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This paper explores the viability of using counterfactual reasoning for impact analyses
when understanding and responding to “beyond-design-basis” nuclear power plant acci-
dents. Currently, when a severe nuclear power plant accident occurs, plant operators rely
on Severe Accident Management Guidelines. However, the current guidelines are limited
in scope and depth: for certain types of accidents, plant operators would have to work to
mitigate the damage with limited experience and guidance for the particular situation.
We aim to fill the need for comprehensive accident support by using a dynamic Bayesian
network to aid in the diagnosis of a nuclear reactor’s state and to analyze the impact of
possible response measures.

The dynamic Bayesian network, DBN, offers an expressive representation of the com-
ponents and relationships that make up a complex causal system. For this reason, and for
its tractable reasoning, the DBN supports a functional model for the intricate operations
of nuclear power plants. In this domain, it is also pertinent that a Bayesian network can
be composed of both probabilistic and knowledge-based components. Though probabili-
ties can be calculated from simulated models, the structure of the network, as well as the
value of some parameters, must be assigned by human experts. Since dynamic Bayesian
network-based systems are capable of running better-than-real-time situation analyses,
they can support both current event and alternate scenario impact analyses.

Keywords: Counterfactual Reasoning; Decision Support; Dynamic Bayesian Networks

1. Introduction

The goal of this research project is to make a real-time analysis and prognostic sys-
tem for the production of electric power through the use of a nuclear reactor. There
are three critical aspects to the project: 1) to provide modern tools to augment
the paper-based diagnostic methods currently used by reactor operators, 2) to offer
real-time diagnosis and analysis, and 3) the ability to generate and validate reme-
diation strategies in the case of problems arising. All three of these goals require
the use of Artificial Intelligence technology. This paper chronicles our work in this
domain.

1.1. Modernizing Response Tools

Though nuclear power plant accidents are extremely rare, the effects can be harmful
for people, the environment, and the economy1. The steps taken in the immediate
aftermath of an accident are critical for limiting the extent of the damage to the
plant and its surrounding area. Nuclear power plant operators currently follow pa-
per manuals with step-by-step Emergency Operating Procedures for each type of
anticipated accident.

For unanticipated “beyond-design-basis” accidents there are Severe Accident
Management Guidelines (SAMGs) which are developed from expert judgment and
best-estimate analyses. If the plant’s monitoring instruments fail, which was the
case during 2011 Fukushima accident1, operators must act with severely limited
information about the current state of the reactor.

In order to understand the possible range of responses of nuclear power plants
during severe accidents, researchers simulate accidents with various conditions us-
ing nuclear reactor accident simulation software, such as MELCOR2 or SAS4A3.
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To condense the large amount of information these simulators output into a fast
and human-understandable knowledge base, we have used the simulated data to
build dynamic Bayesian networks to simulate each process scenario. We call this
framework “SMART procedures” (where “SMART” was originally an acronym for
“Safely Managing Accidental Reactor Transients”).

SMART procedures is an ongoing project aimed at providing diagnostic tools
in the event of a beyond-design-basis nuclear power plant accident. Currently, the
SMART procedures framework provides inference on two types of accidents given
partial information about key plant parameters.

1.2. Real-time analysis and diagnosis

Building a nuclear reactor for producing electric power is a complex engineering
process. An explanation driven analysis tool is critical for understanding the in-
teractions of its components as well as generating diagnostic recommendations.
Dynamic Bayesian Belief Network (DBN) technology is an important generaliza-
tion of the hidden Markov model, and offers a factored form of the full Bayesian
representation4,5. Besides offering a more expressive representation for the compo-
nents of a complex causal system, it also supports tractable inference6.

The transparency of the DBN technology is an important aspect of its use in the
nuclear domain. Our DBN is composed of both probabilistic and knowledge-based
processes. The conditioned aspect of our system comes from both testing individual
components, such as sensors, as well as from evaluating the ascribed relationships
between components. The probabilistic aspect of these known relationships comes
from thorough testing where expected outcomes can be quantified.

The knowledge-based side of the DBN design comes from the initial construc-
tion methodology where domain experts describe causal processes and assign specific
probabilities to these component relationships as they are understood. With a flex-
ible time discretization process available for the DBN model, the power generation
system may be monitored intensely, by every second, for example, when situations
are critical, as well as more slowly, by minutes or hours, when the health state of
the reactor supports this.

The DBN system is able to run situation analyses in better-than-real-time, sup-
porting both current event and alternate scenario impact analyses. Judea Pearl5

offered suggestions on how this prognostic process might be automated when he
proposed causal “counterfactual algorithms”. For Pearl, “counterfactual” means to
test situations that are not ”currently true”. We use this logic to explore the impact of
alternative scenarios, where, given a particular critical state, possible solution alter-
natives can be explored. These prognostic scenarios can be tested using a Bayesian
model in better-than real time.
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1.3. Generation and validation of remediation strategies

A critical component of nuclear power generation monitoring is the need to know
how to respond to certain critical states that might occur. The DBN is able to
automate the complex processes for analysis of critical accident scenarios. This au-
tomatization process is very important as, once it is verified as optimum, it will
allow the human reactor monitors to see in real time what the alternatives to par-
ticular situations are and what steps are recommended (rather than having to look
these situations up in complex paper manuals as is the current protocol). It also
allows operators, given the previous states of the system, to infer the likely states
of reactor parameters in the event of instrument or control-room failure.

There has been use of AI technology7 to analyze the components of the nuclear
power generation process. However, there has been no work to date, other than our
own, analyzing the use of the dynamic Bayesian network technology to monitor the
full complex processes involved in nuclear power generation.

Our previous work demonstrated proof-of-concept using small models increasing
in size and complexity, starting with a model for light water reactors with three
observable variables8, and several conceptual models for sodium reactors with up
to fourteen observable variables9,10. In this paper, we investigate the feasibility
of impact analysis to provide the ability to base accident mitigation decisions on
data-driven probabilistic investigations of possible outcomes. We present a proof-
of-principle tool and demonstrate its use of counterfactual reasoning for prognostic
accident remediation.

Section 2 discusses the motivation of SMART procedures. Section 3 provides
a detailed analysis of the engineering behind the sodium cooled reactor and the
expressiveness and transparency afforded by modeling this technology with a DBN.
Further, we discuss the development of our prototype model: the generation of
data through simulating accident sequences, the construction of the DBN, and then
demonstrate its interface.

Section 4 explains the validation of the Bayesian model through analysis of
the Kullback-Leibler divergence of its parameters, and through its accuracy and
F-scores. In section 5, we explore the viability of analyzing the impact of critical
prognostic decisions in several accident response scenarios. We conclude with a
summary of the project and suggest further research.

2. The Motivation of SMART Procedures

Existing nuclear power plant accident management guidelines rely on expert judg-
ment and best-estimate analyses in order to capture the physical responses of the
plant. However, procedure developers cannot anticipate every possible accident sce-
nario. This limitation can be addressed with the use of Dynamic Probabilistic Risk
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Fig. 1. Risk-informed “Smart SAMG” development process for nuclear power plant diagnostic
support. Accident scenarios are generated using event trees, the scenarios are simulated with a
system analysis program such as MELCOR11 or SAS4A, the data is used to generate a Bayesian
network.
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Assessment simulationsa coupled with Discrete Dynamic Event Treesb to provide
comprehensive coverage of the potential accident scenario space.

Dynamic Probabilistic Risk Assessment simulations can explore thousands of
scenarios that form the basis for comprehensively learning the values of observ-
able reactor parameters during accidents. These simulators also model the possible
actions of plant operators using the plant’s procedure manuals. The result of this
approach is a comprehensive training data set. However, the amount of data gener-
ated provides too much information to process in real-time during the occurrence of
a severe accident. Thus, these simulators provide detailed insight into specific acci-
dents after they happen, yet cannot be used to support real-time accident diagnosis.
For example, in the aftermath of the Fukushima power plant accident, researchers
ran simulations in order to assess their modeling capabilities in compairson to the
actual events13. The results of these simulations provided useful information. The
aim of this paper is to take the insights provided by such simulations and construct
a knowledge base capable of supporting decisions during the actual progression of
an accident.

The SMART procedures framework was developed in order to condense the nu-
clear accident simulation data into a real-time analysis tool8. This is accomplished
with a dynamic Bayesian network. After the simulation of thousands of permu-
tations of possible scenarios, we populate the Bayesian network with conditional
probabilities calculated from the data. Therefore, SMART Procedures, as described
in Figure 1, can be used to support diagnosis of the likely state of a nuclear reac-
tor given the values of the observed plant parameters. This will enhance operators’
decision making abilities, especially during beyond-design-basis accidents.

3. Building a Sodium-Cooled Reactor Model

Sections 1 and 2 discuss the primary goals of the research: the creation of a better-
than-real-time modeling system for diagnosis and prognosis. In the present section
we go into the methodology for creating the full original DBN model. In Section 4,
we describe how we have validated the model.

3.1. Accident Data Generation and Processing

To build a large probabilistic model it is necessary to have both the knowledge
of how the components of the reactor relate to each other as well as probabilities
describing component and component relationship failures.

The simulated accident data was generated using the SAS4A15 liquid metal re-
actor simulator which performs deterministic analysis on nuclear accident scenarios.

aProbabilistic Risk Assessments are used by the United States Nuclear Regulatory Commission
to quantify the causes, likelihood, and consequences of nuclear accidents. Dynamic Probabilistic
Risk Assessment studies a system’s dynamics often by employing reactor state simulators.
bDiscrete Dynamic Event Tree based software dynamically branches the accident simulations
whenever there is more than one possible outcome.
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Fig. 2. High level diagram of a Sodium Fast Reactor (SFR). The primary system pump flows
relatively cold sodium over the reactor core. The fuel in the core (at a rate managed by control
rods) heats the sodium which then transfers energy through the heat exchanger to secondary
sodium. This secondary sodium heats water in a steam generator which drives a steam turbine.
The secondary pumps return the cooled sodium from the steam generator to the heat exchanger
for reuse14.

We executed simulations varying the states of four target variables: the functional
capacity of the nuclear power plant’s main coolant system (differential pressure),
Direct Reactor Auxiliary Cooling System (DRACS), the Balance of Plant (BOP)
systems, and control rod insertion (SCRAM). These systems, seen in Figure 3 and
Table 1, were chosen as target variables since compounded failures of these systems
have the potential to cause extensive core damage.

The differential pressure parameter has three possible states: 100%, 50%, and
0%. This variable describes the capacity of the pumps removing heat from the core.
The DRACS parameter has three possible states: available, degraded, and enhanced.
Balance of Plant (BOP) has three states: operational, decay, and shutdown. The
SCRAM parameter has three states: control rods nominal, fully in, or withdrawn.
The SCRAM parameter describes the level of the operators’ attempt at an emer-
gency core shutdownc. The states of these reactor systems are initial conditions for
the simulations.

cThe control rods in a nuclear power plant are used to control the fission rate of the core.
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The nuclear power industry uses Discrete Dynamic Event Trees to capture the
changing of complex situations across time. Discrete Dynamic Event Trees capture
the situation when a fixed initial condition evolves into an array of possible end
states, when decisions that create the end states are context specific. Nuclear power
plant accidents almost always start from steady power operation and, as events and
decisions change over time, they are captured as branches in the tree.

The simulations provided for the prototype focus on two types of accidents: both
seismic and non-seismic-induced Transient Overpower and Loss of Flow accidents.
The Discrete Dynamic Event Tree was designed to branch on multiple conditions
including the magnitude of an earthquake, balance of plant availability, the SCRAM
state, the DRACS state, secondary pump power, reactivity response, and coolant
pump status. Some branching conditions were determined dynamically by SAS4A.
Further description of the simulations, branching conditions, and branching prob-
abilities, is provided in16. The event tree also included nominal scenarios with no
earthquake and with various combinations of states of the variables. Such scenarios
are investigated in order to provide baseline conditional probabilities in the model.
The event tree is comprised of 7189 distinct SAS4A simulations. Each simulation
contains 2588 time steps corresponding to the first 48 hours of its scenario.

3.2. Data Processing

Each simulation offers a permutation of the initial conditions. These initial condi-
tions are drawn from the Discrete Dynamic Event Tree and are tied to a particular
state of the target variables. The resulting states of the observation variables —
variables that could be inferred by an operator’s instrumental observations — are
returned by the SAS4A simulator. Each variable provided 2558 times steps of data
for each of the 7189 simulations. With 12 observed variables, we had generated 2.3

gigabytes of data.
The next challenge was to process the data in order to construct the Bayesian

network. We previously hand-quantified simple Bayesian networks using the Ge-
NIed12 probabilistic modeling software. We augmented these simple hand-made
models with the SAS4A data. This required us to implement a data processing
program which we call ALADDINe17. ALADDIN discretizes the data, calculates
the conditional probabilities of each of the observation variable states given each
combination of possible target variable states at each time step, and builds the
dynamic Bayesian network using SMILEd12.

The proper discretization of data values can improve the performance of su-
pervised learning algorithms18. Therefore we discretized the conditional probability
states of each variable into equal width distributions. This binning method calcu-
lates the maximum and minimum values for each variable’s probability distribution

dGeNIe is a graphical interface to the University of Pittsburgh’s Structural Modeling, Inference,
and Learning Engine or “SMILE”
eAutomatic Loader of Accident Data for Dynamic Inferencing Networks
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and distributes the values into k bins of equal width. We divided the probability
values for each variable into 3 bins.

After parsing and discretization, ALADDIN calculates the conditional probabil-
ities for each of the nodes in the DBN. If we let P be the number of plant parameter
nodes, T be the number of time steps, N be the number of bins for each plant pa-
rameter node, and S be the number of reactor system state combinations, then the
number of conditional probabilities is P ·N ·S ·T . For this example model where P
= 12, T = 96, N = 3, and S = 108, we have 373, 248 conditional probabilities.

3.3. Construction of The Network

ALADDIN reads a provided dynamic Bayesian network outline which the user con-
structs with GeNIe. This pre-built network contains a node for each of the plant’s
parameters, including the target and observation variables, and defines the rela-
tionships between them (see Figure 3). The observation variables, along with their
states are given in Table 1. The system then populates the model with the condi-
tional probabilities of each observation node at each time step.

Besides providing an interface for constructing the Bayesian network’s structure,
GeNIe also provides a platform to analyze the network by propagating evidence
and diagnosing the states of the plant’s parameters. This functionality is used as a
decision support system. Users can input a set of known conditions, which propagate
evidence to the unobserved target variables. The posterior probability is then used
to predict the evolution of important reactor systems.

Target States Prior Probabilities

Balance
Of Plant

Operational 1.19×10−12

Shutdown 0.9999
Decay 3.97×10−13

Differential
Pressure

0% flow 3e-13
50% flow 1.04×10−4

100% flow .9999

SCRAM
Fully In 0.0150
Nominal 0.985
Withdrawn 3.04×10−6

DRACS
Enhanced 0.9850
Operational 0.0150
Degraded 7.95×10−12

4. Model Performance

In this section we study the effectiveness and performance of the DBN and its
components. We perform model and variable validation using two traditional ap-
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Fig. 3. User-defined DBN Model Structure: the user creates the DBN model structure to define
the relationships between observation nodes, target nodes, and intermediate nodes. The oval-
shaped nodes, which are placed on a temporal plate, represent observed variables. The rectangular
nodes represent reactor systems. The rectangular nodes on the far right are targets representing the
accident states. The system reads this hand-made model and populates its conditional probability
tables based on the data.

Fig. 4. The accuracies and F-scores of all target variable states with varied data sets. The baseline
value is when the most frequent target combination is always chosen. Out of all the observed
variables, t_coolant and reactivity have the highest and lowest KL divergence values respectively.
Evaluating the BN while dropping each of these variables from the data set illustrates the change
in performance of the BN’s predictive power. For all of the target variables, dropping reactivity
has no effect. Whereas removing the coolant temperature reduces the BN’s performance.

proaches, a traditional AI technique for evaluating model adequacy in stochastic
systems19,20. First we test for variable dependencies using Kullback-Liebler diver-
gence. We then conduct model cross-validation with analysis of F-scores and pre-
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diction accuracies.

4.1. KL Divergence

In order to measure the pertinence of each of the plant parameters, we implemented
a variable evaluator based on Kullback-Leibler (KL) divergence21. KL divergence
measures the distance between two probability distributions (in this case, between
two BN models). In information theory, the Kullback-Leibler divergence equation
is used to measure the amount of information lost when the distribution function
Q is used to approximate the actual distribution function P :

D(P ||Q) =
∑
i

P (i)log

(
P (i)

Q(i)

)
(1)

where P (i) represents the true probability distribution and Q(i) represents a theo-
retical distribution. The equation defines divergence D between P and Q (i.e., the
information lost when Q(i) is substituted for P (i)).

In this application, KL divergence is used to compare the BN model that includes
all of the plant parameters with BN models that have removed one of the param-
eters. The divergence between two models shows how much information is lost by
the elimination of one of the variables. If there is a large amount of information lost
when a node is removed, then the node is highly pertinent. If the information loss
is minimal, than the node may be unnecessary and thus a candidate for removal.

In calculating the KL divergence of an arc, P (i) is the model that includes a
particular node to be measured while Q(i) is the model without that node. The
values summed over i are combinations of possible observed and target states. KL
divergence is calculated for each arc between the observation and target nodes in
a method similar to22. Joint KL divergence calculations are conducted over all the
target nodes for each observation node. In calculating the joint KL divergence, we
treat each combination of possible target states as a single state in a joint target
node that collects all targets into a single node.

After calculating the KL divergence value of each of the observation variables
we found that the coolant temperature (t_coolant) had the highest KL divergence
value at 6.793×10−12 bits while reactivity had the lowest KL divergence value at
3.234×10−18 bits. Thus out of all observed variables, the reactor’s coolant tem-
perature and reactivity provide the highest and lowest amount of information gain
respectively. A plot of the KL divergence values for all of the variables can be seen
in Figure 5.

4.2. Cross-Validation

When investigating predictive models, cross-validation is a standard technique to
measure the predictive power of a model while accounting for the possibility of data
“overfitting” that model23. To perform the cross-validation analysis, we construct



January 2, 2018 11:7 WSPC/INSTRUCTION FILE Intelligent_Modeling-
CameraReady

12 M.C. Darling, G.F. Luger, T.B. Jones, M.R. Denman, K.M. Groth

Fig. 5. KL divergence values for the plant parameters. (Time steps have been converted into
accident time). KL divergence is measured as the number of bits of information lost when the
variable is removed from the model.

the model on a subset of the data and test with the remaining data. The goal is to
measure how well the Bayesian network models the SAS4A simulation data.

To measure model performance, we use the F-score and accuracy of each of the
target variable states predicted by the Bayesian network when fed the discretized
observation variable states produced by the SAS4A simulator. The F-score is defined
as:

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

where β is a weighting parameter between precision and recall (it is usually set to
1 for even weighting), and where precision and recall are defined as:

Precision =
TruePositives

TruePositives+ FalsePositives

Recall =
TruePositives

TruePositives+ FalseNegatives

The F-score is useful for measuring the behavior of a machine learner on an
asymmetric data set, while the accuracy is generally used for symmetric data sets.
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The results of the F-score and accuracy measurements can be found in Figure
4. The figure shows that the F-score of the BN with full simulation data tends
to outperform the baseline. In a few instances, however, this is not the case –
specifically, the F-score for DRACS operational and the SCRAM nominal state.
Both of these states are the chosen state for the baseline Bayesian network. This
indicates that the Bayesian network is occasionally incorrectly predicting that these
two states are not the correct state when they, in fact, are. This is to be expected
when moving from a static baseline that always chooses the most likely target
combination while ignoring the observation variables.

The accuracy of the DRACS operational and enhanced states are the only states
where the baseline guess is better than the BN with full observational data or obser-
vation data with dropped variables. There were also a few instances where dropping
the variable with the highest KL divergence value actually improved results in the
BN. These included two of the SCRAM states —- Nominal and Withdrawn in ac-
curacy and the SCRAM nominal and BOP Decay on the F-score. This points to
the importance of choosing the correct variables to predict the target accuracies on
each of these variables. The highest KL variable, coolant temperature (t_coolant),
was useful for predicting most variable states, but it caused a decrease in accuracy
and F-score for some SCRAM and BOP states.

5. Impact Analysis Using Counterfactuals

Impact analysis using counterfactual reasoning involves exploration of the events
that led up to the current state of affairs when they do not coincide with expec-
tations, and the possible likely outcomes of pending decisions. This exercise allows
operators to determine whether an unexpected outcome is due to a fault in plan-
ning, or in an unexpected external event. It also supports reasoning over possible
and probable consequences of future actions. Applications of counterfactual anal-
ysis include fault diagnosis planning and policy analysis. Balke and Pearl define
the query in the abstract as: "If A were true, would C have been true?", where A
specifies an event that is contrary to one’s real-world observations, and C is known
as the counterfactural consequent24.

The ultimate goal of our data-driven decision-support system is to be able to
perform impact analysis both on the decisions that have led to the current state of
affairs, as well as on real-time decisions that would influence the future state of the
reactor. This analysis tool allows operators to determine the most likely outcomes
of actions under consideration. In the remainder of this section we present three
examples of counterfactual reasoning, demonstrating how, given a current “danger”
state of the sodium-cooled nuclear power generator, human operators can determine
which decisions are best for the “health” of the system. Two of the situations are
described in general detail, outlining states of the model and possible decisions.
The third situation we describe in detail, demonstrating the justification data that
support the remediating decision.
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5.1. Description of Problems and Decisions

Even though sodium fast reactors are designed to be inherently safe across a wide
array of accident conditions without intervention, operators may still feel compelled
to act to reduce potential stresses to reactor components. Most accident manage-
ment plans are focused on ensuring that more heat is removed from the reactor core
than is generated in the reactor core. If the reactivity control system fails and the
power does not decrease upon initiation of the accident, the most direct method
for accident management is to fix the fault which prevented the reactivity control
system from activating. This fault may be a function of the instrumentation and
control system, a relatively easy fix, or it may be a mechanical failure of the control
rod drive mechanisms, a more difficult fix due to access restrictions under acci-
dent conditions. If the reactivity control system cannot be activated, the operators
might decide to reduce flow through the primary pumps to reduce the heat genera-
tion loads from those pumps in the primary system. This action would reduce forced
circulation over the fuel which might cause undesirable overheating. A third action
may be to attempt to increase the energy removed through the emergency heat
removal system. This is the action which is explored in the following subsection.

5.2. Impact Analysis of Enhancing DRACS

For a detailed impact analysis, we analyze the decision of whether or not the op-
erators should choose to enhance the Direct Reactor Auxiliary Cooling System
(DRACS). This decision is conditioned by the operators’ failure to fully engage the
SCRAM system and the possibility of complete DRACS failure. When the core be-
gins to overheat, the operators attempt to control its reactivity by further inserting
the control rods (this is the SCRAM system); if the control rods are fully inserted,
the core’s reactivity will rapidly decrease. However, if the control rods fail to fur-
ther insert, due to being knocked out of alignment or some other mechanical failure,
then alternative measures for cooling the core will be explored. Figure 6 shows the
coolant temperatures in all simulations where the operators take no action on the
DRACS system and the control rods are either somewhat or completely withdrawn.
In these scenarios, there is a chance of the pool of sodium coolant boiling (liquid
sodium boils at 1173.15 Kelvin), which is an emergency the operators must prevent.

“Enhancing” the DRACS system is one hypothetical emergency option for cool-
ing core and preventing the coolant from boiling. This enhancement implies mod-
ifying the DRACS system in a manner beyond its design (i.e., adding water to a
chamber meant only for air) and can result in complete failure of the system. This
would leave the operators with no further recourse for cooling the core if the primary
coolant system is also damaged. Figure 7 shows all simulations where the attempt
to enhance DRACS results in its degradation.

It is imperative to maintain the coolant temperature below its boiling point.
The operators of the power plant would have to decide whether it is worth the
risks to enhance their DRACS before the coolant temperature approaches 1173.15
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Fig. 6. The liquid sodium temperatures in all simulations where the operators take no action on
the DRACS system. The graph on the left shows the cases wheere the control rods are in their
nominal position which approaximately results in an 11.34 percent chance of the sodium boiling;
the figure on the right shows the simulations where control rods are completely withdrawn: there
is approximately a 68.71 percent chance of the sodium reaching its boiling point.

Fig. 7. The liquid sodium temperatures in all simulations where the operators attempt to enhance
the DRACS system but it ultimately fails (degrades). The graph on the left shows the cases where
the control rods are in their nominal position which results in an 27.97 percent chance of the
sodium boiling; the figure on the right shows the simulations where control rods are completely
withdrawn: there is approximately a 69.39 percent chance of the sodium reaching its boiling point.

K. Therefore, we measure the probability of coolant boiling as a function of its
temperature and the time at which the temperature occurs to support the decision
of whether or not to enhance the system. Figure 8 shows the coolant temperatures
in all simulations where the operators choose to enhance the DRACS system.

The probability of the sodium boiling increases as its temperature rises. However,
since the temperature is dependent on the state of the reactor and the mechanical
functioning of the coolant systems, the surge in tempature indiciates the likelihood
that there is a malfunction. Therefore, the decision to enhance the DRACS can be
based on the probability of the sodium boiling given its temperature and the time



January 2, 2018 11:7 WSPC/INSTRUCTION FILE Intelligent_Modeling-
CameraReady

16 M.C. Darling, G.F. Luger, T.B. Jones, M.R. Denman, K.M. Groth

Fig. 8. The liquid sodium temperatures in all simulations where the operators attempt to enhance
the DRACS system. The graph on the left shows the cases where the control rods are in their
nominal position which results in an approximately 18.06 percent chance of the sodium boiling
(note that some of these simulations result in a degraded DRACS); the figure on the right shows
the simulations where control rods are completely withdrawn: there is an approximately 69.05
percent chance of the sodium reaching its boiling point.

Fig. 9. Simple example: The probability of the liquid sodium coolant boiling based on time and
its temperature. The left panel displays the coolant temperatures for 3 simulations as they progress
in time; the panel on the right shows the probability of the coolant boiling when its temperature
is in the range of 892− 898 K during the same time period. Only one of the three simulations will
eventually reach the boiling point. The three simulations have a temperature of exactly 898 K at
4 points in the simulation. These points are annotated by numerical markers. At markers 1 and 2
the three simulations exhibit identical behavior. Therefore, at these two points the probability of
the coolant boiling is exactly 1/3. However, at marker 3, the temperature of one of the simulations
rises more rapidly than the other two, and is the only one to cross 898 K at this point in time.
Therefore, at the time of marker 3 the right panel shows that the probability of boiling is 1. Finally,
at marker 4, the other two simulations cross 898 K but since they will not eventually boil, the
right panel shows a boiling probability of 0.

at which it occurs.
For the purpose of illustration, Figure 9 shows an example for three simulations.

In this scenario, the control rods are in their nominal position but the operators
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Fig. 10. The panel on the left shows the probability of sodium boiling when the operators choose
not to enhance DRACS; the right panel shows the probability of boiling when they do enhance
DRACS. These graphs indicate that, under these conditions, if the coolant temperature reaches
880 K soon after the accident begins, there is a greater-than 90% chance of the coolant boiling,
which is slightly lower if they choose to enhance–therefore, they might choose to do so. However, if
the coolant temperature reaches 880 later into the accident sequence, there is a greater probability
of sodium boiling if they choose to enhance. Therefore, at this point in time, these sequences
generate so much heat that the DRACS is ineffectual and thus operators should focus on other
ways of managing the accident.

choose to enhance DRACS and are successful in preventing the boiling temperature
two out of three times. This example is a snapshot of the times at which the tem-
perature is in the range of 892− 898 K. All three simulated coolant pools reach 898

two times simultaneously. This is why the panel on the right shows the probabil-
ity of coolant boil is 1/3 at the two points of their simulation where tempature is
898 K. However, at marker 3, the temperature of one of the simulations rises more
rapidly than the other two and is the only one to cross 898 K at this point in time.
Therefore at the time of marker 3 the right panels shows that the probability of
boiling is 1. Finally, at marker 4, the other two simulations cross 898 K but since
they will not eventually boil, the right panel shows a boiling probability of 0.

Figure 10 shows the results of the same scenario at 880 K calculated using the
full data set. The panel on the left shows the probability of sodium boiling when
the operators choose not to enhance DRACS; the right panel shows the probability
of boiling when they do enhance DRACS. These graphs indicate that, under these
conditions, if the coolant temperature reaches 880 K soon after the accident begins,
there is a greater-than 90% chance of the coolant boiling, which is slightly lower
than if they choose to enhance–therefore, they might choose to do so.

However, based on these calculations, if the coolant temperature reaches 880

later into the accident sequence, there is a greater probability of sodium boiling
if they choose to enhance. Therefore, at this point in time, these sequences gener-
ate so much heat that the DRACS is ineffectual and thus operators should focus on
other ways of managing the accident. Figure 11 shows the same scenario at multiple
temperature ranges. The information captured by these graphs provides the opera-



January 2, 2018 11:7 WSPC/INSTRUCTION FILE Intelligent_Modeling-
CameraReady

18 M.C. Darling, G.F. Luger, T.B. Jones, M.R. Denman, K.M. Groth

Fig. 11. The probability of the coolant boiling given the time steps at various temperatures.
The panels on the left show the probability of sodium boiling when the operators choose not to
enhance DRACS, the right panels show the probability of boiling when they do enhance DRACS.
By comparing the probabilities of enhancing and not enhancing, the operators would be able to
decide whether the decision is advantageous from a probabilistic perspective.

tors some measure with which to base their decision, whereas currently they would
be considering this drastic choice of action using instinct and raw data (assuming
properly functioning instruments).
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5.3. Further Examples of Counterfactual Inference

While this paper focuses on the operator action relating to enhancing the DRACS
performance, two other operator actions are also discussed: restoring the reactivity
control system and reducing power to the main coolant pumps. These operator
actions are not examined but are briefly described here.

Accident sequences that result in a loss of reactivity control are caused by either
a failure of the digital control system or physical failure of the control rod inser-
tion mechanisms. Failures in the digital control system can possibly be bypassed
though redundant activation commands or may be physically bypassed through
manual activation of circuit breakers that power the control rod insertion mecha-
nisms. Physical failures of these control rod insertion mechanisms are located on
the top of the reactor vessel, a space which may be both thermally hot and ra-
dioactive and thus difficult to access. Successfully completing fixing or bypassing
the reactivity control system will always lead to improved end states. The difficul-
ties associated within quantifying the likelihoods and timings associated with these
actions prevented further study of this action in the dynamic event tree.

The primary system reactor coolant pumps force cold sodium over the hot reac-
tor core, thus cooling the core. While the cooling function of these pumps is desired,
the sodium reactors are generally designed to be cooled via natural circulation dur-
ing accident conditions and with a negative temperature coefficient which reduces
the power generation rate when the reactor heats up. Eventually the operation of
the reactor coolant pumps artificially lowers the temperature of the core which al-
lows for higher equilibrium power generation and worse long term impact. These
pumps also dump heat into the primary system that will need to be removed by
the DRACS25. Unfortunately, loss of pumps during transient overpower conditions
may cause the reactor to overheat and fail the fuel cladding. This decision balance
between when the pumps are needed and when they are a hindrance is worthy of
future study.

5.4. Constraints of Current Data

The probabilities of the coolant boiling provide the operators with a criterion with
which to base their decision on whether to enhance the DRACS system. This is
an improvement over the current practice where operators have no such criterion.
However, the data used in this case study though dynamically generated for the
plant parameters, is not dynamic with respect to the reactor systems (which includes
DRACS).

This is significant since the decision to enhance the DRACS should not only
be based on temperatures, it should also be based on the time it takes to initiate
the enhancement and for the time it would take to actually affect the system. The
decision would have to be made early enough in the accident sequence to have
any hope of averting core damage. We leave it as future work to generate the
needed dynamic data in order to perform this analysis on the DRACS enhancement
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decision.

6. Conclusions and Future Work

SMART procedures is an ongoing project aimed at providing diagnostic tools in the
event of a beyond-design-basis nuclear power plant accident, given the values of ob-
served plant parameters. This framework is meant to condense the rich data output
from nuclear reactor simulators into a model that can be used to probabilistically
analyze an accident in faster-than-real time. This supports a greater understanding
of the state of a reactor during accidents when only a subset of information might
be available.

This paper presents a prototype implementation for the SMART procedures
framework. This entails simulating accidents with a comprehensive set of conditions
and using the resultant data to build a dynamic Bayesian network. Once built, the
DBN can assist diagnosis of the states of observed power plant parameters that can
lead to Transient Over Power and Loss Of Flow Accidents.

We evaluated the performance of the model in two ways: calculating its internal
consistency and, using F-scores, its accuracy. First, we used Kullback-Leibler diver-
gence measures to test the importance within the model of the individual nodes and
arcs in determining the current state of the reactor. Second, we used the traditional
F-score measure to evaluate the overall accuracy of the model in predicting the
current state of the system. The results of these analyses are presented in Section
4.

The most important new result of this paper was to test counterfactual reasoning
algorithms to determine possible next states of the system should certain decisions
be taken, given an accident situation. Balke and Pearl24 suggested counterfactual
inference for exploring possible DBN system states that could occur in the future,
given decisions made in the present. In Section 5, we used counterfactual reasoning
to calculate the probability that the plant’s coolant would boil based on the choice of
whether or not operators enhanced its auxiliary coolant system beyond its designed
capacity.

Although our current prototype shows promising results, there are still many
components in need of improvement. Currently, we discretize the data using Equal
Width binning; we plan to implement alternative, more sophisticated, techniques
such as Entropy or dynamic Minimum Descriptive Length partitioning26, as we sus-
pect that these can improve the model’s predictive accuracy. We also must continue
to expand and calibrate the model parameters.

Another important route forward is measuring the effect of adding or subtracting
variables so that only those that have the best predictive power for each target
system are used. We also need to generate more data in order to model other types
of accidents. In addition, we plan to implement a full impact analysis tool capable
of analyzing multiple decisions under varying conditions.
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Definitions

DRACS: Direct Reactor Auxiliary Cooling System
KL: Kullback-Leibler
LOF: Loss of Flow Accident
SCRAM: Control rod insertion
TOP: Transient Overpower Accident
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