005 Improvements on the accuracy of derivative estimation
from DPIV velocity measurements Exp. Fluids 39 (6) 1432-1114.

Foucaut J M and Stanislas M 2002 Some considerations on the accuracy and frequency
response of some derivative filters applied to particle image velocimetry vector fields
Meas. Sci. Technol. 13 (7) 1058-1071.

45



[42]
[43]
[44]
[45]
[46]
[47]

[48]

[49]
[50]
[51]
[52]

[53]

[54]
[55]

[56]
[57]

[58]
[59]

[60]

[61]
[62]

[63]

Lourenco L and Krothapalli A 1995 On the accuracy of velocity and vorticity
measurements with PIV Exp. Fluids 18 (6) 421-428.

Wyngaard J C 1968 Measurement of small-scale turbulence structure with hot wires J.
Sci. Instrum. 1 1105-1108.

Mueschke N J and Andrews M J 2005 Investigation of scalar measurement error in
diffusion and mixing processes Exp. Fluids 40 (2) 165-175.

Mi J and Nathan G J 2003 The influence of probe resolution on the measurement of a
passive scalar and its derivatives Exp. Fluids 34 (6) 687-696.

Stewart E J and Huq P 2006 Dissipation rate correction methods Exp. Fluids 40 (3) 405-
421.

Barlow R S and Karpetis A N 2005 Scalar length scales and spatial averaging effects in
turbulent piloted methane/air jet flames Proc. Combust. Inst. 30 673-680.

Karpetis A N and Barlow R S 2005 Measurements of flame orientation and scalar
dissipation in turbulent partially premixed methane flames Proc. Combust. Inst. 30 665-
672.

Geyer D, 1D-Raman/Rayleigh Experiments in A Turbulent Opposed-Jet, Ph.D. thesis,
Technical University of Darmstadt, 2004.

Smith L M and Reynolds W C 1991 The dissipation-range spectrum and the velocity-
derivative skewness in turbulent flow Phys. Fluids A 3 (5) 992-994.

Mansour M S, Bilger R W and Dibble R W 1990 Spatial-averaging effects in
Raman/Rayleigh measurements in a turbulent flame Combust. Flame 82 (3-4) 411-425.
Tennekes H and Lumley J L, 4 First Course in Turbulence, MIT Press, Cambridge, MA,
1972.

Batchelor G K 1959 Small-scale variation of convected quantities like temperature in a
turbulent fluid. Part 1. General discussion and the case of small conductivity J. Fluid
Mech. 5 113-133.

Pantano C and Sarkar S 2001 A subgrid model for nonlinear functions of a scalar Phys.
Fluids 13 (12) 3803-3819.

Kraichnan R H 1974 Convection of a pasive scalar by a quasi-uniform random straining
field J. Fluid Mech. 64 737-762.

McComb W D, The Physics of Fluid Turbulence, Oxford University Press, Oxford, 1990.
Fox R O, Computational Models for Turbulent Reacting Flows, Cambridge University
Press, Cambridge, UK, 2003.

Hinze J O, Turbulece, 2nd ed., McGraw-Hill, New York, 1975.

Clemens N T, Flow Imaging, in: Joseph P H (Ed.) Encyclopedia of Imaging Science and
Technology, John Wiley and Sons, New York, 2002, pp. 390-419.

Lagendijk R L and Biemond J, Basic methods for image restoration and identification, in:
Bovik A (Ed.) Handbook of image and video processing, Academic Press, San Diego,
CA, 2000.

Oppenheim A V, Schafer R W and Buck J R, Discrete-time signal processing, 2nd ed.,
Prentice Hall, Upper Saddle River, NJ, 1999.

Vaseghi S V, Advanced Digital Signal Processing and Noise Reduction, Second ed., John
Wiley & Sons, New York, 2000.

Moon T K 1996 The Expectation-Maximization Algorithm [EEE Signal Processing
Magazine 13 (6) 47-60.

46



[64]
[65]

[66]

[67]

[68]
[69]

[70]

[71]
[72]
[73]
[74]

[75]

Mi J, Deo R C and Nathan G J 2005 Fast-convergent iterative scheme for filtering
velocity signals and finding Kolmogorov scales Phys. Rev. E 71 066304.

Kim J W and Lee D J 1996 Optimized compact finite difference schemes with maximum
resolution AIAA J. 34 (5) 887-893.

Malm H, Hult J, Sparr G and Kaminski C F 2000 Non-linear diffusion filtering of images
obtained by planar-laser-induced fluorescence spectroscopy J. Opt. Soc. Am. A 17 (12)
2148-2156.

Wang G-H, Clemens N T and Varghese P L 2005 Two-point, high-repetition-rate
Rayleigh thermometry in flames: Techniques to correct for apparent dissipation induced
by noise Appl. Opt. 44 6741-6751.

Pope S B 2004 Ten questions concerning the large-eddy simulation of turbulent flows
New J. Phys. 6 35.

Sreenivasan K R 2004 Possible effects of small-scale intermittency in turbulent reacting
flows Flow, Turb. Combust. 72 (2-4) 115-131.

Wang G-H, Barlow R S and Clemens N T 2006 Quantification of resolution and noise
effects on thermal dissipation measurements in turbulent non-premixed jet flames Proc.
Combust. Inst. 31 doi:10.1016/j.proci.2006.07.242.

Wang G-H, Karpetis A N and Barlow R S 2006 Dissipation length scales in turbulent
nonpremixed jet flames Combust. Flame doi:10.1016/j.combustflame.2006.09.005.
Panda J and Seasholtz R G 2002 Experimental investigation of density fluctuations in
high-speed jets and correlation with generated noise J. Fluid Mech. 450 97-130.

Oefelein J C, Schefer R W and Barlow R S 2006 Toward validation of large-eddy
simulation for turbulent combustion AIAA J. 44 (3) 418-433.

Pitsch H 2006 Large-Eddy Simulation of turbulent combustion Annu. Rev. Fluid Mech.
38 453-482.

Veynante D and Knikker R 2006 Comparison between LES results and experimental data
in reacting flows J. Turb. 7 (35) 1-20.

47



Tables

Table 1. Examples of filter /4 and corresponding transfer function H, for simulating finite
resolution effect. B denotes the box function and relation between the characteristic cutoff

wavenumber k, and the cutoff length scale A, is k, =7/A, .

N Spatial domain Spectral domain Ref
ame h(x,A,) H(KI’KV) eference
1 (1 sin(ic,A, /2) Wyngarrd [23, 24, 43], Antonia
Box A_B 4, —|x| (K A /2) and Mi [29], Mi and Nathan [45]
r 1=r
6 12 6> 2A2 Wang and Clemens [30],
Gaussian (TL'TJ exp(— ?J exp(— ﬁj Pope [38]
sin(7 x/A Pope [38]
Sharp spectral % B(l - |’<1|j
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Table 2. High-order sharp spectral type numerical stencil coefficients [34].

Scheme o B a b c
H23C 0 0 1 0 0
H67C 0 0 3/2 -3/5 1/10
HA7I1 1/2 1/20 17/12 101/150 1/100

H471 0.5771439  0.0896406  1.3025166  0.9935500  0.03750245
H47) 0.5828481  0.0911561  1.2923271  1.0217251  0.03395610
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Table 3. Resolving properties of numerical stencils.

Scheme 7' 7,0 k.’ Description

H23C  0.08 0.73 13.1 2nd-order 3-point central difference

HI2B  0.16 091 6.5 Ist-order 2-point one-side backward difference
H67C 035 092 35 6th-order 7-point central difference

HA7I1 0.68 098 23 10th-order 7-point implicit scheme

H471 0.84 0.99 2.1 4th-order 7-point implicit scheme

H47] 0.90 0.99 2.1 4th-order 7-point implicit scheme (optimized)

Note: 1. Resolving efficiency y for H g(K‘l,KIC )/ K, = 99%.
2. Resolving dissipation efficiency y, = <(X1)m>(’<1c )/ < x1> at k,, =2 (Nyquist sampling).

3. Sampling wavenumber K, for y, =99%.
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Figures
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@Data reductlon J‘
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0 — h, g 2()° Xm
() » O

Figure 1. System model from scalar field 6 to the scalar dissipation rate y, where 6 is the

scalar, A, is the low-pass filter to simulate resolution effect, n is the noise, 0, is the measured
scalar, h, is the post-processing filter, 6, is the post-processed data, 0, is the data after data
reduction, £, is the digital filter for gradient calculation, g is the computed gradient, D is the

diffusivity, and y, is the measured scalar dissipation rate.
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Figure 2 Simplified system model from scalar 6 to gradient g: (a) noise is independent of

resolution; (b) noise and resolution are correlated.
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Figure 8 Illustration of noise effects on the measured 1D scalar energy and dissipation spectra.
The integrations of the shade areas are the true scalar variance and mean dissipation rate; the
integrations of “cross-filled” areas are the apparent variance and dissipation due to noise effect.

SNRs for the turbulence variance (SNR, ) and dissipation rate (SNR, ) are defined as the ratios

of the integrated areas.
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Figure 9 Effects of noise on the measured (a) 1D scalar energy spectra and (b) 1D scalar

dissipation spectra at k. =1. Model spectrum from Pope [38] is used with Re, = 130.
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rate at &, = 1. Model spectrum from Pope [38] is used with Re, = 130.
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Figure 12 Magnitude response of the transfer functions for numerical stencils for gradient

calculation.
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Figure 13 1D dissipation spectrum calculated with numerical stencils H12B, H23C, H471 with
cutoff wavenumber k. =1 and k. =2, respectively. x,. =1 is the ideal Nyquist sampling
(ks =2), kK, =2 is for over-sampling by a factor of two. H23C denotes the 2nd-order 3-point

central-difference, H12B the 1st-order 2-point backward difference, H471 is the 4-th order 7-

point implicit scheme. Model spectrum from Pope [38] is used with Re, = 130.
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Figure 14 Effects of numerical stencils on the measured mean 1D scalar dissipation rate with

varying cutoff wavenumber k..

Here <(;¢1)m> is the mean dissipation rate at cutoff

wavenumber «,.. Model spectrum from Pope [38] is used with Re, = 130.
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Figure 15 Noise amplification factors G,, for different numerical stencils.
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Figure 16 Comparison of the effects of resolution (e.g., averaging) on the 1D scalar dissipation
rate in the direction of interest (x;) and the two orthogonal directions (x, and x3). i=1 denotes
the resolution effect in the measurement direction only, i =2 is for averaging in the x, direction
only, and i =2+3 denotes averaging in the x, and x; directions only. The model spectrum from

Pope [38] is used with Re, = 130.
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Figure 17 Illustration of the pixel binning effects: (a) 25% filling factor and (b) 100% filling

factor. A is the effective sensor size (filter size), A is the pixel pitch (sampling resolution).
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Figure 18 Effects of pixel-binning on the measured (a) scalar variance and (b) mean 1D scalar

dissipation rate. Model spectrum from Pope [38] is used with Re, = 130.
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Figure 19 Effects of pixel-binning on the 1D measurements at Re, =130: (a) scalar variance and

(b) 1D mean scalar dissipation rate.
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