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Abstract: A system model is developed to investigate independent and coupled effects of

resolution, noise, and data processing algorithms on the accuracy of the scalar gradient and 

dissipation measurements in turbulent flows. Finite resolution effects are simulated by 

spectral filtering, noise is modeled as an additive source in the model spectrum, and 

differencing stencils are analyzed as digital filters. In the current study, the effective 

resolution is proposed to be a proper criterion for quantifying the resolution requirement 

for scalar gradient and dissipation measurement. Both effective resolution and 

noise-induced apparent dissipation are mainly determined by the system transfer function. 

The finite resolution results, based upon a model scalar energy spectrum, are shown to 

agree with non-reacting experimental data. The coupled resolution-noise results show 

three regions in the mean scalar dissipation rate measurement: noise-dominant region, 

noise-resolution correlated region, and resolution-dominant region. Different noise levels 

lead to different resolution error curves for the measured mean scalar dissipation rate. 

Experimental procedures and guidelines to improve the scalar gradient and dissipation 
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experiments are proposed, based on these model study results.  The proposed system 

approach can also be applied to other derived quantities involving complex transfer 

functions.

Keywords: Scalar dissipation; Turbulent flow; Measurement accuracy; Resolution; Noise
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Nomenclature

a , b , c coefficients in the high-order spectral-like stencil
B box filter

SRC constant in the model spectrum of Smith-Reynolds

CPC constant in the model spectrum of Corssin-Pao

PC , C , LC constants in the model spectrum of Pope

eC CeeC 1

D scalar diffusivity [m2s−1]

 11 D ,  D 1D and 3D scalar dissipation spectrum

 E 3D kinetic energy spectrum

 11 F ,  F 1D and 3D scalar energy spectrum

 1nF 1D noise floor

Bf Batchelor  frequency, BB Uf 2 [s−1]

Lf , f non-dimensional functions in the model spectrum of Pope

g gradient

NG noise gain factor for the numerical stencil  

eh effective system filter, rpge hhhh **   

gh numerical stencil for gradient calculation

ph post-processing filter, e.g. smoothing

rh filter to simulate resolution effect

eH effective system transfer function, rpge HHHH    

gH , pH , rH Fourier transforms of ph , gh and rh , respectively

G, N Fourier transforms of g and n

k turbulent kinetic energy
L turbulent outer length scale

L turbulent outer length scale for scalar

m parameter in the model spectrum of Smith-Reynolds
n noise
x general coordinate component [m]

1x , 2x , 3x Cartesian coordinates [m]

Greek symbols

 ,  coefficients in the high-order spectral-like stencil

SR parameter in the model spectrum of Smith-Reynolds

P parameter in the model spectrum of Pope
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 3D scalar dissipation rate [s−1]  

1 1D scalar dissipation rate [s−1]  

a apparent scalar dissipation rate [s−1]  

 sampling resolution [m]

e , p , r characteristic length scales of filters eh , ph and rh , respectively [m]

 turbulent kinetic energy dissipation rate

 measurement error for quantity 

 resolving efficiency for the numerical stencil

 resolving dissipation efficiency for the numerical stencil

 Gamma function
 Kolmogorov length scale, [m]

 wavenumber [rad m-1]

1 wavenumber along 1x direction [rad m-1]

C1 cutoff wavenumber along 1x direction, 211 SC   [rad m-1]

S1 sampling wavenumber along 1x direction [m-1]

B Batchelor wavenumber [rad/m-1], BB  1

g characteristic wavenumber of numerical stencil g [rad m-1]

e , r , p characteristic wavenumber of filter eh , rh and ph , respectively [rad m-1]

ee   , rr   and pp     

I wavenumber corresponds to the integral length scale l [rad m-1]  

B Batchelor scale  [m]

 kinematic viscosity of fluid [m2s−1]
 scalar (e.g. mixture fraction, temperature)

d scalar after data-reduction

m measured scalar

p scalar after post-processing

 Fourier transform of scalar    

LSF standard deviation of LSF [m]  
2
n variance of noise  

 non-dimensional wavenumber, C11     

 general quantity of interest, e.g. 2 , 1   

Dimensionless numbers

Re Reynolds number

LRe outer-scale Reynolds number, 
2

Re kL 

Re Taylor microscale Reynolds number
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Sc Schmidt number, DSc 

Mathematical operators

 mean quantity  

* convolution operator
 gradient operator

Abbreviations

DNS direct-numerical-simulation
FWHM full width half maximum
H12B 1st-order 2-point one-side backward difference
H23C 2nd-order 3-point central difference
H67C 6th-order 7-point central difference
HA7I 10th-order 7-point high-order spectral-like implicit scheme
H47I 4th-order 7-point high-order spectral-like implicit scheme
H47J 4th-order 7-point high-order spectral-like implicit scheme (optimized)
LES large eddy simulation
LSF line spread function
MTF modulation transfer function
NF noise floor
PIV particle image velocimetry
PSF point spread function
rms root mean square
SGS sub-grid scale
SNR signal-to-noise ratio
SS sharp-spectral filter

Superscripts and subscripts

' fluctuation  quantity  
* normalized quantity  

m measured quantities  

i ,  i coordinate components in the ix -direction, i 1, 2 and 3  
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1 Introduction

The scalar dissipation rate  defined as 
2

2   D , where  is a conserved scalar and D is 

the molecular diffusivity  is important in scalar mixing because it is a measure of the rate at 

which inhomogeneities in the scalar property are removed by diffusion [1]. Furthermore,  is 

particularly important in combustion because it is fundamentally related to the structure of 

turbulent nonpremixed flames and appears directly or indirectly in most turbulent combustion 

models [2-4]. Owing to its importance in turbulent mixing, a great deal of work has been directed 

at its measurement in turbulent flows and flames by applications of single- or two-point time-

series measurement [5-13], 1D time-series measurements [14], 1D line imaging [15, 16], 2D

planar and 3D imaging [17-22].  The accurate measurement of the scalar dissipation rate is very 

challenging, especially in turbulent reacting flows, due to the limited spatial resolution and low 

signal levels. Experimental and analytical results have shown that resolution and noise have 

opposite effects, since limited resolution acts to reduce scalar gradients [23, 24], whereas noise 

tends to increase the measured dissipation [25]. These coupled but opposing effects make the 

assessment of the experimental accuracy in dissipation measurements extremely difficult, which 

is illustrated in the recent study of spatial resolution and noise effects in scalar imaging 

experiments using Monte Carlo simulations [26].  

Wyngaard [23] studied the effect of the hot-wire length on the spectra and variances of 

the stream-wise velocity and temperature fluctuations and gradients by using the model energy 

spectrum of Corrsin [27] and Pao [28]. The results suggest that the measured values of both 

velocity and scalar gradients decrease significantly as the probe length increases. Wyngaard [24]

further found that the 1D spectrum is attenuated significantly when the wire length is sufficiently 
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long. Antonia and Mi [29] conducted spectral corrections for all the measured spatial derivatives 

of velocity and temperature fluctuations by using the isotropic relations to infer the 3D energy 

spectrum from the measured 1D spectrum of temperature. Their results showed that the 

measured derivative variances are highly sensitive to the separation between sensors. A model 

was developed to enable the prediction of resolution-induced errors in scalar gradients for 

individual dissipation structures [30]. The optical resolution effects on the measured dissipation 

layer thickness, peak gradient, and peak dissipation rate were determined for the case where the 

dissipation layer profile and the optical line spread function (LSF) can be approximated as 

Gaussian. It was concluded that, for a single dissipation layer structure, the layer thickness 

should be 7.5 times larger than the standard deviation of the LSF in order for the peak dissipation 

rate measurement error to be less than 10%.

Several studies have investigated the important effects of noise on scalar dissipation 

measurements. Noise effects are particularly important for laser scattering measurements, 

especially those that use Rayleigh or Raman scattering, since they tend to suffer from relatively 

low signal-to-noise ratio (SNR). Mi and Antonia [25] showed that the measured squared-gradient 

term for a passive scalar  is     22
2

2
1

22
 nnxx

m
 . Here indicates a 

time- or ensemble-averaging process, subscript m denotes the measured quantity, 1n and 2n are 

the noise levels at two adjacent points, and is the separation between the two points. The 

noise-induced dissipation rate in practical measurements has been termed the “apparent 

dissipation” [31] and is given by 22
2

2
1  nn . The apparent dissipation is always positive, and 

so the measured squared-gradient is always higher than its true mean value. In fact, the apparent 

dissipation will tend to dominate at arbitrarily high resolution since    2x constant and 
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 22
2

2
1 nn as 0 . The effect of noise on the measured mean scalar dissipation is 

particularly important in relatively low SNR measurements, such as those that employ gas-phase 

Raman [15, 16] and Rayleigh scattering [32, 33] in reacting flows.

The major difference between measurements of a scalar quantity as opposed to its

gradient/dissipation is that the effects of the data processing, such as the smoothing filter and 

numerical stencil, are significant in the latter case and must be considered. Numerical stencil 

effects have been thoroughly investigated in computational fluid dynamics [34-38], but their 

influence on the accuracy of quantities derived from measurements has received less attention.

Depending on the implicit or explicit nature of the numerical stencil used, the differentiation 

accuracy is not only affected by the sampling resolution, but the specific scheme as well, e.g. the 

resolving efficiency [34]. Pruett [39] pointed out that the finest physical scale is determined by 

the underlying physics, but the numerical differentiation accuracy is mandated by the chosen 

numerical stencil. The numerical stencil effects have been recognized in gradient related 

experiments, e.g. vorticity measurements using the Particle Image Velocimetry (PIV) 

technique [40-42].

In this context it should be emphasized that the measurement of the scalar dissipation rate

is a system problem in which experimental factors, like optical system resolution, experimental 

noise, post processing filter, and numerical stencils act together to determine the measured value. 

Specifying only the experimental probe resolution, such as determined by the effects of probe 

length [23, 24, 29, 43, 44] and optical system blur [30], is not adequate for quantifying the 

resolution error of gradient-based measurements. It is the effective resolution, characterized by 

the overall system transfer function, that determines the true resolution of the measurement. This 

system view also suggests that grid convergence studies, which are sometimes used to determine 
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the finest dissipation scale [21], may only reflect the resolution for specific numerical schemes, 

i.e., the numerical resolution.  Such tests may or may not be able to determine the underlying 

physical scale, and the measured dissipation rate may or may not be claimed to be fully-resolved.  

Furthermore, the noise-induced apparent dissipation is more complicated than assumed in the 

analysis by Mi and Antonia [25], because the effect of the specific numerical differentiation 

stencil was not considered.  The numerical stencil affects both the effective resolution and 

apparent dissipation, and its effect must be accounted for.  

The objective of the current study is to develop a more thorough understanding of the 

independent and/or coupled effects of the factors that influence dissipation measurements. The 

system model developed here is more comprehensive than previous models [23, 24, 29, 43, 44]

and can be used for either time-series or spatially-resolved imaging data. The physical scales that 

are to be measured are modeled by using a model turbulent energy spectrum. The resolution 

effect is simulated by filtering the model spectrum in the spectral domain, similar to Mi and 

Nathan [45], and the noise effect is modeled as the additive uncorrelated noise floor 

superimposed on the model energy spectrum [25].  Reynolds number effects on the resolution 

requirements are compared with experimental data from nonreacting jets [45].  The available 

numerical schemes are so numerous that the range of possible combinations is 

overwhelming [34]. Therefore, procedures to select or design the optimum numerical stencil 

under certain experimental circumstances are presented. Among the various experimental 

techniques that are available to measure or derive the scalar dissipation rate [46], the current 

system model is focused on the direct approach where the scalar quantity is measured at adjacent 

points and its gradient is then calculated numerically. 
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Though the numerical results are limited by use of the model spectrum, the system model 

is generic, and some of these results apply to general gradient and dissipation related 

experiments.  This study will be particularly important for scalar dissipation rate measurements 

where the dissipation length scale is unknown (e.g. turbulent flows in complex geometry, 

turbulent reacting flows) and the signal level is low [15, 16, 47, 48].

2 System model

Figure 1 shows a diagram of the system model for the measurement of the scalar dissipation rate 

 , starting from the scalar distribution  . The model is developed for 1D experiments, but it 

can be readily extended to the 2D and 3D cases. The system model incorporates several sub-

models that represent experimental and numerical processes involved in obtaining the scalar 

gradient and dissipation. In the current system model there are several key processes: (1) The 

measured scalar signal is processed by an analog filter before being digitally sampled by the 

analog-to-digital converter. The analog filtering includes effects of anti-aliasing filters,

averaging owing to finite probe/pixel length [23, 24, 29, 43], and optical blurring [30]. (2) 

Post-processing filters may be applied, for example to smooth noisy data. (3) Some data 

reduction procedure may be used, such as converting a Rayleigh scattering signal to temperature

or mixture fraction. Such a procedure will be specific to a given experiment. (4) The sampled 

data are numerically differentiated to obtain the squared gradient of the measured scalar.  (5) The 

squared gradient is multiplied by the diffusivity.

For 1D linear operations, these sub-models can be characterized as

Measurement: nhrm   * , (1)

Post-processing: mpp h  * , (2)
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Data-reduction: dp   , (3)

Gradient: dghg * , (4)

Dissipation: 2||2 gD , (5)

where rh is the filter to simulate the resolution effect, n the noise,  the convolution operator, 

m the measured scalar quantity, ph the post-processing filter, p the post-processed scalar, d

the scalar after data-reduction, gh the filter used to represent the gradient calculation, and g the 

computed gradient.  

The measurement sub-model (1) includes resolution and noise effects. The resolution 

effect is modeled as a convolution of the scalar distribution with the analog filter, rh . The noise 

effect is modeled as uncorrelated additive source. For example, photon shot noise can be 

approximated as an additive random source whose variance is proportional to the signal intensity 

for high signal levels. The post-processing sub-model (2) considers the effect of the 

post-processing filters, e.g. averaging, smoothing, pixel-binning, etc. Since the data reduction 

sub-model (3) is measurement technique dependent and it is not included in the development of 

the system model. The gradient sub-model (4) evaluates the effect of the numerical 

differentiation stencils. The gradient filter depends on both the sampling resolution and the 

specific numerical stencil used. The dissipation sub-model (5) mainly considers the effect of 

diffusivity, which is primarily important in flows with variable properties such as reacting flows. 

The importance of this is easily overlooked, but Geyer [49] showed that errors in the diffusivity 

may have a significant impact on the calculated mixture fraction dissipation in reacting flows.

In the following analysis, it is assumed that: (i) the data reduction process (3) is ignored; 

(ii) the diffusivity is constant, and so the mean squared-gradient term is used as a proxy for the 
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dissipation; (iii) noise is uncorrelated with the scalar quantity. Under these assumptions, the 

measured gradient may be expressed as

 nhhhg rpgm  *** . (6)

It can be seen that the derived gradient is affected jointly by the resolution, noise, 

post-processing filter, and the numerical scheme. Therefore, the effective system transfer 

function may be defined as

rpge hhhh ** , (7)

In most optical diagnostics measurements, the noise and resolution are coupled. For 

example, larger pixel size of an array detector will lead to better SNR under the same incident 

light level because of the larger number of photons collected per pixel. For resolution-dependent 

noise, the system model can be written as,

 nhhhg rpgm  *** . (8)

These two gradient models are shown schematically in Fig. 2.  In the Fourier domain, the 

above system models can be expressed as,

 NHHHG rpgm   , for resolution independent noise source, (9)

 NHHHG rpgm   , for resolution dependent noise source. (10)

where mG , gH , pH , rH ,  and N are Fourier transforms of mg , gh , ph , rh ,  and n , 

respectively. In the following sections, it will be shown how these independent and/or coupled 

processes affect the measured gradient and dissipation rate.



14

3 Model scalar spectrum

For isotropic turbulent flow, Corrsin [27] and Pao [28] developed a 3D scalar energy spectrum,

  









 3/43/13/53/1

2

3
exp  DCCF CPCP for I  , (11)

where 2
3

2
2

2
1   is the magnitude of the wavenumber vector, 7.1CPC [29, 50], 

is the mean scalar dissipation rate,  is the mean kinetic energy dissipation rate,  is the 

wavenumber (with units of radians/length), and I is the wavenumber corresponding to the 

integral length scale. This form was widely used in the correction of the finite probe length 

effects by Wyngaard [24], Antonia and Mi [29], and Mi and Nathan [45], and spatial averaging 

effects in reacting flows by Mansour et al. [51]. For small Schmidt number flows ( DSc  ), 

the smallest spatial length scale is the Obukhov-Corrsin scale 4/3Sc [52].  For large Schmidt 

numbers, the smallest length scale is the Batchelor scale [53], defined as 2/1 ScB  .  

Batchelor scale is commonly referred as the finest mixing scale in turbulent mixing even though 

its definition is valid only for large Schmidt numbers [52].  In the current study, it is not 

necessary to distinguish between the Batchelor and Obukhov-Corrsin scales because we limit our 

discussion to the case of near unity Schmidt numbers when both scales are the same as the 

Kolmogorov scale. 

The normalized wavenumber is calculated as B  , where BB  1 is the 

“Batchelor wavenumber”, and corresponds to the cutoff frequency of the dissipation range. For 

gas flows with 1Sc , the normalized energy spectrum is
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      







  3/43/5*

2

3
exp  CPCP CCF . (12)

A modified version of this equation was developed by Smith and Reynolds [50] for the 

kinetic energy spectrum. However, it can be assumed that the normalized scalar energy 

spectrum is of the same form as the normalized kinetic energy spectrum for flows with 1Sc . 

The Smith-Reynolds model spectrum is

      m

SRSRCF    exp
3/5* for I  , (13)

where 2SRC , 

4/3

3

42
m

SRSR
mm

C
















 ,  is the Gamma function , m is an appropriately 

chosen constant, and it is found that 2m matches experimental data better.  The Corrsin-Pao 

spectrum is just a special case of the Smith-Reynolds model with m 4/3 and SRC 1.7.

Both the Corrsin [27]-Pao [28] and Smith-Reynolds [50] model scalar energy spectra

have an exponential decay in the high wavenumber region, a slope of -5/3 in the intermediate to 

low wavenumber range, and are accurate only in the high wavenumber range I  . It is well 

known that for isotropic turbulence, the 3D spectrum approaches zero at low wavenumber, 

which is not reflected in either the Corrsin-Pao or Smith-Reynolds models. Therefore, these 

models are of limited value for studying quantities, such as the scalar variance, which are 

strongly affected by low wavenumber fluctuations. Using these energy spectrum models to 

analyze the measurement error in scalar variance due to finite resolution effects is questionable

(e.g. Ref. [51]).

A correct model must consider the low wavenumber region to include relatively large 

scale turbulent motions.  Pope [38] developed such a the model for the kinetic energy spectrum,
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  )()(3532
 fLfCE LP

 , (14)

where Lf and f are non-dimensional functions defined as

 

035

2
)(

p

L

L

CL

L
Lf





















 , (15)

      CCf P 
4144

exp)( , (16)

where 
23

kL  is a characteristic large-scale length scale, k is the mean kinetic energy, 

and   4/13   is the Kolmogorov scale. Pope [38] suggests the following values for the 

constants in Eqs. (14)-(16): 20 p , 2.5P , 5.1PC .  C and LC are determined by the 

requirement that the integrals of the energy and dissipation spectra over all wavenumbers are the 

mean kinetic energy and dissipation rate, respectively.  At very high Reynolds number, the 

asymptotic values are 40.0C and 78.6LC . This model spectrum has 0p scaling for low 

wavenumber, the classical 35 Kolmogorov scaling in the inertial range, and exponential 

decay in the dissipation range. With the knowledge of the model energy spectrum, the 

corresponding homogeneous dissipation spectrum is given by   E22 .  An outer-scale

Reynolds number can be defined based on the turbulence kinetic energy and dissipation as 


2

Re kL  , which related to the Taylor scale Reynolds number by LRe
3

20
Re  as 

in [38]. For high Reynolds number turbulent flow, the relation between the large-scale length 

scale and the Kolmogorov scale is 43Re LL . Following the same argument as in the 
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Smith-Reynolds model spectrum for flows with 1Sc , the normalized scalar energy spectrum is 

assumed to have the same form as the normalized kinetic energy spectrum [54],

    )()(
3/5*   


 

 f
L

fCF
B

LP , (17)

where LL  .  The model energy spectrum is mainly a function of the normalized wavenumber 

* and the length scale ratio BL  , which can be expressed in terms of the Reynolds number as 

4/3ReLB LL   for 1Sc .  

For the case of large Schmidt number, the spectrum exhibits a viscous-convective 

subrange with a 1 scaling [52], and so the model spectra of Corrsin [27]-Pao [28], 

Smith-Reynolds [50] and Pope [38] are not appropriate. Model scalar energy spectra including 

Schmidt number effects have been proposed by Kraichnan [55], McComb [56] and Fox [57].  

However, these models are relevant to high Sc number flows and so are not necessarily 

appropriate for gas phase studies. Nevertheless, the major objective of the current study is to 

introduce the system model approach, and so an appropriate model, such as Fox’s, could be used 

to study the experimental effects of noise, resolution, data processing algorithms and numerical 

stencils on dissipation measurements in high Schmidt number flows.  

With the definition of the 3D energy spectrum, the corresponding 1D scalar energy 

spectrum can be calculated as [38, 52, 58]

   
 




 32211

4





 dd

F
F . (18)

The scalar dissipation spectrum and its normalized form are
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    FDD 22 , (19)

     **2*** 2  FD  . (20)

Figure 3 shows a comparison of the 3D model energy and dissipation spectra of 

Corrsin-Pao [27, 28], Smith-Reynolds [50] and Pope [38]. It can be seen clearly that both 

Corrsin-Pao and Smith-Reynolds 3D model spectra only capture the high wavenumber region 

( I  ) of the energy spectrum. Pope’s model includes Reynolds number effects and matches 

experimental data in the literature [38]. Also, as expected, the dissipation spectra from all three 

models agree much better than the energy spectra, especially for the model from 

Smith-Reynolds [50] and Pope [38].

4 Results and discussion

The proposed system model will be used to study the independent and coupled effects of finite 

resolution, noise and numerical stencil, on the measured scalar gradient and dissipation rate.  The 

analytic results and discussions are mainly for 1D data, but the system model can be easily 

extended to the 2D and 3D cases.  

4.1 Resolution effect

The isolated effect of resolution is investigated by assuming that noise is negligible, and the 

differentiation is exact without numerical artifacts.  For a measurement with finite resolution, the 

measured 1D scalar energy and dissipation spectra are related to corresponding true spectra as,

      11

2

111 ,  FHF rrm
 , (21)

      11

2

111 ,  DHD rrm
 , (22)
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where  rrH  ,1 is the filter that represents the finite resolution effect and r is the 

characteristic cutoff wavenumber of the filter. In the literature, various filter models have been 

used in the literature to approximate finite resolution as summarized in Table 1. They are similar 

to the low-pass filters used in large eddy simulation (LES) [37, 38]. Resolution effects are 

related both to “averaging” over the finite probe volume and “sampling” at known spatial 

frequency by the detector(s). Averaging is a common problem in practical experiments, such as 

finite wire length, array-detector pixel size, pixel binning, etc.  In previous studies by 

Wyngaard [23, 24, 43], Antonia and Mi [29], and Mi and Nathan [45], averaging was modeled as 

a box filter, which implies that the signal is uniformly distributed along the finite wire length.  In 

imaging experiments the averaging is due to the blurring effect of the imaging system, which is 

quantified by the optical system point spread function (PSF) and modulation transfer function 

(MTF) [30, 59].  The resolution effect due to finite sampling can be modeled by the sharp 

spectral filter if a relatively sharp spectral cutoff anti-aliasing filter is used.  

By using the 1D model spectrum as the “true” spectrum, we can determine the ratio of 

the measured to the true variance from 1D measurements,

      



0

111

0

111
22  dFdF mm , (23)

and the ratio of the measured to the true 1D mean scalar dissipation is

      



0

111

0

11111  dDdD mm
. (24)

It can be seen clearly that both ratios are functions of the filter rh .  These forms have been 

used [24, 29, 45] with rh represented by a box filter.
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Using Eqs. (23) and (24), the measurement error due to finite resolution can be expressed 

as,

 m 1 , (25)

where 2  and 1  for scalar variance and 1D mean dissipation rate, respectively.

To simulate the resolution effect, three filter forms were used: box, sharp-spectral (SS) 

and Gaussian. Figure 4 shows the transfer functions of these filters for a normalized cutoff 

wavenumber of *
r = 0.5. It can be seen that both box and Gaussian filters still have finite gain of 

0.4 at *
1 = 0.5 and approach zero near *

1 = 1. This is different from the ideal sharp spectral 

filter, which exhibits no leakage for wavenumbers higher than the designed cutoff *
1 = 0.5.  

Figure 5 shows the filtered dissipation spectra using the same three low-pass filters with cut-off 

wavenumber of *
r = 0.5.  The leakage of the spectral energy beyond the cut-off wavenumber is 

expected considering Fig. 4.  Figures 4 and 5 show that the box and Gaussian filters have nearly 

the same spectral behavior.  

Figure 6 compares the averaging and sampling effects of different analog filters on the 

turbulent scalar variance and mean 1D scalar dissipation rate. To obtain the results in Fig. 6, it 

was assumed that the sampling resolution is high enough that there is no aliasing problem for 

averaging effects.  Figure 6 shows that the finite resolution effects are nearly the same for the 

box and Gaussian filter, but are different for the sharp-spectral filter.  At high resolution (large

*
r ), the averaging error in the scalar dissipation is much larger for the box and Gaussian filters 

than for the sharp-spectral filter.  Figure 6 essentially demonstrates that the effect of spatial 

averaging is much larger than that of finite sampling rate.  Though the scalar variance is not very 
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sensitive to the finite resolution effect, Fig. 6a shows that the specific filter type does affect the 

error curve.  This may be important when comparing experimental data with LES resolved fields 

and validating sub-grid-scale (SGS) modeling because the effective experimental filter may 

affect the results.  

The measured data can be corrected for averaging effects due to filters shown in Fig. 6. 

For example, the finite wire length effect may be corrected before calculating the energy and 

dissipation spectrum in hot/cold wire experiments [29, 45].  Knowing the filter transfer function, 

the true energy spectrum can be corrected via

       2

11111 , rrm
HFF   , (26)

Several studies have been aimed at optimizing this deconvolution. The main difficulties are 

associated with the accurate measurement of the transfer function rh and the presence of 

noise [60].  Various algorithms have been developed that reflect different ways to recover a best 

estimate of the true value. Wiener and regularized filters are better for the case where both the 

transfer function and noise characteristics are known [61, 62]. Some iterative restoration 

techniques [63], e.g. expectation maximization algorithms, work better for the case of a known 

transfer function but unknown noise characteristics. It should also be noted that in the presence 

of noise the transfer function of   2

1,1 rrH  behaves like a high-pass filter which amplifies

noise.  Some of these issues will be discussed further in section 4.5.

Figure 7 compares the resolution effects simulated using different model spectra. These 

curves are referred as error curves for the variance and mean dissipation rate since they are 

directed related to the measurement error defined in Eq. (25).  In the figure, rf and Bf are the 

filter cut-off frequency and Batchelor frequency, respectively, and therefore **
rr f , where 
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Brr fff * . The Batchelor frequency is defined as BB Uf 2 , where U is the mean 

convection velocity [45].  Four different Reynolds numbers, Re 50, 130, 500 and 1500, are 

used for Pope’s model spectrum.  As shown in Fig. 7, the ratio of   22  m and 

  11 
m

, decrease roughly linearly for the former and exponentially for the latter case with 

decreasing resolution (increasing *1 r ).  As discussed in section 3 (Fig. 3a), the Corrsin-Pao and 

Smith-Reynolds model spectra do not consider the low wavenumber effects, and thus studying 

resolution effects on the measured variance using these two model spectra will not give the 

correct trend, which is clearly shown in Fig. 7a.  Pope’s model spectrum with Re 130 can 

match the jet flow experimental data ( Re 180) in Mi and Nathan [45].  Using Pope’s model

with different Reynolds numbers as in Fig. 7a, it is seen that the resolution effect on the scalar 

variance is Reynolds number dependent, i.e. smaller error at higher Reynolds number.  However, 

the resolution effect on mean scalar dissipation rate is not so sensitive to the Reynolds number, 

as seen in Fig. 7b. This is expected since the variance is mainly affected by the large scales 

whose characteristics are more sensitive to Reynolds number.  Figure 7b also shows that results 

from different models can give nearly the same resolution error curve for the 1D mean 

dissipation rate.  

Note that the large scales can depend strongly on the flow geometry, so the model 

spectrum used here is not expected to be universally applicable with regard to large turbulent 

scales and the associated effect of resolution on the variance.  This is not a limitation of the 

present work, because the system model presented here may be applied to any model spectrum or 

to experimental data.  
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4.2 Noise effect

If noise is uncorrelated with the signal, it may be modeled as an additive source to the measured 

spectrum. In this case the measured scalar is nm  , and the measured scalar energy and 

dissipation spectra can be expressed as,

      11111  nm
FFF  , (27)

       111
2
111 2  nm

FFDD  . (28)

For white noise, the noise spectrum is flat in the spectral domain (noise floor), as illustrated in 

Fig. 8a.  The noise spectrum is modeled as

CnnF 1
2

1)(   , (29)

where   C1 and  is the sampling resolution. Equation (29) satisfies the relation 

  10 1
2 1




dF
C

nn  , and so the noise-induced apparent dissipation may be calculated as

2
1

2

3

2
Cna D   . (30)

From these relations, the SNR for turbulence variance can be defined to quantify the noise 

induced error for the scalar variance measurement as

22
nVSNR  . (31)

Similarly, the SNR for the dissipation rate can be expressed as
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3

Cna D
SNR







  . (32)

The definitions of VSNR and SNR are illustrated in Fig. 8.  

The VSNR and SNR are similar to the conventional SNR, nSNR  , in that all of 

them are inversely proportional to the standard deviation of the noise. However, the SNR is

highly resolution dependent as it also depends on the sampling wavenumber, i.e., 2
11 CSNR   . 

It can be seen clearly in Fig. 8 that the apparent dissipation increases without bound with 

increasing resolution.  Once the cut-off wavenumber C1 is higher than the dissipation cut-off 

wavenumber (i.e., 1*
1 C ), then the mean value of the true dissipation rate 1 will remain 

constant with further increase in the wavenumber. Therefore, the unnecessary high resolution 

will significantly amplify the noise induced apparent dissipation rate and reduce the SNR , as 

illustrated by Fig. 8.

To further illustrate the noise effect on the scalar energy and dissipation spectra, Pope’s 

model spectrum with Re 130 is used to generate Fig. 9.  We note that the model energy and 

dissipation spectra shown in the figure exhibit strong resemblance to experimentally measured 

spectra that exhibit significant noise effects [10, 64]. For VSNR = 5, 20, 50, 100 and 500, the 

corresponding SNR = 0.05, 0.22, 0.55, 1.1 and 5.81, respectively. To calculate the SNR in 

Fig. 9, the sampling frequency is taken as twice the cut-off wavenumber, i.e., 1*
1 C .  

VSNR = 100 implies that the noise induced variance is only about 1% of the true scalar variance.  

However, the corresponding SNR = 1.1 suggests that the noise induced dissipation is 91% of the 

true scalar dissipation, or equivalently, the apparent dissipation is about 48% of the measured 
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total dissipation rate.  Figure 9 clearly illustrates this effect, small noise effects in the scalar 

variance can lead to significant measurement error in the mean 1D scalar dissipation rate.  

4.3 Combined resolution and noise effect

In most laser diagnostics experiments, changing resolution will affect the noise 

characteristics, for example, by changing CCD pixel size, laser beam thickness or pixel binning.  

Here the energy and dissipation spectra may be modeled as

         111

2

111 ,  nrrm
FFHF  , (33)

         111

2

1
2
111 ,2  nrrm

FFHD  . (34)

It can be seen from section 4.1 and 4.2 that insufficient resolution will result in a

measured scalar dissipation rate below the true value. Conversely, noise induced apparent 

dissipation always adds to the measured dissipation rate. The combined effect of resolution and 

noise makes the assessment of the experimental accuracy in dissipation measurements 

particularly challenging. Figure 10 shows the measurement error in the scalar variance and mean 

dissipation rate as a function of resolution for different levels of noise using Eq. (33) and (34), 

which assume that the noise is resolution dependent.  The noise effect is smaller for the scalar 

variance than for the scalar dissipation because the variance is dominated by large-scale high-

magnitude fluctuations, which are relatively insensitive to all but the lowest VSNR . In contrast, 

the dissipation is much more sensitive to the noise and the noise effect increases greatly at high 

bandwidth as shown in Eq. (30). Figure 10b shows that if there is noise present in the signal, the 

measured dissipation greatly overshoots the true dissipation as resolution improves (large *
r ). It 

is seen that the noisier the data, the more improved resolution comes at the cost of increased 
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error. All noise error curves collapse at low resolution because the averaging effects at low 

bandwidth effectively increase the SNR of the measurements as seen in Eq. (33) and (34).

These same effects are shown schematically in Fig. 11. For noise-free scalar dissipation 

measurements, the resolution error is represented by the solid line in Fig. 11, which is similar to 

the curve in Fig. 2 of Mi and Nathan [45]. For the noise-free case there is no measurement error 

when the spatial resolution is smaller than or equal to 1*
1  . However, in the presence of noise, 

the ratio of the measured to the true scalar dissipation grows without bound as the spatial 

resolution becomes higher, which agrees with the analysis of Mi and Antonia [25].  This is the 

noise-dominant regime, denoted as I in Fig. 11, where the measured scalar dissipation is always 

higher than the true scalar dissipation and the error generally increases with increasing noise 

level. In the noise and resolution dominant regime, denoted as II in Fig. 11, the effects of finite 

resolution and noise compete with each other to determine the measurement error. Interestingly, 

the measurement error is smaller than the noise-free (i.e., resolution only) error curve as shown 

in Fig. 11. This illustrates that at moderate resolution and moderate noise level, the measurement 

of mean scalar dissipation can be brought closer to the true mean value by the presence of noise. 

This seemingly counter-intuitive result is because noise-induced apparent dissipation offsets the 

attenuated dissipation resulting from finite resolution. However, it is not a useful strategy to 

improve the accuracy of a dissipation measurement by working in this regime because it is hard 

to know the noise level and resolution in actual experiments, and so the accuracy would be 

difficult to determine.  At low resolution (large *1 r ), the averaging effect is so dominant that 

the noise is not important at all. This is the resolution-dominant regime. In this case, the error 

curve collapses to the noise-free error curve and the measured mean dissipation rate is much 
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smaller than the true value. Figure 11 clearly illustrates the intricate relation between resolution 

and noise in scalar dissipation measurements.  

4.4 Gradient Stencil Effect

The theoretical relationship between the scalar energy and dissipation spectra given by Eq. (19)

assumes ideal differentiation in the spectral domain. For data analysis in the spatial or time 

domains, numerical stencils must be used to approximate the derivative.  Furthermore, numerical 

differentiation is usually applied after the experimental data are measured, therefore it will affect 

both the resolution and noise-induced apparent dissipation for the calculated dissipation rate. For 

simplicity we first ignore the effects of the stencil on the noise, in which case the dissipation 

spectrum can be approximated as

       
mCgm

FHDD 11

2

1111 ,2   , (35)

where 211 SC   is the cutoff wavenumber, S1 the sampling wavenumber, and  is the 

sampling resolution.  

First order two-point backward difference stencils (H12B) and second-order central 

difference stencils (H23C), are commonly used to calculate the gradient.  High-order 

spectral-like stencils have also been developed to evaluate the scalar derivatives in computational 

fluid dynamics [34, 65], which may be expressed as














246
112233

2112











 iiiiii

iiiii abcggggg , (36)

where parameters  ,  , a , b , and c are determined by substituting Taylor series expansion 

coefficients, and g represents the implicitly determined local derivative of the scalar.  The 
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parameters  ,  , a , b , and c are different for different order of accuracy and number of 

stencil points used. Table 2 lists coefficients for several high-order schemes, for example H67C 

denotes 6th-order 7-point central difference, HA7I the10th-order 7-point implicit scheme, H47I 

4th-order 7-point implicit scheme and H47J the optimized 4th-order 7-point implicit scheme.  

The system transfer function of the high-order stencil is

       
   








2cos2cos21

33sin22sinsin
, 1

11





cba
jH C

Cg , (37)

where C11   and 1j . The ideal 1D stencil is   111,  jH Cg  .  The capability of a 

particular numerical stencil to match the ideal stencil can be quantified by its resolving efficiency

 [34],

Cg 1  , (38)

where g is the wavenumber at which the error between the filter magnitude transfer function 

and the ideal stencil is less than a certain tolerance, for example    111,1  CgH 1%. The 

numerical schemes discussed by Lele [34] have relatively higher resolving efficiency than the 

H23C and H12B.  Table 3 lists several numerical stencils for gradient calculation, and their 

characteristics are compared in Fig 12.  It can be clearly seen that all these numerical stencils are 

essentially digital filters and mainly differ at the high wavenumber end.  For example, the ideal 

and H12B stencils are high pass filters, and the high-order spectral-like filters are band-pass 

filters, which can match the ideal stencil in the low wavenumber region and attenuate the 

spectrum at the high wavenumber end.  The H23C central differencing is band-pass as well, but 

its attenuation is significantly larger than the high-order spectral-like stencils.  Following the 
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same optimizing procedure as in Lele [34] and Kim and Lee [65], a set of new coefficients

(H47J) was found with resolving efficiency of 0.90 which is higher than those from the filter 

coefficients of Lele [34] ( =0.84) and Kim and Lee [65] ( =0.89).  

If we assume that the physical cut-off wavenumber is the Batchelor wavenumber, and we 

want wavenumbers below this cut-off to be free of stencil affects, then we require Bg   , or 

equivalently,

 BC 1 . (39)

Using this criterion, the implicit sharp-spectral like high order stencils H47I and HA7I in Table 3

have a less demanding for the required sampling resolution to resolve the Batchelor 

wavenumber.  

The stencil effect should be considered especially when the sampling resolution is 

smaller than or close to the physical limiting length scale. This is because the characteristic 

transfer function of the numerical stencil ( gh ) is directly linked to the cutoff wavenumber C1 .  

Figure 13 shows stencil effects on the dissipation spectra for two cases of digital sampling: “fully 

resolved” and “over-resolved”. In the fully resolved case the filter cut-off is at the physical 

limiting scale, i.e. 1*
1 C , and the sampling wavenumber is 2*

1 S (Nyquist sampling). The 

over-resolved case is over-sampled by a factor of two, i.e., 2*
1 C and 4*

1 S . Figure 13

shows that both the H12B and H23C stencils significantly attenuate the true dissipation spectrum 

for the “fully resolved” case. The central difference stencil (H23C) does particularly poorly, and 

the figure shows that the use of such a stencil can significantly degrade the mean dissipation 

even though the measurements may be nominally fully resolved. Figure 13 further shows that 

the dissipation spectrum is reproduced better for both H12B and H23C when over-resolved by a 
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factor of two, but the central difference stencil still exhibits non-negligible error. Also shown in 

Fig. 13 is the H47I scheme, which reproduces the dissipation spectrum very accurately at both 

resolutions. It can be concluded that if the data are sampled at Nyquist rate 2*
1 S , the 4th-order 

scheme can be used to faithfully reproduce the dissipation scales.  

To quantify the capability of a numerical stencil to resolve the mean 1D dissipation rate, 

the dissipation resolving efficiency  may be defined as

    1
*
11   Cm

 , (40)

where        
C

dFHD CgCm

1

0
111

2

1111 ,2


 . Smaller values of  correspond to poorer

resolving capability.  

It should be noted that the resolving efficiency  is different from the dissipation 

resolving efficiency  , since the former is determined by the ratio of wavenumbers as in 

Eq. (38), whereas the latter is based on the mean dissipation rate.  The resolving efficiency 

may be more appropriate for numerical simulations, since the numerical stencil will not only 

affect the resolved mean dissipation, but the accumulation and propagation of numerical errors as 

well [37]. Therefore, it should be expected that for the same turbulent flow, numerical 

simulations using finite difference stencils should have relatively more stringent resolution 

requirements than corresponding experiments.  Table 3 and Fig. 14 also compare the resolving 

capabilities of several numerical stencils in the literature.  It can be seen that at 1*
1 C , there will 

be a 27% and 9% error in the measured mean dissipation rate for the H23C and H12B stencils,

respectively. To fully resolve the total mean dissipation rate (e.g.  =99%), the sampling 

wavenumbers are 13.1 and 6.5 for H23C and H12B stencils.  Therefore, the central differencing 
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scheme H23C is not suggested for the scalar gradient and dissipation calculation when the 

sampling resolution is smaller than or close to the required physical resolution.  On the other 

hand, higher-order spectral-like stencils proposed by Lele [34], have much higher resolving 

capabilities. For example, for a sampling frequency of 2*
1 S , stencils HA7I, H47I and H47J 

resolve at least 98% of the total dissipation rate.  Hence, when the sampling frequency is low, the 

high-order spectral-like schemes are much better than H23C and H12B.

From a resolution point of view, the central difference stencil (H23C) is the worst 

performer even compared to the one-sided difference stencil (H12B). However, considering the 

effects of noise, the H12B stencil acts as a high-pass filter that amplifies noise in the measured 

mean dissipation rate.  In the presence of noise, the capability of the numerical stencil to 

amplify/attenuate the apparent dissipation may be expressed as,

  10

2
110

2

11

11

, 


ddHG
CC

CgN  , (41)

which is the ratio of the noise induced apparent dissipation from numerical stencil to that of the

ideal stencil.  It should be noted that the gain factor GN is independent of the sampling 

wavenumber and is purely determined by the stencil type.  Gain factors for different stencils are 

shown in Fig. 15.  All stencils have smaller gain factor than the ideal stencil (Eq. 19), which 

suggests that the noise induced apparent dissipation is smaller than that from the ideal stencil.  

Considering both resolution and noise effects, the high-order spectral-like stencils [34]

reduce the apparent dissipation due to their band-pass nature, and they largely match the ideal 

stencil because of their high resolving efficiency. Therefore, this type of stencil is recommended 

for processing of experimental data in scalar gradient and dissipation measurements.
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4.5 Noise reducing techniques

Experimental data are generally contaminated by noise, and some kind of post-processing filter 

ph is often applied to remove noise.  For example, Mi and Nathan31 used a low pass filter to 

eliminate the effect of noise above the Batchelor frequency.  Miller and Dimotakis11 used a one-

pole low-pass filter, Dowling10 and Dowling and Dimotakis9 used optimal and Gaussian filters, 

respectively.  However, filtering essentially forces the high wavenumber end of the dissipation 

spectrum to resemble the transfer function of the filter.  This is not necessarily a problem, 

provided the characteristics of the dissipation spectrum are known as in nonreacting isotropic 

turbulent flows.  For general flow conditions a proper post processing filter may be designed if 

the dissipation spectrum is measured without significant noise effects and the experiment is 

fully-resolved.  The function of this filter is to suppress noise without attenuating the true 

dissipation.  The design criteria are to keep the filtered measured scalar mph * close to its true 

value  , while reducing noise as much as possible.  If noise is uncorrelated with the signal, the 

filter transfer function may be expressed as,

      
  

m

nm
pp

F

FF
H

11

111
2

1,






 , (42)

where p is the characteristic wavenumber of the post-processing filter ph .  This implies that a 

filter in physical space may be designed to remove the noise effect when the noise floor can be 

determined.  Eq. (42) is a special type of the Wiener filter [62] and general digital filters may 

also be designed to match this transfer function [61].  

Some nonlinear filters, such as anisotropic [66] and median filters [61], have been 

applied in signal and image processing.  However, most of these filters are limited to the scalar 
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itself and their effects on the measured scalar dissipation rate and scalar gradient are usually 

quantified by “grid convergence” type characterization.  Some other noise correction techniques 

have also been summarized by Wang et al. [67]  

4.6 Effective resolution

It is important to emphasize that the effective resolution of any gradient and dissipation 

measurement depends on both the physical (optical) resolution and the processing schemes that 

are applied.  For example, if a very poor optical system is used, the whole system can be 

dominated by this limiting optical resolution rather than the often reported pixel resolution.  

Furthermore, the numerical schemes for calculating the gradient should be considered not only in 

terms of the order of accuracy (such as the truncation error), but also in terms of their impact on 

the resolution, especially in the presence of noise.  The system-view also highlights the important 

distinction between the dissipation scale and the resolution required to resolve it.  The dissipation 

scale is determined purely by the underlying physics, while the resolution requirements are 

affected by every process in the measurement/analysis system.  

To consider coupled effects of these factors, the measured scalar energy and dissipation 

spectrum may be expressed as

        11

2

1

2

111 ,,  FHHF rrppm
 , (43)

          11

2

1

2

1

2

1111 ,,,2  FHHHD rrppCgm
 . (44)

The effective system transfer function may be expressed as rpge HHHH  .  A characteristic 

filter cut-off wavenumber e may be defined based on the transfer function eH , which is 

analogous to r for the filter rH .  The measured 1D dissipation spectrum may be written as,
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      11

2

111 ,2  FHD eem
 . (45)

The cut-off wavenumber of a filter may be expressed in terms of the sampling wavenumber, such 

as e = CeC 1 , where eC is a constant. Therefore, the effective resolution requirement to 

resolve the physical spatial content up to B is Be   , which may also be written as

BeC   , (46)

This shows that the spatial resolution required to resolve the Batchelor wavenumber B is not 

unique in practical experiments or numerical simulations, and must be determined from an 

overall system view as discussed here.  

One subtle question is how to determine the characteristic cutoff length scale or 

wavenumber of a filter.  Pope [38] defines the cutoff of the box and Gaussian filters as the 

wavenumber r where the magnitudes of the transfer functions have the same value, e.g. 

  rrH  ,1 0.64 as shown in Fig. 4.  However, for some time-series experiments, the 3 dB 

cutoff is adopted, giving   rrH  ,1 71.021  .  These examples show that even with the 

same filter, different definitions of the characteristic cutoff length scale will result in different 

measurement error curves as in Fig. 6 and 7.  Furthermore, if we consider two different 

experiments where the shapes of the system transfer functions are different, then the two 

measurements may have different measurement errors even though the cutoff frequencies for the 

two transfer functions are the same. To avoid the ambiguity caused by different definitions of 

cutoff frequency, it is probably best to base the resolution requirement on the frequency required 

to resolve some fraction of a mean physical quantity (say 99% of the mean kinetic energy). A 

similar resolution requirement was previously proposed for LES [68]. Still, even this method is 
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not ideal because the resolution requirement will depend on the physical quantity of interest 

(e.g., whether the variance or mean dissipation is used).  Though such a measure is not unique, it 

only depends on the quantity of interest and is not subject to the definition of the characteristic

cutoff length scale.  

The dissipation wavenumber B determined from the dissipation spectrum is an 

ensemble of the scalar dissipation rate conditioned on the wavenumber or spatial length scale. 

Nonreacting experiments and theory show that the dissipation is highly intermittent [1, 69] and 

the dissipation structure thicknesses are generally distributed over a range of length scales [17-

20]. There will be some intense but sparse behavior with significantly higher dissipation rate 

than average value [69].  The quantification of the resolution based on the mean dissipation value 

is therefore only statistically meaningful and can only give the correct mean dissipation rate.

This criterion may not be adequate for measurements of instantaneous dissipation structures and 

higher order moments of the scalar dissipation. Therefore, it is questionable whether it is a 

sufficient criterion to measure the PDF of the scalar dissipation or the PDF of the dissipation 

structure thickness.  

4.7 Example 1: spatial averaging along other directions

The effect of spatial averaging along the non-gradient direction has been widely recognized in 

hot/cold-wire experiments in nonreacting flows, but not as much in laser diagnostics 

experiments, especially for reacting flows.  For example, consider a laser scattering measurement 

where the laser beam is relatively large in diameter, but where the averaging effects along the 

laser beam (due to optical blurring and pixel averaging) are very small.  In other words the 

resolution is excellent in the direction of interest but compromised in the two orthogonal 

directions.  The question to be addressed here is how the measured gradient in the 1x direction is 
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affected by spatial averaging in the 2x and 3x directions. This has been studied by 

Wyngaard [23], who investigated spatial resolution requirements when measuring vorticity with 

hot-wire arrays. He used a box filter to model the spatial averaging effect of the hot-wires. Here 

we will show this effect in a more general approach.  

The measured 1D energy spectrum, including resolution effects in directions other than 

the 1x direction, is given by

      
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where i 1, 2 and 3 corresponds to the 1x , 2x and 3x directions,  )()( , i
ri

i
rH  and )(i

r are the 

filter transfer function and its characteristic cutoff wavenumber in the thi direction, respectively.  

The case of i 1 corresponds to the case where the resolution effect is in the 1x direction only, 

i.e., where resolution is perfect in the 2x and 3x directions. This case was discussed previously 

in section 4.1.  After substituting Eq. (47) into Eqs. (23) and (24), the ratio of the measured to the 

true values of the variance and 1D mean dissipation rate may then be determined.  

If the averaging effects are in more than one direction, the measured 1D energy spectrum 

may be written as
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where  )3()2()1(
321 ,,,,, rrrrH  is the general form of the filter to simulate the finite resolution 

effects.  If the resolution effects along different directions are independent, Eq. (48) can be 

simplified as
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Figure 16 shows the simulated resolution effects due to averaging in the x2 and x3

directions with )2(
rH = )3(

rH and )2(
r = )3(

r , and perfect resolution in the x1 direction.  In the 

figure, i 2 indicates averaging in one orthogonal direction only, i 2+3 indicates averaging in 

two orthogonal directions. In the simulation, the case i 2+3 assumes that the finite resolution 

effects can be separated as in Eq. (49).  

Since the model spectrum assumes isotropic turbulence, the results for the i 2 and i 3 

will be identical, and thus only i 2 is shown in Fig. 16. It can be seen clearly in Fig. 16 that 

spatial averaging in one orthogonal ( 2x or 3x ), or both orthogonal directions ( 2x and 3x ) has 

smaller effect on the 1x -gradients than when the averaging occurs in the 1x direction only. For 

example, for the box filter, at *1 r = 2, the errors due to finite resolution along 1x (direction of 

interest), 2x , and 2x + 3x , are 29%, 12% and 21%, respectively.

Figure 16 illustrates an important point for practical measurements.  As discussed in 

section 4.2 and 4.5, the noise can be reduced by applying a post-processing filter ph , which may 

lead to some averaging effect.  An effective way to reduce the noise effect without greatly 

sacrificing the resolution is to filter the signal in the directions other than the direction of interest.  

In the simulation we assumed the gradients are distributed isotropically.  For anisotropic flows,

when the measured gradient is along the major gradient component direction, the resulting finite 

resolution error along non-gradient direction will be even smaller than those in Fig. 16.  For 

example, the radial gradient tends to be much higher than those along the axial and azimuthal 

directions in turbulent jet flames at radial locations near the reaction zone. Therefore, in such 



38

experiments, the resolution along the radial direction should be kept as high as possible, and 

resolution in the other two directions can be compromised.  These are particularly useful for laser 

diagnostic techniques where it may be difficult to reduce the laser beam thickness to smaller than 

~200 μm, such as when an extended focal spot (i.e., Rayleigh range) is desired [59].  For planar 

and 1D imaging laser diagnostic experiments, the effective approach is to achieve high resolution 

along the laser beam direction and align the laser beam with the direction of the highest gradient.  

4.8 Example 2: effects due to pixel binning

As another example of the application of the system model, we will model the effect of pixel 

binning on 1D imaging measurements of the scalar dissipation.  The results from this section 

have important implications for the resolution of measurements that utilize on-chip binning of 

CCD detectors as well as gated integration with time-series measurements [15, 16, 70, 71].  As 

stated previously, a 1D array detector both averages due to the finite pixel size and digitally 

samples at a frequency determined by the pixel spacing (pitch). Both these effects lead to 

measurement errors since averaging causes gradient smoothing and insufficient sampling 

frequency induces aliasing.  As a way to distinguish these effects, consider two different 1D

array detectors with the same sampling frequency (i.e., same pixel pitch  ) but different pixel 

averaging (i.e., different pixel size r ) as shown in Fig. 17. The situation shown schematically 

in Fig. 17 can be realized in practice by array-detectors with different fill factors. The fill factor 

is defined as the fraction of the pixel area that is photosensitive. In Fig. 17 the cases of 25% and 

100% fill factor are shown. A detector that samples with minimal averaging effects will have a 

negligible fill factor, but of course will suffer from poor SNR ratios because it will collect very 
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few photons. Binning is the process of combining adjacent pixels into an array of superpixels, 

and thus it affects both the averaging and sampling frequency. 

In 1D imaging, the averaging effects may be modeled as a box filter followed by digital 

sampling.  This is different from the analysis in section 4.1, where we assumed that the sampling 

frequency was high enough that only spatial averaging effects needed to be considered.  The box

filter has the characteristic filter width of r (pixel size) and the sampling resolution is  (pixel 

pitch). There are two characteristic cutoff frequencies that describe the system, namely, r and 

C1 .  For imaging, the pixel width r can be no larger than the pixel pitch  , and so the cutoff 

of the anti-aliasing filter is equal to or higher than the cutoff frequency, i.e. r or Cr 1  .  

In Fig. 17, the small fill-factor array will have four times the value of r and so have smaller 

averaging effects, but both arrays have equal C1 . There are three important cases to consider 

when an imaging system is used to resolve the dissipation scales: (i) fully resolved, which occurs 

for rCB   1 , (ii) resolved / aliased, which occurs for rBC  1 , and (iii) under-resolved

/ aliased, which occurs for BrC  1 .  

To illustrate the imaging system effects on the measured scalar dissipation rate, we 

assume that the lens blurring effects are negligible and the pixel fill factor is 100% ( rC  1 ).  

Figure 18 shows the 1D scalar energy and dissipation spectra for four binning cases 

corresponding to cutoff wavenumbers of *
1C = 0.2, 0.5, 1.0 and 2.0, respectively.  As discussed 

in section 4.1, the box filter’s transfer function still has finite response at the cutoff wavenumber

r . Therefore, when the cutoff wavenumber is less than the Batchelor wavenumber, i.e. 1*
1 C , 

the measured 1D scalar energy spectrum will be aliased. The aliasing leads to a deviation from 

the ideal spectrum but is hard to see in Fig. 18a.  The aliasing effects are more readily observed 
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in the dissipation spectrum as shown in Fig. 18b, because it is in this wavenumber range where 

the dissipation is largest. We see that the aliasing manifests itself as a local rise in the spectrum 

at wavenumbers just below the cutoff frequency.

Figure 19 compares the measurement error due to pixel binning with that of pure spatial 

averaging due to the sharp-spectral and box filters.  Owing to aliasing effects, the measurement 

errors for the scalar variance and 1D dissipation rate are both smaller than the corresponding 

values of the box filter.  This is expected since the aliasing will transfer some of the scalar 

energy and dissipation from high to low wavenumbers, as shown in Fig. 18.  The aliasing 

resulting from the unresolved part of the scalar energy spectrum increases experimental 

uncertainty, and this uncertainty will be hard to quantify.  

The above analysis can also be applied to time-series measurements that employ a gated-

integrator for which an external anti-aliasing filter is not used [33, 72]. In this case the gated 

integrator averages all fluctuations over the gate width and serves as an implicit anti-aliasing 

filter whose cutoff wavenumber is determined by the gate width.  The subsequent number of 

gates per second determines the system sampling frequency.  In a gated-integrator based 

measurement, usually the gate width is usually much smaller than the sampling period, i.e. 

 r , which leads to negligible averaging effects, but significant aliasing errors.  

4.9 Summary

It should be emphasized that all experimental data are filtered to some extent.  The 

characteristics of the effective filter and the quantity of interest determine the measurement 

quality.  The results developed above are mainly discussed in terms of the spectral domain for 

cases where closed-form expressions for the experimental factors like resolution, noise and 

numerical stencil can be obtained.  For complex systems where non-linear transfer functions may 
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be used, such as with the application of a noise-reducing median filter in post-processing, the 

system model may not be expressed in the spectral domain.  Here, the spatial expressions as in 

Eqs. (6) and (8) can be used to study these effects by numerical simulations, e.g. Monte Carlo 

simulations by Ghandhi [26].  

Though the system model is developed mainly for the scalar gradient and dissipation rate 

measurement, the model itself is more generic.  For example, the system model can be combined 

with the kinetic energy spectrum model of Wyngaard [24] and Antonia and Mi [29] to study the 

effects of experimental factors on the measurement accuracy of the velocity gradient, vorticity, 

kinetic dissipation rate, etc.  Furthermore, the proposed system model approach can also be 

applied to study other derived quantities, e.g. higher order derivatives.  As discussed earlier, the 

numerical results are limited by use of the model spectrum.  However, if high fidelity DNS data 

were available, it could be used to replace the model spectrum, and numerical results could be 

obtained following the present system approach.  

The proposed system approach may also be useful for preparing experimental or DNS 

data for the purpose of validating LES results, and for developing LES sub-grid scale

models [37, 73-75].  Both experimental data and LES results represent filtered flow fields, 

though the filters involved may have significant different characteristics.  The system approach 

can provide more objective validation of the LES by revealing possible artifacts from the

measurements as well as the simulations.  

5 Conclusions

A system model was used to study independent and coupled effects of optical resolution, noise, 

data processing, and differentiation stencil on the accuracy of scalar gradient and dissipation 

measurements. Finite resolution effects were simulated by spectral filtering, noise was modeled 
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as an additive source in the model spectrum, and differencing stencils were analyzed as digital 

filters.  The “effective resolution” is proposed as a useful means of quantifying the resolution 

reduction owing to these combined effects.  Both effective resolution and noise-induced apparent 

dissipation are determined by the system transfer function.  The results for the coupled effects of 

noise and resolution show three regions in the mean scalar dissipation rate measurement: 

noise-dominated region, noise-resolution correlated region, and resolution-dominated region.  

Different noise levels lead to different resolution error curves for the measured mean scalar 

dissipation rate.  The resolution error curve for scalar dissipation is not significantly affected by 

Reynolds number (at least for isotropic turbulence), but the error curve for scalar variance is.  

The model also shows that spatial averaging in directions orthogonal to the measurement 

direction has a smaller effect on resolution than when the averaging occurs in the measurement 

direction. These results are an extension to the work by Wyngaard [23, 24, 43], Antonia and 

Mi [29], and Mi and Nathan [45], Wang and Clemens [30], and Mueschke and Andrews [44] that 

only considered the resolution effect; by Ghandhi [26] on numerical simulation of resolution and 

noise effects; and by Lourenco and Krothapalli [42], Etebari and Vlachos [40], and Foucaut and

Stanislas [41] on numerical stencil effects. Experimental procedures and guidelines to improve 

the scalar gradient and dissipation experiments are proposed based on these model study results.  

The proposed system approach can be applied to other derived quantities involving complex 

transfer functions.  It can also be useful for the preparation of experimental or DNS data used for

LES validation, and in the development of LES sub-grid scale models.  
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Tables

Table 1. Examples of filter rh and corresponding transfer function rH for simulating finite 

resolution effect.  B denotes the box function and relation between the characteristic cutoff 

wavenumber r and the cutoff length scale r is rr   .  

Name
Spatial domain 

 rxh ,

Spectral domain 

 rH  ,1

Reference

Box 










xB r

r 2

11  
 2

2sin

1

1

r

r







 Wyngarrd [23, 24, 43], Antonia 
and Mi [29], Mi and Nathan [45]

Gaussian 



















 2

2
2/1

6
exp

6

rr

x

 






 


24
exp

22
1 r Wang and Clemens [30], 

Pope [38]

Sharp spectral
 

x

x r



 sin











1



r

B
Pope [38]

.
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Table 2. High-order sharp spectral type numerical stencil coefficients [34].

Scheme   a b c

H23C 0 0 1 0 0

H67C 0 0 3/2 -3/5 1/10

HA7I 1/2 1/20 17/12 101/150 1/100

H47I 0.5771439 0.0896406 1.3025166 0.9935500 0.03750245

H47J 0.5828481 0.0911561 1.2923271 1.0217251 0.03395610
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Table 3. Resolving properties of numerical stencils.

Scheme  1


2 *
1S 3 Description

H23C 0.08 0.73 13.1 2nd-order 3-point central difference

H12B 0.16 0.91 6.5 1st-order 2-point one-side backward difference

H67C 0.35 0.92 3.5 6th-order 7-point central difference

HA7I 0.68 0.98 2.3 10th-order 7-point implicit scheme

H47I 0.84 0.99 2.1 4th-order 7-point implicit scheme

H47J 0.90 0.99 2.1 4th-order 7-point implicit scheme (optimized)

Note: 1. Resolving efficiency  for   111,  CgH = 99%.

2. Resolving dissipation efficiency     111   Cm
 at *

1S = 2 (Nyquist sampling).

3. Sampling wavenumber *
1S for  = 99%.
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Figures
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Figure 1. System model from scalar field  to the scalar dissipation rate  , where  is the 

scalar, rh is the low-pass filter to simulate resolution effect, n is the noise, m is the measured 

scalar, ph is the post-processing filter, p is the post-processed data, d is the data after data 

reduction, gh is the digital filter for gradient calculation, g is the computed gradient, D is the 

diffusivity, and m is the measured scalar dissipation rate.  



52

hp

n

 hr hg g

(a)

n

hr ghp hg

(b)

Figure 2 Simplified system model from scalar  to gradient g : (a) noise is independent of 

resolution; (b) noise and resolution are correlated.
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Figure 3 Comparing 3D model scalar energy and dissipation spectra by Pope [38], 

Corrsin [27]-Pao [28], and Smith-Reynolds [50]. (a) 3D scalar energy spectrum  ** F ; (b) 3D 

scalar dissipation spectrum  ** D
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Figure 4 Magnitude-square of filter transfer functions to simulate the resolution effects with 

5.0* r .
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Figure 5 Spatial resolution effects on the 1D scalar dissipation spectrum at 5.0* r .  Model 

spectrum from Pope [38] is used with Re 130.  



56

0.0

0.2

0.4

0.6

0.8

1.0
<

(
2
) m

>
/<


2
>

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25

Sharp spectral

Box

Gaussian

<
(

1
) m

>
/<


1
>

1/
r
*

(b)

Figure 6 Effects of the spatial filter on the (a) scalar variance and (b) mean 1D scalar dissipation 

rate.  Model spectrum from Pope [38] is used with Re 130.  
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Figure 7 Effects of resolution on the measured (a) scalar variance and (b) mean 1D scalar 

dissipation rate.  Model spectrum from Pope [38] is used with Re 50, 130, 500 and 1500.  
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Figure 8 Illustration of noise effects on the measured 1D scalar energy and dissipation spectra.

The integrations of the shade areas are the true scalar variance and mean dissipation rate; the 

integrations of “cross-filled” areas are the apparent variance and dissipation due to noise effect.  

SNRs for the turbulence variance ( VSNR ) and dissipation rate ( SNR ) are defined as the ratios

of the integrated areas.
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Figure 9 Effects of noise on the measured (a) 1D scalar energy spectra and (b) 1D scalar 

dissipation spectra at 1*
1 C .  Model spectrum from Pope [38] is used with Re 130.  
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Figure 10 Effects of noise on the measured (a) scalar variance and (b) mean 1D scalar dissipation 

rate at 1*
1 C .  Model spectrum from Pope [38] is used with Re 130.  
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Figure 11 Illustration of the noise-resolution correlated effects on the 1D scalar dissipation 

measurement. The error curve can be divided into three regions: (I) noise-dominated; (II) noise-

resolution correlated; (III) resolution dominated.
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Figure 12 Magnitude response of the transfer functions for numerical stencils for gradient 

calculation.
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Figure 13 1D dissipation spectrum calculated with numerical stencils H12B, H23C, H47I with 

cutoff wavenumber *
1C = 1 and *

1C = 2, respectively. *
1C = 1 is the ideal Nyquist sampling 

( *
1S = 2), *

1C = 2 is for over-sampling by a factor of two. H23C denotes the 2nd-order 3-point 

central-difference, H12B the 1st-order 2-point backward difference, H47I is the 4-th order 7-

point implicit scheme.  Model spectrum from Pope [38] is used with Re 130.  
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Figure 14 Effects of numerical stencils on the measured mean 1D scalar dissipation rate with 

varying cutoff wavenumber *
1C . Here  

m1 is the mean dissipation rate at cutoff 

wavenumber *
1C .  Model spectrum from Pope [38] is used with Re 130.  
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Figure 15 Noise amplification factors NG for different numerical stencils.  
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Figure 16 Comparison of the effects of resolution (e.g., averaging) on the 1D scalar dissipation 

rate in the direction of interest (x1) and the two orthogonal directions (x2 and x3). i 1 denotes 

the resolution effect in the measurement direction only, i 2 is for averaging in the x2 direction 

only, and i 2+3 denotes averaging in the x2 and x3 directions only.  The model spectrum from 

Pope [38] is used with Re 130.  
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Figure 17 Illustration of the pixel binning effects: (a) 25% filling factor and (b) 100% filling 

factor.  r is the effective sensor size (filter size),  is the pixel pitch (sampling resolution). 
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Figure 18 Effects of pixel-binning on the measured (a) scalar variance and (b) mean 1D scalar 

dissipation rate.  Model spectrum from Pope [38] is used with Re 130.  
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Figure 19 Effects of pixel-binning on the 1D measurements at 130Re  : (a) scalar variance and

(b) 1D mean scalar dissipation rate.


