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We have previously observed a large transient stress in Sn film anodes at the beginning of the Sn-Li2Sn5 phase transformation.
To understand this behavior, we use numerical modeling to simulate the kinetics of the 1-D moving boundary and Li diffusion
in the Sn anodes. A mixture of diffusion-controlled and interface-controlled kinetics is found. The Li concentration in the Li2Sn5
phase remains near a steady-state profile as the phase boundary propagates, whereas the Li diffusion in Sn is more complicated. Li
continuously diffuses into the Sn layer and produces a supersaturation; the Li can then diffuse toward the Sn/Li2Sn5 interface and
contribute to further phase transformation. The evolution of Li concentration in the Sn induces strain which involves rate-dependent
plasticity and elastic unloading, resulting in the complex stress evolution that is observed. In the long term, the measured stress is
dominated by the stress in the growing Li2Sn5 phase.
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Sn electrodes have a large theoretical capacity (994 mAh/g)1 which
makes them a promising anode material for Li-ion batteries. However,
during lithiation/delithiation, Sn reacts with Li and forms multiple
lithiated phases at different states of charge. The large volumetric
changes (∼300%) associated with the phase transformations induce
capacity loss through mechanical degradation, which provides moti-
vation for understanding the strain relaxation processes in the material.
In a previous publication,2 we reported potentiostatic experiments of
the initial lithiation of Sn anodes in which the original Sn phase trans-
forms into the first lithiated phase Li2Sn5. In-situ curvature measure-
ments of the thin film samples were performed during the lithiation
to monitor the stress and we observed a transient behavior in the ini-
tial stages of the phase transformation. The curvature measurement
(Fig. 1) shows that a high stress state occurs at the beginning of
the phase transformation which then rapidly decreases followed by
steady-state behavior. Understanding the origin of this transient be-
havior and its implication for rate-dependent plastic deformation in
the layer is the focus of this work.

Diffusion-induced stress has been studied previously in Li-ion bat-
tery research to understand mechanical failures of electrodes. Bower
and Guduru3 performed a finite element model of diffusion and plas-
ticity in amorphous Si electrodes. Zhang et al.4 studied graphite an-
odes with a layered structure. Christensen5 presented a mathematical
model of the particles in porous lithium manganese oxide cathodes
and graphite-based anodes. These works primarily focused on the
stress distribution in a single phase region which has a concentration
gradient. In contrast, the transient behavior in the experiments that are
the subject of this work was observed at the beginning of the phase
transformation where the phase boundary propagated along with dif-
fusion in both the Sn and Li2Sn5 layers. The resulting concentration
profile and interface motion must be analyzed in terms of a moving
boundary problem, a classical problem in solid state diffusion. A class
of literature has been published on solving the moving boundary of the
heat transfer problem, so called Stephan problem.6,7 In Li-ion battery
research, phase transformations in crystalline-Si8 electrode and cath-
ode materials9 have also been studied. Hulikal et al.10 have performed
phase-field modeling on phase transformation of Sn electrode.

The concentration in a moving boundary value problem does not
have a simple analytical solution. Therefore, in this work we have
performed a numerical solution to simulate the evolution of the phase
boundary and Li concentration in the Sn and Li2Sn5 layers during
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potentiostatic lithiation. At the same time, we use a model of diffusion-
induced stress with rate-dependent plasticity and elastic unloading to
analyze the corresponding curvature measurements.

Experimental

Electrochemical experiments on Sn thin-film electrode.—The ex-
periments were performed in a customized electrochemical half cell
(shown in Fig. 2) with 1.5 mm-thick (50.8 mm in diameter) lithium
metal foil used as both the reference and counter electrode and an
electroplated thin film of Sn as the working electrode. The electrolyte
was 1.2 M LiPF6 in ethylene carbonate (EC):diethyl carbonate (DEC)
(1:2 by wt%) solvent. Sn films with thickness of 1.85 μm were elec-
troplated on a fused-silica substrates (thickness of 500 μm) with
evaporated Cu (50 nm) and Ti (25 nm) layers. Further details of the
sample fabrication have been described in the previous report.2 The
cells were built and operated in an Ar-filled glove box. In order to
distinguish the charge consumed by SEI formation and lithiation as
much as possible, the anodes were first processed to grow a SEI layer
at 0.8 V vs. Li/Li+ for 20 hours before growth of the lithiated Sn
phase. After the SEI growth, potentiostatic lithiation was performed
at a selective potential (0.65 V) below the potential plateau of Li2Sn5

(0.76 V11) to activate the Sn-Li2Sn5 phase transformation. The poten-
tial was kept high enough to not activate the formation of other more
highly lithiated phases. The potentiostatic lithiation was performed
for approximately 100 hours. The measured current density evolution
is shown in Fig. 1a.

In-situ curvature measurement.—During the electrochemical
treatments, wafer curvature measurements using the Multi-Beam Op-
tical Stress Sensor (MOSS) technique (k-Space Associates) were per-
formed to determine the stress evolution. The setup (shown in Fig.
2) monitors an array of laser beams that are reflected from the back-
side of the substrate into a charge-coupled device (CCD) camera. The
curvature is determined by measuring the change in spacing between
the reflected beams. The measured curvature (1/R) is related to the
average film stress 〈σ〉 by Stoney’s equation,

〈σ〉h f = Msh2
s

6

1

R
[1]

where h f and hS are the thicknesses of the film and the substrate,
respectively. MS is the biaxial modulus of the substrate. The prod-
uct 〈σ〉h f is called the stress-thickness and can be obtained from
the curvature data using Eq. 1. As seen in the previous publication,
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Figure 1. Measurements and calculations (dashed lines) dur-
ing the potentiostatic lithiation experiments at 0.65 V. (a) cur-
rent density and inset showing the nucleation time; (b) stress-
thickness and inset showing the transient high stress state. Ar-
rows indicate the times used for calculations of the profiles dis-
cussed in text and shown in Figs. 7, 8 and 10.

the Sn/Li2Sn5 interface remains fairly planar during propagation, so
we consider the experiments as a 1-D problem with multiple layers.
Therefore, the measured stress-thickness is due to contributions from
each layer:

〈σ〉h f = 〈σSE I 〉hSE I + 〈σSn〉hSn + 〈σLi2 Sn5 〉hLi2 Sn5 [2]

where the subscripts indicate the stress and thickness in the SEI, Sn
and Li2Sn5 layers. This analysis assumes that the layers can be treated
as uniform in thickness and state of stress in the lateral direction.

Modeling and Calibration

To understand the transient behavior observed in the curvature
measurements, we developed a kinetic model to simulate the phase
evolution and utilized the experimental results to extract the relevant
kinetic and mechanical parameters. We assume that during potentio-
static lithiation, the Li concentration at the surface is established by
the applied potential and remains constant during the experiment. The
phase transformation is initiated by lowering the applied potential and
then proceeds in two stages. In the first stage, the Li2Sn5 phase nucle-
ates and grows near the surface of the anode, resulting in a continuous
layer. Subsequently, the Sn/Li2Sn5 phase boundary propagates in the
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Figure 2. Schematic of electrochemical half cell and in-situ curvature mea-
surement (MOSS).

anode as the Sn layer is continuously transformed into the Li2Sn5

phase. In the following sections, we discuss a continuum model for
the Li concentration profile, layer stress and phase boundary propa-
gation in the two stages. The finite-difference method is used to solve
the model and the results are compared with the experimental results.

Kinetic model in the nucleation stage.—As the applied potential
is changed to a value below the threshold for the phase transformation,
a higher Li concentration is established at the surface that activates the
nucleation of the Li2Sn5 phase (β phase). We assume the nucleation
happens in a thin region near the surface of the anode. In the nucleation
region (thickness of So), the nuclei form and grow while some Li also
diffuses into the Sn (α phase). A schematic plot of the Li concentration
is shown in the inset of Fig. 3. The Li concentration at the Sn/Li2Sn5

phase boundary in the Sn phase (x = So) is assumed to remain at the
equilibrium concentration, Ceq

αβ , i.e. the Li solubility in Sn phase. The
substrate is assumed to be impervious to Li.

The concentration of accumulated Li in the Sn phase during the
nucleation period can be obtained by solving a 1-D diffusion. The
governing equation and boundary conditions for the diffusion in Sn
are:

Figure 3. Schematic plot and calculated Li concentration for the initial nu-
cleation stage of the numerical simulations.
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� Governing Equation

∂Cα (x, t)

∂t
= Dα

∂2Cα (x, t)

∂x2
, for Sn region, S0 ≤ x ≤ L0 [3]

� Boundary Conditions

Cα (So, t) = Ceq
αβ ;

∂Cα (L0, t)

∂x
= 0 [4]

L0 is the original thickness of the Sn anode and Dα is the Li diffusivity
in Sn. Normalized forms of the position ξ = x/L0, time τ = Dαt/L0

2,
and concentration of Li θ = (Cα − Ceq

αβ)/(Ci − Ceq
αβ) are used in solv-

ing the equations, where Ci is the initial Li concentration in Sn. Note
that θ is defined such that it starts from a value of 1 and approaches 0
as Cα reaches Ceq

αβ . The analytical solution of the concentration profile
is

θ (ξ, τ) =
∞∑

n=0

4

(2n + 1) π

sin (2n + 1) πξ

2
e

−(2n+1)2π2
4 τ [5]

Eq. 5 provides the concentration profile of Li in Sn established
during a given nucleation time to, and it is used in the second stage
of the numerical solution as the initial Li concentration profile in the
Sn phase. The evolution of Li concentration in Sn during nucleation
obtained by Eq. 5 is shown in Fig. 3. For the profile inside the nucle-
ation region, we assume the Li diffusion is fast so the concentration
at the phase boundary is at the equilibrium concentration Ceq

βα i.e. the
stoichiometric Li concentration of Li2Sn5 phase. Therefore, a linear
Li concentration profile is assumed with the surface concentration Cs

and Ceq
βα at the phase boundary.

Kinetic model with a moving phase boundary.—When the nu-
cleation of the new phase is completed, the individual Li2Sn5 nuclei
coalesce to form a continuous layer at the surface of the anode. At
this point, we assume there is a stable Sn/Li2Sn5 phase boundary at
x = S0. Subsequently, many of the Li atoms that enter the electrode
are consumed in advancing the phase boundary into the Sn layer by
the growth of the lithiated phase. However, if the boundary does not
move rapidly enough then there can be diffusion of excess Li into the
Sn phase. On the other hand, if there is excess Li in the Sn layer (i.e.
above the solubility limit) then it can also diffuse to the Sn/Li2Sn5 in-
terface and contribute to further Li2Sn5 phase growth. Therefore, the
kinetic model described here includes diffusion in both Sn and Li2Sn5

layers and a moving phase boundary driven by fluxes of Li from both
directions. The governing equations and boundary conditions are:

� Governing Equations:

∂Cβ(x, t)

∂t
= Dβ

∂2Cβ(x, t)

∂x2
, for Li2Sn5 (β phase), 0≤ x ≤ S(t) [g1]

∂Cα(x, t)

∂t
= Dα

∂2Cα(x, t)

∂x2
, for Sn (α phase), S(t)≤ x ≤ L(t) [g2]

Dβ

∂C S−
β

∂x
− Dα

∂C S+
α

∂x
=

(
C S+

α − C S−
β

) d S (t)

dt
[g3]

� Boundary Conditions:

Cβ (0, t) = Cs [b1]

∂Cα (L (t) , t)

∂x
= 0 [b2]

C S+
α = Ceq

αβ +
[
C S−

β − Ceq
βα

]
[b3]

d S (t)

dt
= K

(
C S−

β − Ceq
βα

)
[b4]

Figure 4. Schematic plot of (a) concentration profiles in kinetic model and
(b) corresponding numerical simulation framework of the moving boundary.

A schematic plot of the kinetic model is shown in Fig. 4. The range
of x is defined as 0 ≤ x ≤ L(t), where x = 0, is the electrolyte/anode
interface and x = L(t) is the anode/substrate interface. Note that
L(t) is a function of time due to the volume expansion caused by the
phase transformation. The anode is divided into two regions by the
phase boundary; Sn (α phase) for x ≥ S(t) and Li2Sn5 (β phase) for
x ≤ S(t). We assume the diffusion of Li atoms to be described by
Fick’s law as shown in governing Equations g1 and g2. Dα and Dβ are
the diffusion coefficients of Li in Sn and Li2Sn5 respectively, and are
assumed to be constant. The Stephan condition of the phase boundary
movement is shown in governing Equation g3. C S+

α and C S−
β denote

the Li concentrations at the Sn/Li2Sn5 phase boundary in Sn phase
and in Li2Sn5 phase respectively. d S(t)

dt is the velocity of the Sn/Li2Sn5

phase boundary.
The boundary conditions given in b1–b4 are chosen to agree with

the experimental conditions. In our model, we neglect the effect of
SEI on the electrochemical processes at the electrolyte/anode inter-
face. We assume that a constant cell potential under potentiostatic
condition corresponds to a constant Li concentration CS at x = 0. In
boundary condition (b2), we assume the substrate to be impervious
to Li, so the Li flux at the anode/substrate interface is set to zero.
At equilibrium, the chemical potentials on both sides of the interface
are the same, i.e. μ

eq
α,Li = μ

eq
β,Li , and the corresponding equilibrium

concentrations are the Li solubility of the Sn phase Ceq
αβ and the sto-

ichiometric concentration of the Li2Sn5 phase Ceq
βα . During the phase

boundary propagation, the actual chemical potentials on either side
of the phase boundary are expected to deviate from the equilibrium
values. In general, the chemical potential can be discontinuous across
a moving phase boundary, although it is often assumed that they are
equal in the literature.12 Here, we allow them to be discontinuous with
a drop of �μ across the interface.13

�μ = μβ,Li − μα,Li [6]

where μα,Li and μβ,Li are chemical potentials on Sn and Li2Sn5 sides
of the interface respectively. The chemical potential difference can be
represented as

�μ = μ
eq
β,Li + kT ln γβδCβ,Li − μ

eq
α,Li − kT ln γαδCα,Li [7]

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 192.107.175.1Downloaded on 2018-03-12 to IP 

http://ecsdl.org/site/terms_use


E3664 Journal of The Electrochemical Society, 164 (11) E3661-E3670 (2017)

where γα and γβ are activity coefficients and the logarithmic terms
include the deviations of the chemical potential from the equilibrium
values (δCα,Li = C S+

α −Ceq
αβ and δCβ,Li = C S−

β −Ceq
βα). The equilibrium

chemical potentials can be eliminated and by rearranging Eq. 7, the
remaining terms lead to

γα

γβ

exp

(
�μ

kT

)
= δCβ,Li

δCα,Li
= C S−

β − Ceq
βα

C S+
α − Ceq

αβ

. [8]

According to the Li-Sn phase diagram,14 both the Sn and Li2Sn5

phase have limited Li solubility, so we assume that the non-ideal
behavior of Li in both phase are similar and the ratio of activity
coefficients γα

γβ
is close to 1. In addition, the chemical potential drop

�μ at the interface is considered to be small by assuming the Li
diffusion across the interface is fast and the interface is negligibly
thin as used in the literature.15 Therefore, we assume the product
γα

γβ
exp( �μ

kT ) is approximated to be 1, and Eq. 8 leads to the boundary
condition (b3). The Li concentration in both layers are higher than the
equilibrium values, which means that only the diffusion of excess Li
atoms in Sn and Li2Sn5 are considered here.

The deviation from the equilibrium state induces a supersatura-
tion of Li at the phase boundary which is the driving force for the
phase boundary movement as represented in boundary condition (b4).
K is the reaction rate coefficient for the Sn-Li2Sn5 phase transfor-
mation, a measure of the mobility of the phase boundary. For larger
values of K, the phase boundary propagates more rapidly for a spe-
cific value of the supersaturation. If K → ∞, the phase boundary
movement depends only on the diffusion in the layers, which is re-
ferred to as the diffusion-controlled case. In the limit where K → 0,
the phase boundary movement is determined by the reaction rate of
phase transformation at the interface, which is the interface-controlled
case. In intermediate situations, the kinetics are ‘mixed.’ In the cur-
rent kinetic picture, with a finite value of K, the phase propagation
is determined by both diffusion in the phases and the reaction at the
interface.

Numerical solution of the moving boundary problem.—Moving
boundary problems have been solved by a variety of methods in the
literature.8,16–22 Here, we use the finite-difference method with a so-
lution technique developed by Crank.23 This involves a front-tracking
method with a fixed grid that spans the entire simulated domain. The
grid spacing is allowed to be different in each phase to accommodate
volume expansion. The whole region is subdivided into M intervals.
The mesh size in the Sn region is �xα = Lo/M , and the mesh size
in the Li2Sn5 phase is �xβ = r�xα, where r is the volume expansion
ratio due to the phase change. r has a value of 1.22 for the Sn-Li2Sn5

phase transformation. The finite difference grid used in the solution
is shown in Fig. 4.

The simulation of the moving boundary starts with the initial Li
concentration profile (Fig. 3) set to be the value calculated at the end
of the nucleation period. In the numerical calculation, for a given time
step j, the phase boundary S j locates within the i+1 interval, which
is between mesh points i and i+1. As the phase boundary propagate
across the grids, the i and i+1 nodes will be updated accordingly.

By using the finite-difference method with the central difference
in space and the forward Euler method in time, the discretized form
of the diffusion equation seen in governing Equations g1 and g2 can
be represented as

C j+1
n = C j

n + Dk�t

�x2
k

(
C j

n−1 − 2C j
n + C j

n+1

)
[9]

where superscript j denotes the time step, subscripts n and k denote
the number of the mesh point and the phase (α or β) respectively.
�t is the size of time step and �x is the grid spacing. For most of
the nodal points, Eq. 9 can be used to calculate the Li concentra-
tion of a node in the next time step j+1 with the concentrations of
the nearby nodes in time step j. The exceptions are the nodes at the
electrolyte/anode interface, at the anode/substrate interface and the

ones next to the moving phase boundary. For these nodes, the cal-
culations are discussed below. In addition, since the phase boundary
generally not located on a nodal point, the concentrations at the phase
boundary need to be obtained separately as well.

The surface concentration is assumed to be a constant during the
potentiostatic lithiation (boundary condition (b1)) so that CS is a
constant. The concentration of the node at anode/substrate interface
is governed by boundary condition (b2). The condition is fulfilled by
applying C j

M−1 = C j
M+1, so Eq. 9 is modified to be

C j+1
M = C j

M + 2Dα�t

�x2
α

(
C j

M−1 − C j
M

)
. [10]

The discretized boundary position at time step j is

S j = (
i + P j

)
�xβ [11]

where P j is a factor indicating the progression of phase boundary in
the present i+1 interval which has a value between 0 and 1. Since the
phase boundary is located between the i and i+1 nodes, the distances
between the phase boundary and the two nodes are shorter than the
grid spacings. Therefore, Lagrangian interpolation is performed to
calculate the concentrations next to the phase boundary, C j+1

i and
C j+1

i+1 . The concentration at the i node in Li2Sn5 phase can be expressed
as

C j+1
i = C j

i + 2Dβ�t

�x2
β

(
C j

i−1

P j + 1
− C j

i

P j
+ C j

b−

P j
(
P j + 1

)
)

[12]

where C j
b− is the Li concentration at the phase boundary in Li2Sn5

phase. The concentration at the i+1 node in Sn phase is

C j+1
i+1 = C j

i+1 + 2Dα�t

�x2
α

(
C j

b+

(1 − P j )
(
2 − P j

) − C j
i+1

1 − P j
+ C j

i+2

2 − P j

)
[13]

where C j
b+ is the Li concentration at the phase boundary in Sn phase.

Following the same approach, Lagrangian interpolation is used to
obtain the fluxes at the phase boundary, and the governing Equation
g3 is represented as

Dβ

[
1

�xβ

(
P j C j

i−1

P j + 1
−

(
P j + 1

)
C j

i

P j
+

(
2P j + 1

)
C j

b−

P j
(
P j + 1

)
)]

. . .

−Dα

[
1

�xα

( (
2P j − 3

)
C j

b+

(1 − P j )
(
2 − P j

) +
(
2 − P j

)
C j

i+1

1 − P j
−

(
1 − P j

)
C j

i+2

2 − P j

)]

=
�xβ

(
C j

b+ − C j
b−

)
�t

(
P j+1 − P j

)
. [14]

As seen in boundary condition (b3), the concentrations across the
phase boundary are related as

C j
b+ = Ceq

αβ +
(

C j
b− − Ceq

βα

)
. [15]

Therefore, the term (C j
b+ − C j

b− ) in Eq. 14 can be simplified to a
constant (Ceq

αβ − Ceq
βα). In addition, by combing the boundary condition

(b4) and Eq. 11, the position of the phase boundary in the next time
step, P j+1, is represented as

P j+1 = P j + �t

�xβ

K
(

C j
b− − Ceq

βα

)
. [16]

Substituting Eqs. 15 and 16 back into Eq. 14, and rearranging the
terms leads to a representation of C j

b− as
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C j
b− =

Dβ

�xβ

[
P j C j

i−1
P j +1

− (P j +1)C j
i

P j

]
− Dα

�xα

[
(2P j −3)

(
Ceq

αβ
−Ceq

βα

)
(1−P j )(2−P j ) + (2−P j )C j

i+1
1−P j − (1−P j )C j

i+2
2−P j

]
+ K Ceq

βα

(
Ceq

αβ − Ceq
βα

)
Dα

�xα

[
(2P j −3)

(1−P j )(2−P j )

]
− Dβ

�xβ

[
(2P j +1)

P j (P j +1)

]
+ K

(
Ceq

αβ − Ceq
βα

) [17]

It is seen that the terms in Eq. 17 are all in the same time step.
It can be used to solve the concentration at the phase boundary C j

b−
that can fulfill boundary condition at the interface with the other
determined concentrations at the nearby nodes, i.e. i-1, i, i+1 and
i+2 nodes. Therefore, Eq. 17 can be used to calculate C j+1

b− if all the
concentration at the nodes near the new position of the phase boundary
in the next step j+1 are known.

When P j+1 < 1, the new phase boundary is still located in the
current interval. A complete concentration profile can be obtain by
applying Eqs. 9, 10, 12, 13, 17 and 15 sequentially.

On the other hand, if P j+1 > 1, the phase boundary will move into
the next interval in the next time step j+1, and the i and i+1 nodes
have to be re-defined, i.e. i j+1 = i j +1. In this case, the concentration
at the regular nodes can still be calculated by Eq. 9. However, the Eqs.
12 and 13 need to be modified to account for the migration of the
phase boundary into the next grid interval. The concentration at nodes
i and i+1 are updated by Lagrangian interpolation according to

C j+1
i = −P j+1

2 + P j+1
C j+1

i−2 + 2P j+1

1 + P j+1
C j+1

i−1 + 2(
2+P j+1

) (
1+P j+1

)C j+1
b−

[18]

C j+1
i+1 = 2(

P j+1−2
) (

P j+1−3
)C j+1

b+ +2−2P j+1

2 − P j+1
C j+1

i+2 + P j+1 − 1

3−P j+1
C j+1

i+3

[19]
which are substituted in Eq. 17. A new form of C j+1

b− can be obtained
and represented as

C j+1
b−

=
Dβ

�xβ

[
(P j+1+1)C j+1

i−2
P j+1+2

− (P j+1+2)C j+1
i−1

P j+1+1

]
− Dα

�xα

[
(2P j+1−3)

(
Ceq

αβ
−Ceq

βα

)
(1−P j+1)(2−P j+1) + 2

(
Ceq

αβ
−Ceq

βα

)
(1−P j+1)(3−P j+1) + (3−P j+1)C j+1

i+2
2−P j+1 + (P j+1−2)C j+1

i+3
3−P j+1

]
+ K Ceq

βα

(
Ceq

αβ − Ceq
βα

)
Dα

�xα

[
(2P j+1−3)

(1−P j+1)(2−P j+1) + 2
(1−P j+1)(3−P j+1)

]
− Dβ

�xβ

[
(2P j+1+1)

P j+1(P j+1+1) − 2
P j+1(P j+1+2)

]
+ K

(
Ceq

αβ − Ceq
βα

) [20]

Lastly, the P factor is updated as P j+1 ′ = P j+1 − 1 in Eq. 18 and
Eq. 19 to get C j+1

i and C j+1
i+1 and complete the concentration profile in

the new time step j+1.
To validate this model, we compare the phase boundary evolution

obtained by the numerical solution with an analytical solution of a
semi-infinite film.24 The analytical solution is solved for diffusion-
controlled case and the thickness of the β phase S Analyt is represented
as

S Analyt =
[(

Qβ Rβ1 + Rβ2

2

)1/2

− 1

2

1√
π

√
Dα

Dβ

Qα Rα

] (
4Dβt

)1/2

[21]
where Q and R are combinations of material constants. The details
of the analytical solution are provided in Appendix A. As mentioned
above, the phase propagation in the kinetic model is controlled by both
diffusion and reaction happening at the phase boundary. Simulation
results for the thickness of the β phase for several values of κ and
the analytical solution for diffusion-controlled growth are shown in
Fig. 5. κ is the normalized reaction rate coefficient and is represented
as

κ = K

Ko
where Ko = Dβ(

Ceq
βα − Ceq

αβ

)
Lo

. [22]

In order to compare with the semi-infinite analytical solution,
we consider a system with a large value of thickness of α phase
(9.25 μm) compared to the thickness of the β phase (< 150 nm). Note
that the numerical solution starts with a finite thickness of the β phase
equal to 40 nm as seen in Fig. 5. The values of parameters used in
the calculations in Fig. 5 are presented in Table A1. In the simulation

results, the reaction rate is controlled by the value of κ. Increasing κ
changes the behavior of the phase boundary from interface-controlled
to diffusion-controlled and the evolution of the β phase thickness
changes from linear to parabolic with time. For large values of κ the
numerical solution approaches the analytical result since the diffusion-
controlled case corresponds to the limit of large reaction rate.

Calibration of numerical solution.—In the previous publication,2

we discussed a characteristic current density profile (inset of Fig. 1a)
at the beginning of potentiostatic lithiation and considered that feature
to be due to the nucleation of the new phase. When the potential is
changed to 0.65 V, a large current density appears, then decreases
quickly followed by a gradual increase. The re-increase in current
density is related to the nucleation of the Li2Sn5 phase at the surface.
Once the nuclei of Li2Sn5 grow and form a continuous layer, the
phase boundary initiates and the current density starts to decay. The
elapsed time between the moment of potential change and the starting
of the exponential decay is considered as the nucleation time, which
was found to be approximately 1400 s in the experiment. The initial
thickness of the lithiated phase So was estimated from the charge input
during the nucleation time to be approximately 35 nm. According to
the Li-Sn phase diagram, Li has very small solubility in Sn, below what
can be measured reliably. However, the model requires the solubility
as a parameter. The Li solubility in Sn phase Ceq

αβ is assumed to be
5.0 × 10−25 mol/nm3 (∼0.01 Li atom per each Sn atom). The value
has been used as one of the fitting parameters to get good agreement

between the model and the experiments. These values are used in Eq.
5 to obtain the initial Li concentration profile.

A supporting experiment to show the effect of the nucleation period
for the Li2Sn5 phase is shown in Fig. 6. First, the potential was held at
0.8 V for 20 hours to form the SEI before activating Sn-Li2Sn5 phase
transformation. Subsequently, the potential was changed to 0.65 V for

Figure 5. Comparison of the analytical solution for the semi-infinite diffusion-
controlled case and numerical solutions for a 9.25 μm film with different values
of normalized reaction rate coefficient κ.
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Figure 6. Experimental results underlying estimate of
nucleation time for Sn-Li2Sn5 phase transformation.

different intervals of time and then raised to 0.8 V, followed by an
open circuit potential (OCP) measurement to obtain the equilibrium
surface potential. The cycle (0.65 V–0.8 V-OCP) was repeated with
increasing lengths of elapsed time ζ at 0.65 V. When the potential is
held at 0.65 V, the sample lithiates as seen from the current density
profile (Fig. 6). The most significant observation in this experiment,
as shown in Fig. 6, is that for a hold time ζ less than a critical time
ζc, the OCP evolves to around 2.7 V, which is corresponding to the
Sn phase, whereas for ζ greater than ζc, it evolves to a value below 1
V. During subsequent cycles, the OCP evolves to 0.76 V, which is the
equilibrium potential of Li2Sn5 phase. Note that this transition in the
open circuit potential response takes place abruptly. We attribute this

Table I. Parameter values used in calibrations.

Initial thickness of anode, Lo 1850 nm
Number of node point, M 200
Grid spacing of Sn phase, �xα 9.25 nm
Grid spacing of Li2Sn5 phase, �xβ 11.285 nm
Volume expansion ratio of Sn-Li2Sn5
phase transformation, r

1.22

Size of time step in simulation, �t 0.072 s
Nucleation time of Sn-Li2Sn5 phase
transformation, to

1400 s

Thickness of nucleation region, So 35 nm
Initial Li concentration in Sn phase, Ci 0 mol/nm3

Stoichiometric Li concentration of
Li2Sn5 phase

2.0590 × 10−23 mol/nm3

(Equilibrium Li concentration in Li2Sn5
phase, Ceq

βα )
(i.e. 0.4 Li atom per Sn atom)

Surface Li concentration in Li2Sn5
phase, CS

2.0826 × 10−23 mol/nm3

Biaxial modulus of fused-silica, MS 86.4 GPa
Biaxial modulus of Sn, MSn 76.9 GPa
Thickness of fused-silica substrate, hS 500 μm
Nominal yield stress of Sn, σo −20 MPa
Low strain-rate yield stress of Li2Sn5,
σLi2 Sn5

−29 MPa

Stress-thickness of SEI, σSE I hSE I 8.8 MPa-μm

transition to the nucleation of the Li2Sn5 phase from a supersaturated
solid solution state. In this experiment, we found the critical time ζc to
be approximately 120 minutes. Although the critical time ζc obtained
from this experiment is not the same as seen in Fig. 1a, the difference
in the experimental procedures (i.e. additional delithiation and OCP in
the supporting experiment) possibly account for the discrepancy. The
main conclusion from this supporting experiment is established that
there is a finite nucleation time to begin formation of Li2Sn5 phase.

The kinetic parameters (Dα, Dβ and K ) are determined by using
non-linear least square fitting to minimize the difference between the
calculated Li flux and the measured current density. The resulting fit
is shown in Fig. 1a. The Cs value was determined experimentally
by performing a potentiostatic intermittent titration technique (PITT)
experiment on a fully transformed Li2Sn5 layer; details are provided
in the previous publication.2 The parameters used in the simulation are
provided in Table I, and the results of fitting parameters are presented
in Table II.

Evolution of the simulated concentration profiles at different times
are shown in Fig. 7. The sharp discontinuity in the concentration
profiles indicates the evolving phase boundary position. The local Li
concentration near the phase boundary in Li2Sn5 and Sn phases are
shown in Figs. 8a and 8b respectively. The Li concentration in both
phases are higher than the equilibrium concentrations. It is seen that
the concentrations at the phase boundary approach to the equilibrium
concentrations with progression of the phase boundary. Since the

Table II. Material parameters obtained by fitting.

Li solubility of Sn phase 5.0 × 10−25 mol/nm3

(Equilibrium Li concentration in Sn
phase, Ceq

αβ )
(i.e. ∼0.01 Li atom per Sn atom)

Li diffusivity in Sn phase, Dα 1.7 × 10−12 cm2/s
Li diffusivity in Li2Sn5 phase, Dβ 1.4 × 10−12 cm2/s
Reaction coefficient of Sn-Li2Sn5
phase transformation, K

5.6 × 10−6 cm4/mol s

Strain rate exponent, m 1.46
Strain rate coefficient, ε̇o 1.0 × 10−7

Volume expansion of Sn phase due to
Li insertion, η

9.47 × 1020 nm3/mol
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Figure 7. The calculated evolution of phase boundary and Li concentration
profile in a Sn film with original thickness of 1.85 μm.

phase boundary velocity is determined by the supersaturation of Li
at the phase boundary in Li2Sn5 phase (boundary condition b4), the
decrease of the supersaturation leads to the slowing down of the phase
boundary. Fig. 8a shows that the progression of the phase boundary
position in each 10 hour interval becomes smaller for longer times of
lithiation. In addition, Fig. 9 shows the comparison of the simulated
thickness of Li2Sn5 and estimated values by considering the total
charge accumulated at 0.65 V. An arrow in Fig. 9 indicates the starting
point of the calculation. A good agreement is found indicating the
simulation results for the phase boundary position is reasonable. It is
seen that the growth of the Li2Sn5 phase is in a mixture of diffusion-
controlled and interface-controlled kinetics.

Since the two concentrations at the phase boundary are coupled
as seen in boundary condition (b3), a decrease in the supersaturation
at the phase boundary in the Li2Sn5 phase leads to a decrease in the
concentration on the other side of the interface as well. However, a
more complicated evolution of the Li concentration in the Sn phase is
seen in Fig. 8b. Since the Sn phase does not reach saturation during
the nucleation period (the initial profile in Sn (Fig. 3) is not uniform),
the high Li concentration at the phase boundary keeps driving Li into
the Sn phase while the boundary moves forward, as seen in the con-
centration profiles in the Sn layer at 3 and 5 hours. The concentration

Figure 8. The calculated evolution of Li concentration profile near the phase
boundary. (a) in Li2Sn5 phase; (b) in Sn phase.

in the Sn phase reaches saturation around 10 hours after the poten-
tial was lowered to 0.65 V. Subsequently, the concentration in the Sn
layer starts to decrease to relax the excess Li above the Li solubility
by diffusing toward the phase boundary and contributing to the phase
transformation (which we refer to as flux reversal). As discussed be-
low, the evolution of Li in the Sn induces a stress which causes the
transient behavior observed in the curvature measurement.

Mechanism of stress evolution in Sn during lithiation.—The nu-
merical solution provides a model for both the phase propagation and
the Li concentration profile in the layers. Here we utilize these results
to understand the evolution of the Li-induced stress distribution in the
anode. As seen in the Fig. 8a, the concentration profile in the Li2Sn5

phase remains fairly linear during the interface propagation. There-
fore, we assume the stress in the Li2Sn5 region remains at a constant
low strain-rate yield stress. For the Sn phase, in previous work,2 we
reported that the Sn layer reaches the state of yield during the SEI
formation period at 0.8 V before initiating Sn-Li2Sn5 phase transfor-
mation. As the concentration in the Sn layer evolves (Fig. 8b), two
types of stress mechanisms are considered. First, as Li is driven into
the Sn film, the rate-dependent stress is related to the strain rate of
the Sn film. Here, we consider the film as an isotropic layer bonded
to a rigid substrate, so the total strain rate in the lateral direction is
constrained as

ε̇ = ε̇c + ε̇e + ε̇P = 0 [23]

where ε̇c is the composition induced strain rate; ε̇e is the elastic strain
rate, and ε̇P is the plastic strain rate.

For an isotropic continuum, the in-plane composition strain rate ε̇c

can be related to the volumetric strain rate ε̇c
V as

ε̇c = 1

3
ε̇c

V = 1

3
ηĊ [24]

where η is the volume expansion of Sn due to Li insertion and Ċ is
the rate of Li concentration change.

Under the thin film configuration, the in-plane elastic strain rate
can be represented as

ε̇e = σ̇Sn

MSn
= 1

MSn

dσSn

dt
[25]

where MSn is the biaxial modulus of Sn. In the stress measurement
(Fig. 1b), the stress-thickness of the micron-level Sn film indicates
the stress is in the MPa range, whereas the biaxial modulus of Sn is in
the GPa range. In addition, the change of stress in the measurement

Figure 9. Comparison of the calculated thickness of Li2Sn5 phase and the
estimation from the charge data. The arrow indicates the starting thickness of
Li2Sn5 in finite-difference calculation.
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happens in several hours. Therefore, we assume ε̇e is negligible in this
case.

For the plastic strain rate, we assume it can be described by
viscoplasticity25 as

ε̇P
i j = ε̇o

[(
σe

σo

)m

− 1

]
3

2

Si j

σe
[26]

where ε̇o is the strain rate constant; m is the strain rate exponent; σo is
the nominal yield stress and it is assumed to be a constant. Si j is the

deviatoric stress and σe is the von Mises stress: σe =
√

3
2 Si j Si j . In the

thin film case, the components of deviatoric stress are: S11 = S22 =
σSn/3 and S33 = −2σSn/3, and σe = |σSn|. These results lead to the
in-plane plastic strain rate as

ε̇P = ε̇P
11 = ε̇P

22 = ε̇o

2

[( |σSn|
σo

)m

− 1

]
. [27]

Since the ε̇e is assumed to be negligible, by substituting ε̇c, ε̇P and
applying Eq. 23, the rate-dependent stress in the Sn film is represented
as

σSn = σo

(
2η

3ε̇o
Ċ + 1

) 1
m

. [28]

When the rate of the concentration change Ċ is large and positive,
the associated volume expansion leads to a large strain rate and thus
a large transient stress as seen in Fig. 1b. Further discussion of the
rate-dependent stress and the effect of the parameters in Eq. 28 on the
stress evolution is provided in Appendix B.

There is also a second mechanism that can contribute to the tran-
sient stress response. When the phase boundary nucleates and begins
to propagate, the Li flux in the supersaturated Sn phase can reverse its
direction and flow toward the phase boundary. Such a reversal leads
to elastic unloading of the Sn phase due to a decrease in volume. The
relaxation of the transient stress response would be due to a combina-
tion of decreasing rate of concentration change and elastic unloading.
The stress state of the elastic unloading can be described as

σSn = σul
Sn − B�Cul [29]

where B = ηMSn for the thin film geometry. σul
Sn is the local stress

in Sn right before elastic unloading; it is a function of position x
and its magnitude is given by Eq. 28. �Cul is the local decrease of
concentration during elastic unloading. This mechanism causes the
stress in Sn to be reduced from the stress produced by the plastic
deformation. Note that the two mechanisms may happen at different
positions in the Sn phase at the same time, e.g. elastic unloading can
start happening in a region near the phase boundary while the interior
of the layer remains at the state of yield.

Fig. 10 shows a schematic plot to demonstrate the correlation be-
tween the evolution of Li concentration and the corresponding stress
for the 2-phase system being investigated here. In Fig. 10a, two cal-
culated Li concentration profiles (at time step t and its preceding time
step t-1) are presented. It is seen that as the phase boundary propa-
gates from S(t-1) to S(t), the Li concentrations in the Sn phase at the
phase boundary decreases (which is also seen in Figs. 7 and 8b). Such
evolution leads to the two overlapping concentration profiles in the Sn
phase shown in the figure. The point where the two profiles have the
same concentration is labeled as “flux-reversal boundary” in Fig. 10a;
the directions of the Li flux on either side of it are in opposite direc-
tions as shown by the arrows in light blue. Depending on the direction
of Li flux (i.e. the sign of Ċ), the corresponding stress in Sn at time t
(Fig. 10b) can be determined using the mechanisms discussed above.
As mentioned earlier, the concentration profile in the Li2Sn5 phase
is linear and the stress is assumed to be at a constant low strain-rate
yield stress σLi2 Sn5 . For the Sn phase region beyond the flux-reversal
boundary, the Li concentration increases from time t-1 to time t (i.e.
Ċ > 0), and the higher stress state is due to the rate-dependent plastic-
ity (i.e. viscoplasticity) associated with the strain rate induced by the
increasing Li concentration (Eq. 28). For the Sn phase region close

Figure 10. Schematic plot of (a) Li concentration profiles at time t and t-1
showing the flux-reversal boundary induced by the phase boundary propaga-
tion; (b) the stress distribution at time t corresponding to the evolution in (a)
and the preceding stress distribution at time t-1.

to the phase boundary, the Li concentration decreases from time t-1
to time t (i.e. Ċ < 0), in which the stress decreases from its rate-
dependent stress (elastic unloading, Eq. 29) due to the reversed Li
flux from Sn to the phase boundary. Similarly, the stress distribution
at time t-1 shown in Fig. 10b (or other time steps) can be obtained
from the corresponding Li concentration profiles at the preceding
times.

Calculation of stress evolution in Sn.—In the numerical solution,
the rate of concentration change at each nodal point n in a given
time step can be calculated from the concentrations in that and the
preceding time steps, which can be expressed as

Ċ j+1
n = C j+1

n − C j
n

�t
[30]

For nodal points that have positive sign Ċ j+1
n , the states of stress

are determined by Eq. 28. In contrast, if the sign is negative, the
stress is determined by Eq. 29. Sequentially, an integral of stress with
thickness is performed to have the stress-thickness value that can be
used to compare with the measured values in the experiment.

In the previous work,2 we reported that the low strain-rate yield
stress of Li2Sn5 is around −29 MPa. We also observed the tensile
contribution with a value of 8.8 MPa-μm from the SEI at the anode
surface. Here, we use the information obtained previously from the
steady state and the diffusion profile by numerical solution to analyze
the transient state. The elastic modulus and Poisson’s ratio of Sn
reported by Stournara et al.26 and the material parameters applied in
the calibration are shown in Table I.

The calculated stress distribution in the anode is shown in Fig.
11 for different times indicated on the figure. The regions where the
different stress mechanisms activate are distinguished by the arrows
labeled “flux-reversal boundary” in each stress profile. As discussed
above, the stress in the regions of Sn far away from the phase boundary
(distances greater than indicated by the arrows) is at a higher stress
state governed by viscoplasticity (Eq. 28). Near the phase boundary
(distances less than the arrows), the stress decreases from its rate-
dependent stress as described by elastic unloading (Eq. 29). The inte-
grated stress-thickness of the entire anode is used to fit the model to
the values measured by wafer curvature and calibrate the mechanical
parameters used in Eqs. 28 and 29. The fitting result is shown in Fig.
1b, in which the solid line corresponds to experimental data and the
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Figure 11. The calculated evolution of stress distribution in Sn film with
original thickness of 1.85 μm.

dash line corresponds to the simulation result. The points marked by
arrows correspond to the concentration profile in Fig. 7 and Fig. 8 and
the stress profile in Fig. 11 at the corresponding times. The results of
calibrated parameters are presented in Table II.

According to the results in Figs. 1b and 11, the stress in Sn induced
by Li diffusion leads to a stress state above the nominal yield stress
at the beginning of the phase transformation. At this stage, the con-
tribution to the stress-thickness from the Li2Sn5 phase is smaller than
the Sn phase since the majority of the anode remains in the Sn phase.
Therefore, the high stress-thickness in the transient behavior is mostly
the result of rate-dependent stress in Sn. Subsequently, as the excess
Li concentration in the Sn layer approaches saturation, the decrease
in the rate of concentration change relaxes the high stress state in Sn
(1–5 hours at region greater than the flux reversal boundary in Fig.
11), so that the high stress-thickness value of the anode is eased. The
decrease in the excess Li concentration leads to a lower stress state in
Sn by elastic unloading (the entire Sn region beyond 10 hour in Fig.
11). A balance between the high stress in Li2Sn5 and the lower stress
in Sn leads to the fairly constant value of stress-thickness between 10
and 30 hours (Fig. 1b). As the Sn/Li2Sn5 phase boundary propagates
in Sn, the stress-thickness reaches a steady rate of increase as the
contribution from Li2Sn5 phase becomes dominant and the stress in
Sn reaches a steady state value.

Conclusions

In this paper, we studied the large transient stress observed at the
beginning of the Sn-Li2Sn5 phase transformation. We performed a nu-
merical simulation to solve the 1-D moving boundary problem of the
Li2Sn5 phase growing into the parent Sn phase during potentiostatic
lithiation. Using the calculated Li concentration profiles, we proposed
mechanisms for the observed stress evolution in Sn. The kinetic and
mechanical parameters were calibrated with the experimental mea-
surements. The main conclusions of this study are:

� The results of the phase kinetic modeling indicates that the Li
diffusivity in Sn and Li2Sn5 are approximately 10−12 cm2/s, and the
reaction rate coefficient is approximately 5 × 10−6 cm4/mol s. The
results obtained by the numerical solution are consistent with the
values found in the previous steady-state analysis.2

� The high value of stress-thickness of the transient behavior at
the beginning of Sn-Li2Sn5 phase transformation is induced by rate-
dependent plasticity associated with the excess Li diffusion in Sn
layer.

� As the phase boundary propagates, the flux of Li diffusion de-
creases and the relaxation of the excess Li concentration leads to a
lower state of stress in Sn by elastic unloading. The balance between
the region of elastic unloading and the growing new phase result in
a period of approximate constant stress-thickness. Subsequently, it
begins to increase at a steady rate as the new phase continues to grow.

The modeling and analysis method developed here may can be
extended to other material systems to study phase transformation
problems and future research on the failure mechanisms of the battery
electrodes.
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Appendix A

The analytical solution of the diffusion-controlled case of a semi-infinite film is
provided by R. F. Sekerka and S.-L. Wang in a chapter of a book Lectures of the Theory
of Phase Transformations by H. Aaronson.24 The solution was developed from the typical
form of error function for the infinite spatial domain. To modify the solution for semi-
infinite case, the surface is treated as another interface. Therefore, in this analytical
solution, there are two moving interfaces. One is phase boundary ξ1 between α and β

phases; another is the surface ξ2. The difference between ξ1 and ξ2 is the thickness of the
new β phase that forms.

ξ1 − ξ2 =
[(

Qβ Rβ1 + Rβ2

2

)1/2

− 1

2

1√
π

√
Dα

Dβ

Qα Rα

] √
4Dβt [A1]

where Q and R are combinations of material constants as shown below:

Rα = Cαβ

B − Cα∞
B

Cβα

B − Cαβ

B

, Rβ1 = Cβξ

B − Cβα

B

Cβα

B − Cαβ

B

, Rβ2 =
V̄ β

B

(
Cβξ

B − Cβα

B

)
1 − V̄ β

B Cβξ

B

Qα = 1

V̄ α
A �

, Qβ = V̄ β

ACαβ

A + V̄ β

B Cαβ

B

V̄ β

B�
, � = Cβα

B Cαβ

A − Cαβ

B Cβα

A

Cβα

B − Cαβ

B

Eq. A1 is the form we used for calculating the analytical solution and to use in
comparison with the numerical solution. In the case discussed in this paper, α phase is

Table A1. Parameters used in the simulation in Fig. 5.

Assigned Li diffusivity in Sn phase,
Dα 3 × 10−13 cm2/s
Assigned Li diffusivity in Li2Sn5
phase, Dβ

4 × 10−13 cm2/s

Li concentration at the surface in
Li2Sn5 phase, Cβξ

B

2.0826 × 10−23 mol/nm3

Li concentration at the interface in
Li2Sn5 phase, Cβα

B

2.0590 × 10−23 mol/nm3∗

Li concentration at the interface in Sn
phase, Cαβ

B

5.0 × 10−25 mol/nm3

Li concentration at infinity in Sn
phase, Cα∞

B

0 mol/nm3

Sn concentration at the interface in
Li2Sn5 phase, Cβα

A

5.1475 × 10−23 mol/nm3∗

Sn concentration at the interface in
Sn phase, Cαβ

A

6.1410 × 10−23 mol/nm3∗

Partial molar volume of Sn in Sn
phase, V̄ α

A

1.63 × 1022 nm3/mol∗

Partial molar volume of Sn in Li2Sn5

phase, V̄ β
A

1.67 × 1022 nm3/mol∗

Partial molar volume of Li in Li2Sn5

phase, V̄ β
B

7.92 × 1021 nm3/mol∗

∗Values calculated with the theoretical densities reported in Ref. 11.
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Figure B1. Demonstration of the correlation between rate-dependent stress
and the material parameters. (a) normalized rate of concentration change Ċ

Ċmax
;

(b) and (c): trends of the normalized rate-dependent stress σ
σo

with parameters

m and η
ε̇o

ωĊmax respectively.

Sn; β phase is Li2Sn5 phase, and element A is Sn atom; element B is Li atom. V̄ terms
are partial molar volumes, and the values are estimated by considering linear volume
expansion between phases.

Appendix B

The rate-dependent stress response of lithiated Sn phase is assumed to be described
with the following viscoplastic model

σ

σo
=

(
2η

3ε̇o
Ċ + 1

) 1
m

[B1]

where σ
σo

is the normalized rate-dependent stress; η is the volume expansion induced by

Li insertion; ε̇o is the strain rate constant; m is the strain rate exponent, and Ċ is the rate
of concentration change. The objective of this appendix is to illustrate the influence of
the parameters on the induced stress. This is done by assuming a bilinear change in Ċ
as shown Fig. B1a. It should be noted that the actual Ċ in the experiment is determined
by the experimental condition and the kinetic parameters of the system. The assumed
variation of Ċ in Fig. B1a is chosen for illustration purpose only.

In Fig. B1a, Ċ can be normalized with its maximum value Ċmax , and the normalized
rate of concentration Ċ

Ċmax
can be represented as

Ċ

Ċmax
= ω

t

λ
[B2]

where t
λ

is the normalized time, and λ is total length of time t; ω is the slope of Ċ
Ċmax

and
t
λ

, i.e. the second derivative with respect to time. The slope ω depends on the experiment

condition and may alter during the experiment. Fig. B1a shows an example of Ċ
Ċmax

versus
t
λ

with a constant slope ω, in which Ċ
Ċmax

is assumed to start increasing linearly to 1 as

the normalized time t
λ

reaches 0.5, and then decrease linearly (note that ω = 2 in Fig.

B1a). Eq. B2 can used to describe the first segment of Ċ
Ċmax

in Fig. B1a, where the slope
ω is positive, and the rate-dependent stress shown in Eq. B1 can be normalized as

σ

σo
=

(
2η

3ε̇o
ωĊmax

t

λ
+ 1

) 1
m

. [B3]

It is seen that the magnitude of σ
σo

depends on the values of m and η

ε̇o
ωĊmax . The

strain rate exponent, the volume expansion associated with Li insertion η and the strain
rate constant ε̇o are material properties, whereas the product ωĊmax is related to the Li
diffusivity in the material, and can vary with experimental conditions. A similar expression
for the decreasing portion of Fig. B1a, which is not shown for brevity.

To illustrate the influence of the parameters m and η

ε̇o
ωĊmax on the normalized rate-

dependent stress, Figs. B1b and B1c show calculations of σ
σo

for different values of m

and η

ε̇o
ωĊmax , respectively, with the values indicated in the figures. It can be seen that

when Ċ
Ċmax

is positive and large, it leads to a high rate-dependent stress. In contrast, when
Ċ

Ċmax
is positive but small, σ

σo
approaches 1 as the rate-dependent stress approaches the

nominal yield stress. As shown in Fig. B1b, for smaller values of m, σ
σo

is more sensitive

to Ċ
Ċmax

and results in a larger magnitude of σ
σo

. The parameters η

ε̇o
and ωĊmax influence

stress evolution through the non-dimensional group η

ε̇o
ωĊmax , which is illustrated in Fig.

B1c. Higher volume expansion coefficient η and higher lithiation rate ωĊmax lead to
higher stress as expected.

References

1. I. Rom, M. Wachtler, I. Papst, M. Schmied, J. O. Besenhard, F. Hofer, and M. Winter,
Solid State Ionics, 143, 329 (2001).

2. C.-H. Chen, E. Chason, and P. R. Guduru, Journal of Electrochemical Society, 164(4),
A574 (2017).

3. A. F. Bower and P. R. Guduru, Modelling Simul. Mater. Sci. Eng., 20, 045004 (2012).
4. J. Zhang, B. Lu, Y. Song, and X. Ji, Journal of Power Sources, 209, 220 (2012).
5. J. Christensen, Journal of The Electrochemical Society, 157(3), A366 (2010).
6. T. G. Myers and S. L. Mitchell, Applied Mathmetical Modeling, 35, 4281 (2011).
7. L. I. Rubinshteı̆n, The Stefan Problem, American Mathematical Soc. (1971).
8. Z. Cui, F. Gao, and J. Qu, Journal of the Mechanics and Physics of Solids, 61, 293

(2013).
9. A. Singer, A. Ulvestad, H.-M. Cho, J. W. Kim, J. Maser, R. Harder, Y. S. Meng, and

O. G. Shpyrko, Nano Letter, 14(9), 5295 (2014).
10. S. Hulikal, C.-H. Chen, E. Chason, and A. Bower, Journal of Electrochemical Society,

163(13), A2647 (2016).
11. M. Winter and J. O. Besenhard, Electrochimica Acta, 45, 31 (1999).
12. A. V. Virkar, Journal of Power Sources, 147(1–2), 8 (2005).
13. M. Hillert, in Lectures on the Theory of Phase Transformations, H. I. Aaronson, ed.,

The Minerals, Metals & Materials Society, (1999).
14. W. G. Moffatt, The Handbook of Binary Phase Diagrams, Schenectady, N.Y. (1978).
15. J. Svoboda, F. D. Fischer, P. Fratzl, E. Gamsjager, and N. K. Simha, Acta Materialia,

49, 1249 (2001).
16. J. Sietsma and S. v. d. Zwaag, Acta Materialia, 52, 4143 (2004).
17. J. Crank and R. S. Gupta, IMA Journal of Applied Mathematics, 10(1), 19 (1972).
18. B. Chao, S.-H. Chae, X. Zhang, K.-H. Lu, M. Ding, J. Im, and P. S. Ho, Journal of

Applied Physics, 100, 084909 (2006).
19. J. W. Cahn and J. E. Hilliard, American Institute of Physics, 31, 688 (1959).
20. J. W. D. Connolly and A. R. Williams, Physical Review B, 27(8), 5169 (1983).
21. H. Ji, D. Chopp, and J. E. Dolbow, International Journal for Numerical Methods in

Engineering, 54(8), 1209 (2002).
22. M. Hillert, Metallurgical Transactions A, 6(1), 5 (1975).
23. J. Crank, Free and Moving Boundary Problems, Oxford (1984).
24. R. F. Sekerka and S.-L. Wang, in Lectures on the Theory of Phase Transformations,

H. I. Aaronson, ed., The Minerals, Metals & Materials Society, (1999).
25. A. F. Bower, Applied Mechanics of Solids, CRC Press (2009).
26. M. Stournara, P. R. Guduru, and V. Shenoy, Journal of Power Sources, 208, 165

(2012).

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 192.107.175.1Downloaded on 2018-03-12 to IP 

http://dx.doi.org/10.1016/S0167-2738(01)00886-4
http://dx.doi.org/10.1149/2.0381704jes
http://dx.doi.org/10.1088/0965-0393/20/4/045004
http://dx.doi.org/10.1016/j.jpowsour.2012.02.104
http://dx.doi.org/10.1149/1.3269995
http://dx.doi.org/10.1016/j.apm.2011.02.049
http://dx.doi.org/10.1016/j.jmps.2012.11.001
http://dx.doi.org/10.1021/nl502332b
http://dx.doi.org/10.1149/2.0701613jes
http://dx.doi.org/10.1016/S0013-4686(99)00191-7
http://dx.doi.org/10.1016/j.jpowsour.2005.01.038
http://dx.doi.org/10.1016/S1359-6454(01)00012-X
http://dx.doi.org/10.1016/j.actamat.2004.05.027
http://dx.doi.org/10.1093/imamat/10.1.19
http://dx.doi.org/10.1063/1.2359135
http://dx.doi.org/10.1063/1.2359135
http://dx.doi.org/10.1063/1.1730447
http://dx.doi.org/10.1103/PhysRevB.27.5169
http://dx.doi.org/10.1002/nme.468
http://dx.doi.org/10.1002/nme.468
http://dx.doi.org/10.1007/BF02673664
http://dx.doi.org/10.1016/j.jpowsour.2012.02.022
http://ecsdl.org/site/terms_use

