DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid

Abstract

Room temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize 3D titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy and computational modeling revealed that the strong interaction between Titania and graphene through comparably strong van-der-Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+ and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

Authors:
 [1];  [2]; ORCiD logo [3];  [1];  [4];  [1];  [5];  [1]; ORCiD logo [6];  [7];  [6];  [6];  [6];  [2];  [2];  [2];  [8]; ORCiD logo [3];  [2]; ORCiD logo [1] more »; ORCiD logo [1] « less
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  2. Univ. of Duisburg-Essen, Duisburg (Germany). Center for Nanointegration Duisburg-Essen (CENIDE)
  3. Xiamen Univ., Xiamen (China). Collaborative Innovation Center of Chemistry for Energy Materials, State Key Lab. Physical Chemistry of Solid Surfaces, Dept. of Chemistry
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division; Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry
  5. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  6. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS), X-ray Science Division
  7. Argonne National Lab. (ANL), Argonne, IL (United States). Nanoscience and Technology Division
  8. Microvast Power Solutions, Stafford, TX (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1421965
Grant/Contract Number:  
AC02-06CH11357; 21321062
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 18; Journal Issue: 1; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; Anode; Density function theory; Interfacial; Sodium-ion batteries; Titania-graphene

Citation Formats

Xu, Gui-Liang, Xiao, Lisong, Sheng, Tian, Liu, Jianzhao, Hu, Yi-Xin, Ma, Tianyuan, Amine, Rachid, Xie, Yingying, Zhang, Xiaoyi, Liu, Yuzi, Ren, Yang, Sun, Cheng-Jun, Heald, Steve M., Kovacevic, Jasmina, Sehlleier, Yee Hwa, Schulz, Christof, Mattis, Wenjuan Liu, Sun, Shi-Gang, Wiggers, Hartmut, Chen, Zonghai, and Amine, Khalil. Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid. United States: N. p., 2017. Web. doi:10.1021/acs.nanolett.7b04193.
Xu, Gui-Liang, Xiao, Lisong, Sheng, Tian, Liu, Jianzhao, Hu, Yi-Xin, Ma, Tianyuan, Amine, Rachid, Xie, Yingying, Zhang, Xiaoyi, Liu, Yuzi, Ren, Yang, Sun, Cheng-Jun, Heald, Steve M., Kovacevic, Jasmina, Sehlleier, Yee Hwa, Schulz, Christof, Mattis, Wenjuan Liu, Sun, Shi-Gang, Wiggers, Hartmut, Chen, Zonghai, & Amine, Khalil. Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid. United States. https://doi.org/10.1021/acs.nanolett.7b04193
Xu, Gui-Liang, Xiao, Lisong, Sheng, Tian, Liu, Jianzhao, Hu, Yi-Xin, Ma, Tianyuan, Amine, Rachid, Xie, Yingying, Zhang, Xiaoyi, Liu, Yuzi, Ren, Yang, Sun, Cheng-Jun, Heald, Steve M., Kovacevic, Jasmina, Sehlleier, Yee Hwa, Schulz, Christof, Mattis, Wenjuan Liu, Sun, Shi-Gang, Wiggers, Hartmut, Chen, Zonghai, and Amine, Khalil. Thu . "Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid". United States. https://doi.org/10.1021/acs.nanolett.7b04193. https://www.osti.gov/servlets/purl/1421965.
@article{osti_1421965,
title = {Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid},
author = {Xu, Gui-Liang and Xiao, Lisong and Sheng, Tian and Liu, Jianzhao and Hu, Yi-Xin and Ma, Tianyuan and Amine, Rachid and Xie, Yingying and Zhang, Xiaoyi and Liu, Yuzi and Ren, Yang and Sun, Cheng-Jun and Heald, Steve M. and Kovacevic, Jasmina and Sehlleier, Yee Hwa and Schulz, Christof and Mattis, Wenjuan Liu and Sun, Shi-Gang and Wiggers, Hartmut and Chen, Zonghai and Amine, Khalil},
abstractNote = {Room temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize 3D titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy and computational modeling revealed that the strong interaction between Titania and graphene through comparably strong van-der-Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+ and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.},
doi = {10.1021/acs.nanolett.7b04193},
journal = {Nano Letters},
number = 1,
volume = 18,
place = {United States},
year = {Thu Dec 14 00:00:00 EST 2017},
month = {Thu Dec 14 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond
journal, October 2014

  • Muldoon, John; Bucur, Claudiu B.; Gregory, Thomas
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500049y

An ultrafast rechargeable aluminium-ion battery
journal, April 2015

  • Lin, Meng-Chang; Gong, Ming; Lu, Bingan
  • Nature, Vol. 520, Issue 7547
  • DOI: 10.1038/nature14340

Amorphous TiO 2 Nanotube Anode for Rechargeable Sodium Ion Batteries
journal, September 2011

  • Xiong, Hui; Slater, Michael D.; Balasubramanian, Mahalingam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 20
  • DOI: 10.1021/jz2012066

Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries
journal, May 2013

  • Sun, Yang; Zhao, Liang; Pan, Huilin
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2878

Synthetic, Structural, and Electrochemical Study of Monoclinic Na 4 Ti 5 O 12 as a Sodium-Ion Battery Anode Material
journal, December 2014

  • Naeyaert, Pierre J. P.; Avdeev, Maxim; Sharma, Neeraj
  • Chemistry of Materials, Vol. 26, Issue 24
  • DOI: 10.1021/cm5035358

Hydrogenation Driven Conductive Na 2 Ti 3 O 7 Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries
journal, June 2016


Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries
journal, January 2013

  • Xu, Yang; Memarzadeh Lotfabad, Elmira; Wang, Huanlei
  • Chemical Communications, Vol. 49, Issue 79
  • DOI: 10.1039/c3cc45254a

Nanocrystallinity effects in lithium battery materials
journal, January 2003

  • Jamnik, Janez; Maier, Joachim
  • Physical Chemistry Chemical Physics, Vol. 5, Issue 23
  • DOI: 10.1039/b309130a

Sustained Lithium-Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates: Emphasis on Interfacial Storage Phenomena
journal, August 2011

  • Shin, Ji-Yong; Samuelis, Dominik; Maier, Joachim
  • Advanced Functional Materials, Vol. 21, Issue 18
  • DOI: 10.1002/adfm.201002527

Integrated Intercalation-Based and Interfacial Sodium Storage in Graphene-Wrapped Porous Li 4 Ti 5 O 12 Nanofibers Composite Aerogel
journal, May 2016

  • Chen, Chaoji; Xu, Henghui; Zhou, Tengfei
  • Advanced Energy Materials, Vol. 6, Issue 13
  • DOI: 10.1002/aenm.201600322

Ultrathin Anatase TiO 2 Nanosheets Embedded with TiO 2 -B Nanodomains for Lithium-Ion Storage: Capacity Enhancement by Phase Boundaries
journal, December 2014


Facile Ultrasonic Synthesis of CoO Quantum Dot/Graphene Nanosheet Composites with High Lithium Storage Capacity
journal, January 2012

  • Peng, Chengxin; Chen, Bingdi; Qin, Yao
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn202888d

Graphene-Rich Wrapped Petal-Like Rutile TiO 2 tuned by Carbon Dots for High-Performance Sodium Storage
journal, August 2016

  • Zhang, Yan; Foster, Christopher W.; Banks, Craig E.
  • Advanced Materials, Vol. 28, Issue 42
  • DOI: 10.1002/adma.201601621

Graphene-supported TiO 2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries
journal, January 2016

  • Xiong, Ya; Qian, Jiangfeng; Cao, Yuliang
  • Journal of Materials Chemistry A, Vol. 4, Issue 29
  • DOI: 10.1039/C6TA04402F

Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling
journal, April 2015

  • Chen, Chaoji; Wen, Yanwei; Hu, Xianluo
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7929

Impact of Ambient Pressure on Titania Nanoparticle Formation During Spray-Flame Synthesis
journal, December 2015

  • Hardt, Sebastian; Wlokas, Irenäus; Schulz, Christof
  • Journal of Nanoscience and Nanotechnology, Vol. 15, Issue 12
  • DOI: 10.1166/jnn.2015.10607

Preparation of Graphitic Oxide
journal, March 1958

  • Hummers, William S.; Offeman, Richard E.
  • Journal of the American Chemical Society, Vol. 80, Issue 6, p. 1339-1339
  • DOI: 10.1021/ja01539a017

Ab initio molecular dynamics for open-shell transition metals
journal, November 1993


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption
journal, January 2013

  • Zhang, Hui; Xie, Anjian; Wang, Cuiping
  • Journal of Materials Chemistry A, Vol. 1, Issue 30
  • DOI: 10.1039/c3ta11278k

3D Graphene Foams Cross-linked with Pre-encapsulated Fe 3 O 4 Nanospheres for Enhanced Lithium Storage
journal, April 2013


Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel
journal, November 2011


Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes
journal, September 2013

  • Yoon, Taegyune; Kim, Jaegyeong; Kim, Jinku
  • Energies, Vol. 6, Issue 9
  • DOI: 10.3390/en6094830

Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage
journal, May 2017


Raman spectrum of anatase, TiO2
journal, December 1978

  • Ohsaka, Toshiaki; Izumi, Fujio; Fujiki, Yoshinori
  • Journal of Raman Spectroscopy, Vol. 7, Issue 6
  • DOI: 10.1002/jrs.1250070606

Effect of Particle Size on the Photocatalytic Activity of Nanoparticulate Zinc Oxide
journal, February 2006

  • Dodd, A. C.; McKinley, A. J.; Saunders, M.
  • Journal of Nanoparticle Research, Vol. 8, Issue 1
  • DOI: 10.1007/s11051-005-5131-z

Ultrasmall TiO 2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries
journal, May 2015

  • Liu, Huiqiao; Cao, Kangzhe; Xu, Xiaohong
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 21
  • DOI: 10.1021/acsami.5b02724

Graphene mediated improved sodium storage in nanocrystalline anatase TiO 2 for sodium ion batteries with ether electrolyte
journal, January 2016

  • Das, Shyamal K.; Jache, Birte; Lahon, Homen
  • Chemical Communications, Vol. 52, Issue 7
  • DOI: 10.1039/C5CC09656A

Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries
journal, October 2015


Reduced graphene oxide with superior cycling stability and rate capability for sodium storage
journal, June 2013


Extraordinary Performance of Carbon-Coated Anatase TiO 2 as Sodium-Ion Anode
journal, December 2015

  • Tahir, Muhammad Nawaz; Oschmann, Bernd; Buchholz, Daniel
  • Advanced Energy Materials, Vol. 6, Issue 4
  • DOI: 10.1002/aenm.201501489

Self-Supported Nanotube Arrays of Sulfur-Doped TiO 2 Enabling Ultrastable and Robust Sodium Storage
journal, January 2016


Unfolding the Mechanism of Sodium Insertion in Anatase TiO 2 Nanoparticles
journal, August 2014

  • Wu, Liming; Bresser, Dominic; Buchholz, Daniel
  • Advanced Energy Materials, Vol. 5, Issue 2
  • DOI: 10.1002/aenm.201401142

Nitrogen Doped/Carbon Tuning Yolk-Like TiO 2 and Its Remarkable Impact on Sodium Storage Performances
journal, November 2016

  • Zhang, Yan; Wang, Chiwei; Hou, Hongshuai
  • Advanced Energy Materials, Vol. 7, Issue 4
  • DOI: 10.1002/aenm.201600173

Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries
journal, January 2014

  • Kim, Ki-Tae; Ali, Ghulam; Chung, Kyung Yoon
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl402747x

TiO2-(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity
journal, January 2012

  • Brutti, Sergio; Gentili, Valentina; Menard, Hervé
  • Advanced Energy Materials, Vol. 2, Issue 3
  • DOI: 10.1002/aenm.201100492

Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries
journal, January 2013


Nb-Doped Rutile TiO 2 : a Potential Anode Material for Na-Ion Battery
journal, March 2015

  • Usui, Hiroyuki; Yoshioka, Sho; Wasada, Kuniaki
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 12
  • DOI: 10.1021/am508670z

A Reversible Phase Transition for Sodium Insertion in Anatase TiO 2
journal, February 2017


Kinetic Study of Parasitic Reactions in Lithium-Ion Batteries: A Case Study on LiNi 0.6 Mn 0.2 Co 0.2 O 2
journal, January 2016

  • Zeng, Xiaoqiao; Xu, Gui-Liang; Li, Yan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 5
  • DOI: 10.1021/acsami.5b11800

Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries
journal, February 2017


Parasitic Reactions in Nanosized Silicon Anodes for Lithium-Ion Batteries
journal, February 2017


Li + Ion Insertion in TiO 2 (Anatase). 1. Chronoamperometry on CVD Films and Nanoporous Films
journal, September 1997

  • Lindström, Henrik; Södergren, Sven; Solbrand, Anita
  • The Journal of Physical Chemistry B, Vol. 101, Issue 39
  • DOI: 10.1021/jp970489r

Li + Ion Insertion in TiO 2 (Anatase). 2. Voltammetry on Nanoporous Films
journal, September 1997

  • Lindström, Henrik; Södergren, Sven; Solbrand, Anita
  • The Journal of Physical Chemistry B, Vol. 101, Issue 39
  • DOI: 10.1021/jp970490q

The investigation of adsorption and dissociation of H 2 O on Li 2 O (111) by ab initio theory
journal, June 2017


Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2
journal, September 2017

  • Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.
  • Nature Materials, Vol. 16, Issue 11
  • DOI: 10.1038/nmat4976

Works referencing / citing this record:

Enhanced sodium storage via the hetero-interface effect in BiOCl/TiO 2 p–n junctions
journal, January 2019

  • Song, Wei; Zhao, Hanqing; Shen, Hanting
  • Chemical Communications, Vol. 55, Issue 28
  • DOI: 10.1039/c9cc00843h

Multiscale Graphene-Based Materials for Applications in Sodium Ion Batteries
journal, January 2019


Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries
journal, October 2018


A new strategy for the construction of 3D TiO 2 nanowires/reduced graphene oxide for high-performance lithium/sodium batteries
journal, January 2018

  • Yu, Jiage; Huang, Hui; Gan, Yongping
  • Journal of Materials Chemistry A, Vol. 6, Issue 47
  • DOI: 10.1039/c8ta08214f

A high-tap-density nanosphere-assembled microcluster to simultaneously enable high gravimetric, areal and volumetric capacities: a case study of TiO 2 anode
journal, January 2018

  • Chang, Baisong; Liu, Jinping; Qing, Guangyan
  • Journal of Materials Chemistry A, Vol. 6, Issue 25
  • DOI: 10.1039/c8ta02554a

Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries
journal, October 2018