DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multiscale modeling of shock wave localization in porous energetic material

Abstract

Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

Authors:
 [1];  [2];  [2];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1421618
Alternate Identifier(s):
OSTI ID: 1418718
Report Number(s):
SAND2017-12295J
Journal ID: ISSN 2469-9950; 658690; TRN: US1801532
Grant/Contract Number:  
NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 1; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; shock waves; viscoplasticity; molecular solids; hydrodynamics; molecular dynamics; multiscale modeling; fluid dynamics

Citation Formats

Wood, M. A., Kittell, D. E., Yarrington, C. D., and Thompson, A. P. Multiscale modeling of shock wave localization in porous energetic material. United States: N. p., 2018. Web. doi:10.1103/physrevb.97.014109.
Wood, M. A., Kittell, D. E., Yarrington, C. D., & Thompson, A. P. Multiscale modeling of shock wave localization in porous energetic material. United States. https://doi.org/10.1103/physrevb.97.014109
Wood, M. A., Kittell, D. E., Yarrington, C. D., and Thompson, A. P. Tue . "Multiscale modeling of shock wave localization in porous energetic material". United States. https://doi.org/10.1103/physrevb.97.014109. https://www.osti.gov/servlets/purl/1421618.
@article{osti_1421618,
title = {Multiscale modeling of shock wave localization in porous energetic material},
author = {Wood, M. A. and Kittell, D. E. and Yarrington, C. D. and Thompson, A. P.},
abstractNote = {Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.},
doi = {10.1103/physrevb.97.014109},
journal = {Physical Review. B},
number = 1,
volume = 97,
place = {United States},
year = {Tue Jan 30 00:00:00 EST 2018},
month = {Tue Jan 30 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 68 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Theoretical predictions for the transition from viscoplastic to hydrodynamic pore collapse under shock compression. Estimates for the shock viscosity are from Chou et al.38

Save / Share:

Works referenced in this record:

Modeling heterogeneous energetic materials at the mesoscale
journal, February 2002


UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Shock Waves in High-Energy Materials: The Initial Chemical Events in Nitramine RDX
journal, August 2003


Dynamic Behavior of Materials
book, September 1994


Charge equilibration for molecular dynamics simulations
journal, April 1991

  • Rappe, Anthony K.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a070

Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal
journal, May 2015

  • Austin, Ryan A.; Barton, Nathan R.; Reaugh, John E.
  • Journal of Applied Physics, Vol. 117, Issue 18
  • DOI: 10.1063/1.4918538

Initiation of Detonation by the Interaction of Shocks with Density Discontinuities
journal, January 1965


Probabilistic models for reactive behaviour in heterogeneous condensed phase media
journal, February 2012


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation
journal, February 2008

  • Chenoweth, Kimberly; van Duin, Adri C. T.; Goddard, William A.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 5
  • DOI: 10.1021/jp709896w

Computational prediction of probabilistic ignition threshold of pressed granular octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) under shock loading
journal, September 2016

  • Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki
  • Journal of Applied Physics, Vol. 120, Issue 11
  • DOI: 10.1063/1.4962211

Empirical interatomic potential for silicon with improved elastic properties
journal, November 1988


QM/MM Methods for Biomolecular Systems
journal, January 2009

  • Senn, Hans Martin; Thiel, Walter
  • Angewandte Chemie International Edition, Vol. 48, Issue 7
  • DOI: 10.1002/anie.200802019

Charge optimized many-body potential for the Si SiO 2 system
journal, February 2007


Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive
journal, August 2016


Hot spot ignition mechanisms for explosives
journal, November 1992


Detonations at nanometer resolution using molecular dynamics
journal, April 1993


The Role of Rapidly Compressed Gas Pockets in the Initiation of Condensed Explosives
journal, September 1974

  • Chaudhri, M. M.; Field, J. E.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 340, Issue 1620
  • DOI: 10.1098/rspa.1974.0143

Modified embedded-atom potentials for cubic materials and impurities
journal, August 1992


A Method for Tractable Dynamical Studies of Single and Double Shock Compression
journal, June 2003


Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale
journal, September 2015

  • Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 38
  • DOI: 10.1021/acs.jpcc.5b05362

Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code
journal, May 1979


A thermomechanical analysis of hot spot formation in condensed-phase, energetic materials
journal, May 1992


Probing the limits of metal plasticity with molecular dynamics simulations
journal, September 2017

  • Zepeda-Ruiz, Luis A.; Stukowski, Alexander; Oppelstrup, Tomas
  • Nature, Vol. 550, Issue 7677
  • DOI: 10.1038/nature23472

Sensitization of two-dimensional detonations in nitromethane by glass microballoons
journal, April 1999


Coarse-Grain Model Simulations of Nonequilibrium Dynamics in Heterogeneous Materials
journal, June 2014

  • Brennan, John K.; Lísal, Martin; Moore, Joshua D.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 12
  • DOI: 10.1021/jz500756s

Static and Dynamic Pore‐Collapse Relations for Ductile Porous Materials
journal, April 1972

  • Carroll, M. M.; Holt, A. C.
  • Journal of Applied Physics, Vol. 43, Issue 4
  • DOI: 10.1063/1.1661372

On the effect of grain size on shock sensitivity of heterogeneous high explosives
journal, April 1997

  • Khasainov, B. A.; Ermolaev, B. S.; Presles, H. -N.
  • Shock Waves, Vol. 7, Issue 2
  • DOI: 10.1007/s001930050066

The Art and Science of an Analytic Potential
journal, January 2000


Ignition Mechanisms of Explosives during Mechanical Deformation
journal, July 1982

  • Field, J. E.; Swallowe, G. M.; Heavens, S. N.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 382, Issue 1782
  • DOI: 10.1098/rspa.1982.0099

The ReaxFF reactive force-field: development, applications and future directions
journal, March 2016


Coupled Thermal and Electromagnetic Induced Decomposition in the Molecular Explosive αHMX; A Reactive Molecular Dynamics Study
journal, January 2014

  • Wood, Mitchell A.; van Duin, Adri C. T.; Strachan, Alejandro
  • The Journal of Physical Chemistry A, Vol. 118, Issue 5
  • DOI: 10.1021/jp406248m

Computational aspects of many-body potentials
journal, May 2012

  • Plimpton, Steven J.; Thompson, Aidan P.
  • MRS Bulletin, Vol. 37, Issue 5
  • DOI: 10.1557/mrs.2012.96

A constitutive model for strain rates from 10 4 to 10 6 s 1
journal, February 1989

  • Steinberg, D. J.; Lund, C. M.
  • Journal of Applied Physics, Vol. 65, Issue 4
  • DOI: 10.1063/1.342968

Extended Born-Oppenheimer Molecular Dynamics
journal, March 2008


Microscopic View of Structural Phase Transitions Induced by Shock Waves
journal, May 2002


Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals
journal, June 1984


ReaxFF- l g: Correction of the ReaxFF Reactive Force Field for London Dispersion, with Applications to the Equations of State for Energetic Materials
journal, October 2011

  • Liu, Lianchi; Liu, Yi; Zybin, Sergey V.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 40
  • DOI: 10.1021/jp201599t

ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

Nanobubble Collapse on a Silica Surface in Water: Billion-Atom Reactive Molecular Dynamics Simulations
journal, October 2013


A physically-based Mie–Grüneisen equation of state to determine hot spot temperature distributions
journal, June 2016


Electric Detonators: EBW and EFI
journal, June 1996


Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool
journal, December 2009


Effects of void size, density, and arrangement on deflagration and detonation sensitivity of a reactive empirical bond order high explosive
journal, December 2010

  • Herring, S. Davis; Germann, Timothy C.; Grønbech-Jensen, Niels
  • Physical Review B, Vol. 82, Issue 21
  • DOI: 10.1103/PhysRevB.82.214108

Collapse of void arrays under stress wave loading
journal, April 2010


Shock initiation of explosives: High temperature hot spots explained
journal, August 2017

  • Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.
  • Applied Physics Letters, Vol. 111, Issue 6
  • DOI: 10.1063/1.4985593

Differences between the detonation behavior of emulsion explosives sensitized with glass or with polymeric micro-balloons
journal, May 2014


Real time ultrafast spectroscopy of shock front pore collapse
journal, November 2001

  • Hambir, Selezion A.; Kim, Hackjin; Dlott, Dana D.
  • Journal of Applied Physics, Vol. 90, Issue 10
  • DOI: 10.1063/1.1412831

Critical Conditions for Impact- and Shock-Induced Hot Spots in Solid Explosives
journal, January 1996

  • Tarver, Craig M.; Chidester, Steven K.; Nichols, Albert L.
  • The Journal of Physical Chemistry, Vol. 100, Issue 14
  • DOI: 10.1021/jp953123s

A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
journal, January 2002

  • Brenner, Donald W.; Shenderova, Olga A.; Harrison, Judith A.
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 4
  • DOI: 10.1088/0953-8984/14/4/312

Detonations at Nanometer Resolution Using Molecular Dynamics
journal, March 1996


Critical Conditions for Impact- and Shock-Induced Hot Spots in Solid Explosives
journal, January 1996

  • Tarver, Craig M.; Chidester, Steven K.; Nichols, Albert L.
  • The Journal of Physical Chemistry, Vol. 100, Issue 14
  • DOI: 10.1021/jp953123s

Works referencing / citing this record:

Prediction of Probabilistic Detonation Threshold via Millimeter‐Scale Microstructure‐Explicit and Void‐Explicit Simulations
journal, November 2019

  • Miller, Christopher; Kittell, David; Yarrington, Cole
  • Propellants, Explosives, Pyrotechnics, Vol. 45, Issue 2
  • DOI: 10.1002/prep.201900214

Highly scalable discrete-particle simulations with novel coarse-graining: accessing the microscale
text, January 2018


Highly scalable discrete-particle simulations with novel coarse-graining: accessing the microscale
journal, May 2018


Highly scalable discrete-particle simulations with novel coarse-graining: accessing the microscale
text, January 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.