Solvent control of charge transfer excited state relaxation pathways
in [Fe(2,2’-bipyridine)(CN),12
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The excited state dynamics of solvated [Fe(opy)(CN)42~, where bpy = 2,2’-bipyridine, show significant sensitivity to the solvent Lewis acidity.
Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand
charge transfer (MLCT) excited state of [Fe(bpy)(CN)42~ has a 19 picosecond lifetime and no discernable contribution from metal centered (MC)
states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile.? In the present work, we use the same combination of spectroscopic
techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4I%~ in water, a strong Lewis acid solvent. The charge-
transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13
picosecond lifetime. We find that this MC excited state has triplet (MC) character, unlike other reported six-coordinate Fe(i)-centered
coordination compounds, which form MC quintet (°MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(opy)
(CN)4]?~ allows us to infer the influence of the solvent on the electronic structure of the complex. Furthermore, the robust characterization of the
dynamics and optical spectral signatures of the isolated *MC intermediate provides a strong foundation for identifying *MC intermediates
in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.

Introduction can be varied synthetically by changing the metal atom and

ligand composition or structure. Molecular photosensitizers
Inorganic complexes are attractive candidates for solar energy based on 4d and 5d transition metals, such as Ru and Ir, have
applications due to their tunable electronic properties, which been successfully implemented in photovoltaic applications
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due to their intense absorption, long-lived charge transfer
excited states, and their ability to undergo reversible redox
processes.” However, their cost and scarcity render them
impractical for large-scale development.

Transferring the functionality of 4d and 5d transition metal
complexes to the more abundant 3d transition metal centered
systems motivates wide-ranging investigations targeting solar
energy applications.? Solar energy applications benefit from
long-lived metal-to-ligand charge-transfer (MLCT) excited states,
but the majority of optically generated MLCT excited states in
3d transition metal complexes relax on the sub-ps timescale.
A central challenge to extending the charge transfer excited
state lifetimes in light harvesting complexes based on 3d
transition metals is the weaker ligand field splitting of 3d
complexes, relative to their 4d or 5d counterparts. The smaller
ligand field splitting leads to ligand field excited states with
lower energies than the optically bright charge transfer excited
states that very efficiently quench the MLCT excited states. This
deactivation reduces the MLCT lifetime of 3d transition metal
complexes by orders of magnitude compared to their 4d and
5d analogs. For instance, ruthenium(n)-centered polypyridyl
compounds are characterized by MLCT states with hundreds
of nanoseconds to microseconds lifetimes,”® the MLCT state of
similar complexes with an isoelectronic iron(u) center undergoes
spin crossover to a metal centered quintet (°MC) state within
hundreds of femtoseconds."*>*

Significant progress in the design of iron-centered molecular
systems with extended MLCT lifetimes targeted at solar energy
applications has been made recently and demonstrates the
potential of suppressing internal conversion and intersystem
crossing.”***° The synthetic strategy pursued with the most
success for octahedral iron(n) complexes has been ligand
selection for increased ligand-to-metal o-donation, beyond that
of typical polypyridyl ligands. Increased c-donation leads to
larger ligand field splitting and destabilization of the MC
excited states relative to MLCT excited states. A range of strong
o donating N-heterocyclic carbene ligands have provided
Fe-complexes with MLCT lifetimes ranging from ~300 fs to
~30 ps,>*>?73%31 Jong enough to allow transfer of the ligand-
localized electron for photovoltaic applications.?”8

The metal centered triplet (*MC) excited state has recently
been suggested to play a critical role in mediating the MLCT
decay pathway in the cases of both Fe(u)-centered spin cross-
over complexes (short-lived, ~100 fs, MLCT states)*"** and
MLCT complexes (long-lived, ~20 ps, MLCT states),>>2%3°
and has additionally been observed as a precursor for ligand
dissociation following excitation of [Fe(CN),].* > Although still
under debate,'® much experimental and computational evi-
dence supports the presence of a very short lived *MC transient
state in the spin state transition dynamics to the relatively long
lived *MC state.”*>>*%* In the cases where MLCT lifetimes are
extended to the picosecond time scale, they decay without
well characterized intermediates, thus preventing experimental
identification of decay-mediating states. Quantum chemical
and dynamics calculations for several such complexes do
suggest that the MLCT lifetime is strongly influenced by the

relative positions of the potential curves of the MLCT and *MC
excited states.>?®*>%°73% Although the important role of
the *MC state in facilitating the excited state decay of hexa-
coordinated Fe(n) complexes has been suggested, a metastable
*MC state has yet to be cleanly isolated for these complexes.
Therefore, it is difficult to assess the capacity of experimental
methods to identify the role of *MC intermediates in the excited
state dynamics of Fe-based systems.

A strong solvatochromic effect has been well-established for
Fe- and Ru-centered cyano-polypyridyl complexes,®**** and
has been ascribed to the interaction of high Lewis acidity
solvents (such as water) with the N lone pair of the CN™ ligand.
Here, we exploit the solvent-dependent electronic structure
of [Fe(bpy)(CN),]>", illustrated in Fig. 1, to vary the relative
energies of the MLCT and MC states with the intent of
generating a metastable *MC. The choice of [Fe(bpy)(CN),]*~
was motivated by previous transient optical measurements
that demonstrate the loss of characteristic MLCT features from
the excited state spectrum upon changing the solvent Lewis
acidity.”® This study clearly demonstrated the solvent dependence
of the non-radiative relaxation in this complex, but did not have
the time resolution to determine relaxation rates nor the ability to
determine the MC excited state intermediate formed in water.*’
The use of such a chemically amenable system allows us to
develop our current understanding of how metal-ligand bonding
controls the internal conversion and intersystem crossing
pathways in 3d transition metal complexes. In this regard, the
solvatochromic [Fe(bpy)(CN),J*~ mixed ligand complex provides
an excellent model for addressing these fundamental questions
in physical chemistry, as the degree of metal-ligand o- and
n-bonding interactions can be varied with the solvent. Steady-
state measurements have shown this interaction to shift electron
density on the cyanide ligand and increase the metal-to-ligand n
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Fig. 1 Solvatochromism of [Fe(bpy)(CN)4?~. The inset shows the

[Fe(bpy)(CN)4?~ system, and the rest of the panel shows its optical
absorption spectrum in a series of solvents with varying Lewis acidity;
acetonitrile (MeCN) tetrahydrofuran (THF), dimethyl sulfoxide (DMSO),
methanol (MeOH), and water (H,O).
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back-donation for the water-solvated complex.*****® The highest
occupied molecular orbitals (HOMO) of mixed Fe d (t,g) and
cyano m* character are therefore stabilized relative to the lowest
unoccupied molecular orbitals (LUMO) of bpy-ligand * character,
resulting in a net destabilization of the respective MLCT excited
state.” Experimental investigation of the solvent influence on the
MC levels is significantly more scarce, but one study finds the
trend of solvent-dependent excited state lifetimes for Ru cyano-
polypyridyl complexes can be qualitatively reproduced under the
assumption that the MC energy levels are unchanged relative to
the ground state.**

To characterize the excited state dynamics of [Fe(bpy)(CN),J*~ in
water we have combined UV-visible pump-probe spectroscopy
measuring the transient optical absorption (TA) with transient
K-edge X-ray emission spectroscopy (XES), a combination which
have delivered key insights in the dynamics of 3d transition metal
centered systems before."”"*** The signal recorded by TA arises
from dipole-allowed transitions in the optical regime, rendering it
sensitive to charge transfer excited states involving ligand-localized
excited electrons. XES monitors the fluorescence emitted during
the 2p-to-1s or 3p-to-1s decay following 1s core-hole ionization of
the Fe metal center. The fluorescence intensity and spectral
features are sensitive to the total spin moment on the iron center,
and therefore, this method can distinguish MC excited states
differing in Fe spin moments, such as *MC and *MC states. The
combination of the two techniques enables full characterization
of the excited state relaxation pathway of 3d transition metal
complexes. The present study has unambiguously identified a
metastable *MC excited state with the transient XES spectrum.
This identification, in combination with the TA measurements
enables the assignment of transient absorption features in the
UV-visible spectrum to the *MC excited state that should prove
valuable to the interpretation of electronic excited state relaxation
dynamics in other Fe(u) systems.

We report the excited state dynamics of [Fe(bpy)(CN),]*~
solvated in water and identify a temporally isolated *MC inter-
mediate for the first time. In contrast, we have previously
demonstrated a long lived MLCT excited state (19 ps) for
[Fe(bpy)(CN),]>~ in weak Lewis acidic solvents (dimethyl sulf-
oxide (DMSO) and acetonitrile (MeCN)), with no discernable
contribution from metal centered states." In the present work,
we shift the bpy-localized MLCT state towards higher energy by
using a high Lewis acidity solvent results in a faster MLCT-to-
MC transition and slower MC-to-GS transition. The identifi-
cation of a metastable *MC state provides further support for its
role in deactivating MLCT excited states in Fe(u) complexes,
and expands on the previously reported studies on Ru-centered
systems which were unable to distinguish the influence of the
solvent on the MC state energy levels.**

Experimental methods
X-ray emission

The time-resolved XES measurements were conducted at the
X-ray Pump-Probe (XPP)’* end station at the Linac Coherent

Light Source (LCLS). An aqueous solution of 55 mM [Fe(bpy)(CN),]*~
was pumped through a 50 um diameter nozzle producing a
cylindrical liquid jet. The sample was excited with 400 nm
optical laser pulses of 45 fs duration, 120 pm focus diameter
(FWHM), and 12.5 yJ per pulse, delivering a pulse fluence of
3 x 10> W em >, The sample was probed by 8.5 keV X-ray laser
pulses of ~30 fs duration. The Fe 3p-1s (Kp) fluorescence XES
signal was detected on a 140k Cornell-SLAC Pixel Array Detector
(CSPAD) area detector™® located above the liquid jet using four
dispersive Ge(620) crystal analyzers with a central Bragg angle of
79.1 degrees.”® The Fe 2p-1s (Ka) fluorescence XES signal was
detected on a second 140k CSPAD detector placed behind the
sample, using a spherically bent Ge(440) crystal analyzer, set to a
Bragg angle corresponding to the maximum signal of the iron Ko
fluorescence of 6404 eV (75.4 degrees).

The full 2D images of the XES detectors were read out
for each pump-probe event, normalized, and corrected as
described in the ESI{ Difference images were constructed by
subtracting a reference signal recorded from optical laser-off
probe events for every seventh X-ray laser pulse event throughout
the data collection. The difference images of each pump-probe
event were then sorted into 250 individual time bins (400 shots
per bin) according to their individually recorded time delay (see
the ESI,T for a description of the timing tool diagnostic). The Ko
difference images for each time bin were averaged and integrated,
resulting in the kinetic trace presented in Fig. 5, while the Kf
difference images of each time bin were averaged and integrated
along the nondispersive detector axis, resulting in the difference
spectra presented in Fig. 6A.

The static Ko XES spectra of reference compounds were
measured at the Stanford Synchrotron Radiation Lightsource
(SSRL) beamline 6-2. Reference compounds were obtained from
Sigma-Aldrich and used as-is. Samples were measured as
powders (covered by Kapton tape) in a cryostat at 10 K. Samples
were excited with monochromatic incident X-rays at 7300 eV
(double-crystal Si(311) monochromator, 0.2 eV FWHM band-
width) and Fe Ko fluorescence was detected with a Rowland
geometry spectrometer utilizing (440) Bragg reflection from
bent Ge crystals with a 1 m radius of curvature (energy resolution
0.6 eV FWHM).”® X-rays were detected with a Si drift detector and
a correction for detector nonlinearity was applied. The mono-
chromator energy was calibrated with an Fe foil and the spectro-
meter calibration and transmission correction was done using
elastic scattering. Each sample was checked for X-ray induced
damage by measuring the Fe X-ray absorption near-edge structure
(XANES) spectra at various incident fluxes using filters installed
in the beamline. Each sample was measured multiple times at
different positions to reduce exposure.

Optical transient absorption

Femtosecond time-resolved UV-visible transient absorption
(TA) measurements were conducted on [Fe(bpy)(CN),]>~ samples
in H,0 (7 mM) and DMSO (2 mM), prepared directly before the
experiments. Liquid sheet jets with 100 pm and 200 pm
thicknesses were used to deliver the sample into the pump-
probe overlap region, respectively. Continuous flow of the jet
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ensured that any accumulation of photo-damaged sample was
avoided.

Experiments were carried out using an amplified Ti:sapphire
laser system (Coherent Mantis with Coherent Legend Elite Duo)
with a 5 kHz repetition rate, 800 nm central wavelength, 2 mJ
pulse energy and 40 fs FWHM pulse duration. A portion of the
laser pumped an optical parametric amplifier (Spectra-Physics
OPA-800C) to generate near IR signal and idler via difference
frequency mixing. The output of the OPA was used to generate
500 nm pump pulses via sum-frequency generation of the
signal with 800 nm light, and to generate 700 nm pump pulses
via frequency doubling of the signal in a BBO crystal. The pump
pulse was directed to the sample through a delay stage, a
2.5 kHz chopper, and a lens, resulting in pump pulses with
100 pm focus diameter (FWHM), 50 fs duration, and 1.6 pJ
pulse energy providing a pump fluence of 4 x 10" W ecm 2.
The pump was overlapped with a white light probe pulse (via
supercontinuum generation in 4 mm of CaF,) at the sample
position. The probe was transmitted through the sample and
imaged on a spectrometer (Horiba Jobin Yvon iHR320, grating
150 grooves per mm). The probe spectrum was recorded at 5 kHz
with a NMOS linear image sensor (Hamamatsu, S8380-512Q)
simultaneously over the whole 300-700 nm spectral range. The
differential absorbance (A4) was calculated as AA = log(Ios/Ion),
where I,, and I, are the pumped and unpumped intensity,
respectively. Overall time-resolution of the experiment was
approximately 100 fs.

Results and discussion
Steady-state and transient optical absorption spectroscopy

The steady-state optical absorption spectrum of [Fe(bpy)(CN),]>~
in a series of solvents is presented in Fig. 1. In weak Lewis acid
solvents (acetonitrile (MeCN, red), tetrahydrofuran (THF, orange),
and dimethyl sulfoxide (DMSO, green)) the visible spectrum is
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characterized by two absorption features at roughly 450 nm and
700 nm assigned to MLCT excitations from orbitals of mixed Fe
d and cyano n and n* character to n* orbitals of the bipyridine
ligand.*” For high Lewis acidity solvents, such as the hydrogen-
bonding methanol (MeOH, blue) and H,O (purple), these
absorption features blue-shift. This solvatochromic effect
has been extensively mapped for cyano-polypyridyl Fe and Ru
complexes and shown to be linear, both with respect to the
solvent acceptor number (a measure of the Lewis acidity) and
the number of cyano ligands present.*>*>***” This makes
[Fe(bpy)(CN),]>~ in solution an archetypical system to charac-
terize the influence of the solvent Lewis acidity on the properties
of these complexes.

The blue-shift of the MLCT absorption band clearly shows
that increasing solvent Lewis acidity strongly destabilizes the
MLCT state with respect to the ground state. To investigate
how the solvent influences the energy levels of the MC states,
and to determine how this modifies the MLCT deactivation
pathways, we turn to the solvent dependence of the excited
state relaxation dynamics.

Fig. 2 shows the solvent-dependent differential absorption
spectra of [Fe(bpy)(CN),]>~ obtained after excitation of the
lowest energy MLCT transition (700 nm in DMSO, 500 nm in
water). In DMSO (Fig. 2A), the differential spectra at all time
delays are characterized by the ground state bleach (GSB),
overlaid with a broad excited state absorption (ESA) feature
everywhere below 600 nm, peaking at 370 nm and 525 nm. In
bipyridine-containing complexes, the strong 370 nm ESA fea-
ture is typically associated with an excited electronic state
having an electron localized on the pyridyl ligand.">?%°%5°
In previous work, we have complemented such TA measure-
ments by KB XES, determining that the excited state dynamics
are well-described by a 19 ps single-exponential decay of a
bipyridine-localized MLCT state." In water (Fig. 2B), the difference
spectra at very early time delays (~ 100 fs) can also be described by
the GSB overlaid by a similar ESA feature everywhere below
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Fig. 2 Transient absorption spectra of [Fe(bpy)(CN)4]%~ at selected time delays in (A) DMSO with 700 nm excitation and (B) water with 500 nm excitation.
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600 nm, peaking at 370 nm and 525 nm. However, within half a
picosecond, the initial ESA features decay completely. Differential
spectra at time delays longer than 0.5 ps are characterized by the
GSB and a broad ESA feature above 600 nm. These features decay
together over the following 50 ps as the ground state spectrum
recovers. For [Fe(bpy)(CN)yJ>~ in water, the ultrafast appearance
and decay of the 370 nm ESA feature without the decay of the
ground state bleach indicates that the excitation of the MLCT
band initially populates a very short-lived bipyridine-localized
MLCT state, which decays to a secondary electronic excited state
before returning to the ground state on the tens of picosecond
time scale. As described in the ESI,{ high excitation fluencies
lead to a longer lived absorption feature centered at 680 nm
characteristic of the solvated electron® arising from multiphoton
ionization.

From the optical data presented in Fig. 2B, the excited state
cascade in aqueous solution can be formulated as an instanta-
neous generation of an MLCT state and a small fraction
(<0.01) of photoionization products. The MLCT state under-
goes ultrafast conversion to a second excited state which decays
on the picosecond timescale, while the photoionization product
remains. When this three-state model is implemented in a global
analysis framework and applied to the data, the species associated
spectra (SAS) shown in Fig. 3 are identified. SAS1, which we
associate with the MLCT state, decays with a 0.17 £+ 0.03 ps
lifetime. SAS2, which we associate with the second excited electronic
state, decays with a lifetime of 12.7 + 0.4 ps. SAS3, which we
associate with the solvated electrons remains within the 1 ns time
window of these measurements.

To facilitate the direct comparison of the excited state
dynamics measured with TA at low fluence to those measured
by XES at higher fluence, we have applied the same analysis to
additional TA measurements recorded at higher fluence, which
exhibit a significant contribution from solvated electrons.
The transient spectra and resulting SAS are shown in the ESL{
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Fig. 3 Species associated spectra (SAS) from a global analysis of the
transient absorption data for [Fe(bpy)(CN)4?~ dissolved in water and
shown in Fig. 2B.

The spectral features of the photoexcited states (SAS1 and SAS2)
are virtually identical between the high and the low fluence
measurements, and the variation in the extracted relaxation
dynamics lies within the uncertainties of the measurements.
This demonstrates that the decay pathway of the single-photon
MLCT non-radiative relaxation is independent of the excitation
conditions over a large range of pump fluence.

Assigning the nature of the second electronic excited state
associated with SAS2 in the global analysis is difficult based on
optical TA data alone. The broad and relatively weak >600 nm
ESA is the only significant spectral feature outside the ground
state bleach. This ESA lacks significant or defining features that
might otherwise allow assignment of the associated species.
The short lifetime and complete ground state recovery rules out
ionization and degradation products as candidates for SAS2.
The lack of low-lying unoccupied ligand-centered electronic
states (other than the bipyridine n* states) suggests that
SAS2 describes a secondary excited state with MC character.
To unambiguously determine the nature of this intermediate,
we turn to the transient Ko and Kf XES measured at the LCLS
X-ray free-electron laser.

Transient X-ray emission spectroscopy

Ko and K XES monitors the 2p-to-1s and 3p-to-1s fluorescence,
respectively, following 1s core-hole X-ray ionization. The strong
influence of the exchange interaction between the np and the
3d valence electrons make the XES spectra sensitive to the total
spin multiplicity on the iron center.**°'~** The spin-sensitivity
of the two techniques is illustrated by the reference spectra
shown in Fig. 4A and B. The reference spectra are measured for
a series of Fe-centered compounds with ground state electronic
structure similar to those of the potential excited states of
[Fe(bpy)(CN),]*>". By selecting reference compounds with ligand
bond covalency similar to [Fe(bpy)(CN),]>~, good agreement
between the reference spectra and the measured data is expected.
By subtracting the reference signal of the ground state compound,
from the references for the potential excited states, the reference
difference spectra, illustrated in Fig. 4C and D can be constructed.

The K spectra exhibit the clearest spectral shape variation
between different electronic states, such that direct comparison
between transient K data and reference difference spectra
allows for robust identification of the excited electronic states.
Meanwhile, the Ko emission is roughly an order of magnitude
more intense than the Kp emission, which makes the Ko data
well suited to derive the time scales of the underlying relaxation
dynamics. Based on these considerations, we have measured
Ko single-energy kinetics to determine the characteristic time
scales of the experiment (time-zero, instrument-response
function (IRF), and lifetimes), and measured full Kf transient
spectra for robust excited state identification. Since the Ko and
Kp data were recorded simultaneously, the time zero, temporal
resolution, and quantum yields of the two datasets are identical.
Therefore, the characteristic time constants of the experimental
parameters, as well as the excited state lifetimes, determined from
the high signal-to-noise Ka kinetic data can be used in a global
analysis framework for the KB spectral data.
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Fig. 4 Koy (A) and KB (B) reference spectra measured for a series of Fe model complexes of similar spin state configuration as the potential excited states
in this study. Ku references are [Fe(bpy)(CN)4?>~ (singlet), [Fe(CN)gl>~ (doublet), Fe(phthalocyanine) (triplet), and [Fe(1,10-phenanthroline),(NCS),]
(quintet). Kp references are taken from Zhang et al.! Reference difference spectra (C and D) constructed from the Ko and KB references generated by
subtracting the ground state reference from each of the excited state references.

The Ka kinetics shown in Fig. 5 were recorded at 6404 eV.
As reported elsewhere,® and seen from the reference difference
spectra (Fig. 4C), the Ko difference intensity at 6404 eV allow us
to monitor the total spin increase on the Fe center. We observe
that the growth of the transient signal is delayed with respect to
a broadened Heaviside step function. This delay arises from an
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Fig. 5 Kinetics of the Koy peak emission intensity measured at 6404 eV
following MLCT excitation of [Fe(bpy)(CN)4>~ in water. Blue data points
are binned in 10 fs steps and supplied with error bars indicating the
standard error. The red curve shows the fit of the data as described
in the main text. Insets (A) and (B) show fits to the late data points using
first and second order reaction kinetics, respectively. The second order
reaction kinetics (B), capture the evolution of the data better, illustrating
that the kinetics are due to charge-recombination of photoionized
[Fe(bpy)(CN)4]~ with solvated electrons, as described in detail in the ESI.{

excited state relaxation that results in a secondary increase in
the Fe spin-moment, delayed with respect to excitation of the
MLCT state. Overall, the growth is best described by the sum of
a Heaviside step function and exponential grow-in broadened
by a Gaussian representing the instrument-response function.
The step function accounts for the instantaneously populated
"MLCT and photoionization products.®>®® These species each
have a single unpaired electron on the Fe center, making them
formal doublets with respect to the Fe center, and therefore
they cannot be distinguished with the XES data. The exponen-
tial growth accounts for the transition from the MLCT to the
secondary excited state of higher spin-moment. The fact that
the Fe spin-moment increases for the secondary excited state
confirms the assumption, based on the optical TA data, that the
decay of the MLCT state leads to the population of an MC state
with higher spin. The decay of the transient Ko signal is
dominated by the single-exponential lifetime of the secondary
MC excited state, but also includes a weaker long time-scale
component for the recovery of the photoionization products.
In fitting the data to the kinetic model described above, a
time-zero and IRF (rms) of —54 + 4 fs and 34 + 2 fs are
recovered, with the uncertainty reflecting the standard devia-
tion. The exponential component of the growth accounts for a
40 + 4% increase of the total signal and has a time constant of
87 + 5 fs, which we assign to the MLCT-to-MC transition. The
decay is dominated by a component with a 13.1 & 0.4 ps lifetime,
readily assigned to the decay of the MC state and recovery of the
ground state accounting for 84% of the decay. The remaining
decay of the transient signal occurs on the hundreds-of-
nanoseconds to microsecond time scale. The MLCT-to-MC
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transition observed by the XES is faster than the lifetime
associated with SAS1 in the TA analysis. This discrepancy likely
reflects the challenge of differentiating intramolecular vibra-
tional relaxation and population decay in TA, combined with
the challenges of properly subtracting out cross-phase modula-
tion artefacts.

The long time scale dynamics of the ground state recovery
matches the expected second-order kinetics (as described in the
ESIt) for the recovery from the photoionized [Fe(bpy)(CN),] .
Comparative fits to the long time delay data using first- and second
order rate expressions for the decay are illustrated in Fig. 5 as insets
(A) and (B), respectively. A detailed discussion of the mechanism and
time scale of the recovery can be found in the ESLt{ The increased
ratio of photoionization product (16%) compared to the TA data is
due to the increased laser power used for the XES experiments.

In summary, the Ko decay kinetics can be described by the
same model used to interpret the TA data. Since the TA
experiment shows that the dynamics of the single-photon
excited state pathway is independent on the amount of two-
photon excitation, the XES data can be used to identify the spin
state of the 13 ps MC intermediate associated with SAS2 in the
TA analysis. For this excited state identification, we rely on the
KB data recorded simultaneously with the Ko data.

Transient Kf differential spectra measured at multiple time
delays are presented in Fig. 6A. Qualitative comparison of
the data recorded at 0.5-5 ps (delays dominated by the MC
intermediate) with the reference spectra in Fig. 4D reveals that
the KB’ shoulder at 7045 eV is very weak. This allows the high
spin ®MC state to be eliminated as the dominant product of the
MLCT decay and makes a *MC the most likely candidate for the
MC excited state. To explicitly identify the nature of the MC
state and derive excitation and speciation fractions, we have
conducted a global analysis of the transient KB data using a
three-state model that includes the MLCT state, the MC state,
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and the [Fe(bpy)(CN),]~ photoproduct. Using the excited state
cascade and time scales from the Ko analysis, the species
associated spectra (SAS) for the excited states were extracted.

The extracted SAS are shown in Fig. 6B. SAS1 describes the
signal that is lost with the 85 fs time constant after the excitation.
SAS2 describes the signal that grows in as SAS1 decays, and has a
lifetime of 13.1 ps. SAS1 was definitively identified as an MLCT
state from the optical TA, and could therefore be used to establish
a scaling factor between the SAS and reference difference spectra
by minimizing the chi-squared between SAS1 and the MLCT
(doublet-singlet) reference difference signal. Upon establishing
this scaling factor, a quantitative comparison of SAS2 (representing
the MC excited state) can be made against the triplet and quintet
reference difference spectra (all plotted in Fig. 6B). It is immedi-
ately apparent that the signal shape, and in particular signal
amplitude, of SAS2 matches the reference spectrum obtained for
the *MC state. Taken together with the lack of additional fast time
constants in the excited state cascade, the agreement between
SAS2 and the *MC reference difference spectrum definitively
assigns the ultrafast interconversion observed in the optical TA
and Ko data to an MLCT-to-*MC interconversion. Furthermore, the
spectral features of SAS2 in the optical TA analysis can now be
assigned as characteristic of the *MC state. The ultrafast XES
measurements provide a robust assignment of the *MC state,
which enables the interpretation of the ESA seen in the optical
pump-probe measurement. The most significant feature of the
spectrum is the excited state absorption feature at 570 nm, to the
red side of the ground state bleach. Similar, but somewhat weaker,
ESA features have been observed for *MC states assigned of
Ru-centered polypyridyl complexes.®”

Solvent-dependent electronic structure

The solvent Lewis acidity strongly influences the excited state
dynamics of [Fe(bpy)(CN),]>". Increasing solvent Lewis acidity
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Fig. 6 Transient KB spectra and analysis. (A) Transient KB emission signal of [Fe(bpy)(CN)4]?~ in water. (B) Species associated spectra (SAS, red and blue)
from a global analysis, invoking the model used for fitting the TA and Ka kinetics and the reference difference spectra of Fig. 4D scaled by mapping the

MLCT reference to SAS1.
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leads to rapid excited state interconversion of the otherwise
relatively long lived MLCT state. Furthermore, the *MC inter-
mediate, which is expected to govern the MLCT decay, is
stabilized to the point where it can be considered a well-
isolated intermediate in the non-radiative relaxation. These
changes in excited state dynamics reflect the solvent-dependent
changes in the electronic structure of [Fe(bpy)(CN),J>~. A qualita-
tive molecular orbital (MO) diagram of [Fe(bpy)(CN),]*~ in weak
Lewis acid solvent is shown in Fig. 7A. Both t,, and e, levels of the
cyano-pyridyl complex increase upon substitution of bpy with CN™
ligands, as demonstrated by the reduction in the metal oxidation
potential, the reduction in the MLCT excitation energy, and the
elimination of the quintet state from the excited state relaxation
pathway."***** These energetic changes in the redox potentials
are readily explained by the ¢ and n* energy levels of the CN™
ligand being of higher than the o and =n* levels of bpy, as
illustrated schematically in Fig. 7A. This MO picture is consistent
with the projected potential energy surfaces (PES), calculated for
[Fe(bpy)(CN),]>~ in DMSO, which are illustrated in a schematic
form in Fig. 7B, based on the calculations in Zhang et al.
Increasing solvent Lewis acidity leads to a blue-shift of the
MLCT absorption bands, as shown in Fig. 1. A similar solvation
response has also been observed for Ru-centered cyano-pyridyls,
where the solvent-dependent blue-shift has been shown to
increase linearly with both the number of CN™ ligands and the
Lewis acidity of the solvent.*® The blue-shift is interpreted as a
result of the high Lewis acidity solvent shifting electron density of

the CN™ orbitals away from the metal center, decreasing the
n(CN™) — d(Fe) n-bonding and increasing the d(Fe) - m*(CN")
n-backbonding. Both of these changes stabilize the Fe t,, levels
relative to the (poly)pyridyl centered r* levels (which are relatively
unaffected by solvation).

The influence of lowering the t,, levels on the PES is
illustrated in Fig. 7C. The GS having 6 t,, electrons is stabilized
more than the MLCT and the *MC states each having 5 ty,
electrons, which are in turn stabilized more than the *MC state
having only 4 t,, electrons. Since the GS is stabilized the most,
all excited states undergo an apparent destabilization since the
PES in Fig. 7C are normalized relative to the ground state
energy. Since the MC state has two less t,, electrons than the
GS, and the *MC and MLCT states have one less tye electron
than the GS, the relative destabilization of the *MC state is
twice that of the *MC and MLCT states.

While the changes in the t,, energy levels can be addressed
by steady state measurements, the changes in e, levels are most
clearly addressed with transient measurements since the e,
levels only influence the metal centered electronic excited
states. To explain the significant shortening of the MLCT
lifetime of [Fe(bpy)(CN),]>~ in water relative to DMSO, the
*MC state has to intersect the MLCT surface closer to its energy
minimum. Therefore, the *MC state must be stabilized relative
to the MLCT state, which indicates that the e, levels also
decrease in energy with increasing solvent Lewis acidity. This
stabilization of the c-bonded e, orbitals is rationalized by the
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Fig. 7 (A) Schematic molecular orbital diagram for [Fe(bpy)(CN)4I°>~. Green arrows indicate the shift in energy levels upon solvation in high Lewis acidity

solvents. (B) Schematic of the potential energy surfaces of [Fe(bpy)(CN)42~

stabilization on the MLCT and MC excited state PES.

in low Lewis acidity solvents.! (C—E) Effect of variable tog and eq orbital
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same argument for the n-bonded t,, orbital stabilization
discussed above. Stabilization of the e, orbitals will shift down
the ®MC and *MC states relative to the illustration in Fig. 7C,
which only accounts for the t,, orbital stabilization. Two cases
accounting for both t,, and e, stabilization are illustrated in
Fig. 7D and E.

Stabilization of the e, orbitals is consistent with the solvent
dependence of the MLCT lifetimes in Ru-centered cyano-
pyridyls.** For these Ru complexes, the relationship between
MLCT lifetime and solvent acceptor number (a measure of the
solvent Lewis acidity) could be described by assuming that
the *MC energy was unchanged relative to the GS, requiring
identical stabilization of the t,, and the e, levels. Interestingly,
our experiments show that the *MC lifetime, which is too short
to be clearly observed in low Lewis acidity solvents, is signifi-
cantly extended in high Lewis acidity solvents, meaning that a
reaction barrier for the inter-system crossing and internal
conversion back to the GS is required. This reaction barrier
can only arise by stabilizing the e, levels by a smaller amount than
the t,, levels, such that the MC states are destabilized relative to
the GS (Fig. 7D). If the e, levels are destabilized equal to or more
than the t,, levels, then the MC states are stabilized with respect to
the GS, as illustrated in Fig. 7E. In this case, it becomes impossible
to arrange the potential energy surfaces such that there is a
reaction barrier to the ground state, while maintaining a signifi-
cant reaction barrier to the MC state consistent with the stabili-
zation of the *MC and *MC states being proportionally with their
number of e, electrons. Since we observe no signature of the
°MC state in the excited state cascade, we conclude the ordering of
the potential energy surfaces of [Fe(bpy)(CN),*~ in high Lewis
acidity solvents match the illustration in Fig. 7D. In summary, the
observation that the MLCT lifetime decreases with increasing
solvent Lewis acidity shows that the e, levels are stabilized in
strong Lewis acid solvents, but not as strongly as the t,, levels.

To support our interpretation of the solvent influence on the
excited state energy levels, we have performed preliminary DFT
calculations with a polarizable continuum description of both
water and DMSO, and by including explicit water molecules at
the N lone-pair site of the CN™~ groups. The effects of implicit
and explicit solvent interactions on the excited state energy
levels are summarized in Table S1 in the ESIL It is observed
that there is virtually no difference between the energy levels
calculated for water and DMSO when representing the solvents
with continuum models. However, upon inclusion of the explicit
waters at the N lone pair sites of the CN~ groups, the DFT
calculations shows a destabilization of *MLCT, *MC, and *MC
states with respect to the ground state, in parallel to our experi-
mental observations. In accordance with our interpretation of the
experimental results, the calculations also show that the *MLCT
state is destabilized the most, and the *MC state is destabilized the
least. The minimum energy structures of our calculations (pre-
sented in Fig. S5, ESIt) shows that the water orients to form
hydrogen bonds between to the cyanide N lone-pairs, supporting
our interpretation of the experimental results that the reordering
of the excited state level arises from explicit electronic interactions
between solute and solvent.

Closing remarks

Combined ultrafast optical and XES measurements provide a
clear picture for the MLCT excited state relaxation dynamics in
[Fe(bpy)(CN),]*>". In high Lewis acidity solvents, coordination of
the CN™ ligands to the solvent significantly changes the life-
times of the MLCT and the *MC excited states relative to their
lifetimes in low Lewis acidity solvents. The influence of the
solvent on the excited state relaxation dynamics arise from
inequivalent solvent stabilization of the CN™ and bpy energy
levels, shifting the CN™-influenced t,, and e, orbitals down
relative to the bpy * levels, which in turn modifies the relative
energies of the MLCT, *MC, and *MC excited state potential
energy surfaces. Our study presents a clear identification and
characterization of a metastable Fe-centered *MC state in a
hexacoordinated Fe centered complex.

Extracting this level of detail about the excited state relaxa-
tion mechanism has been made possible by the combined
application of time resolved UV-visible TA and XES. Combining
these techniques has allowed us to address not only the MLCT
state dynamics, but also to identify the role of MC excited states
in the electronic excited state relaxation, obtaining a more
detailed picture of the excited state potential energy surfaces
involved in the relaxation process. The increased robustness of
the relaxation mechanisms extracted from the combined ana-
lysis of XES and TA measurements make them more amenable
targets for computational quantum dynamics studies. Moreover,
the relative simplicity of the Fe cyano-pyridyl compounds, and the
fact that their potential energy landscape can be extensively
modified by the choice of solvent, enabled a systematic explora-
tion of the relationship between the potential energy landscape
and the excited state lifetime and relaxation pathways.

These experiments also act as a stepping stone towards the
investigation of Fe-centered photoactive molecular systems.
With regards to future XES measurements, the good agreement
with our reference spectra and the difference signal extracted
from global analysis, provide further support for using the XES
technique to identify the excited state species in 3d transition
metal centered systems. With regards to future TA measurements,
the clearly identified and isolated *MC state presented here exhibit
significant excited state absorption features throughout the visible
spectrum. This should significantly help the assignment of excited
state absorptions in future TA measurements on chemically
related Fe coordination complexes.
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