DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrodynamics of the antiferromagnetic phase in URu 2 Si 2

Abstract

Here, we present data on the optical conductivity of URu2-x(Fe,Os)xSi2. While the parent material URu2Si2 enters the enigmatic hidden order (HO) phase below 17.5 K, an antiferromagnetic (AFM) phase is induced by the substitution of Fe or Os onto the Ru sites. We find that both the HO and the AFM phases exhibit an identical gap structure that is characterized by a loss of conductivity below the gap energy with spectral weight transferred to a narrow frequency region just above the gap, the typical optical signature of a density wave. The AFM phase is marked by strong increases in both transition temperature and the energy of the gap associated with the transition. In the normal phase just above the transition the optical scattering rate varies as ω2. We find that in both the HO and the AFM phases, our data are consistent with elastic resonant scattering of a Fermi liquid. This indicates that the appearance of a coherent state is a necessary condition for either ordered phase to emerge. Our measurements favor models in which the HO and the AFM phases are driven by the common physics of a nesting-induced density wave gap.

Authors:
 [1];  [1];  [1];  [2];  [3];  [3];  [3];  [3];  [2]
  1. McMaster Univ., Hamilton, ON (Canada)
  2. McMaster Univ., Hamilton, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada)
  3. Univ. of California, San Diego, CA (United States)
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1418611
Alternate Identifier(s):
OSTI ID: 1225409
Grant/Contract Number:  
FG02-04ER46105; DMR-1206553
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 92; Journal Issue: 19; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Hall, Jesse S., Movassagh, M. Rahimi, Wilson, M. N., Luke, G. M., Kanchanavatee, N., Huang, K., Janoschek, M., Maple, M. B., and Timusk, T. Electrodynamics of the antiferromagnetic phase in URu2Si2. United States: N. p., 2015. Web. doi:10.1103/PhysRevB.92.195111.
Hall, Jesse S., Movassagh, M. Rahimi, Wilson, M. N., Luke, G. M., Kanchanavatee, N., Huang, K., Janoschek, M., Maple, M. B., & Timusk, T. Electrodynamics of the antiferromagnetic phase in URu2Si2. United States. https://doi.org/10.1103/PhysRevB.92.195111
Hall, Jesse S., Movassagh, M. Rahimi, Wilson, M. N., Luke, G. M., Kanchanavatee, N., Huang, K., Janoschek, M., Maple, M. B., and Timusk, T. Fri . "Electrodynamics of the antiferromagnetic phase in URu2Si2". United States. https://doi.org/10.1103/PhysRevB.92.195111. https://www.osti.gov/servlets/purl/1418611.
@article{osti_1418611,
title = {Electrodynamics of the antiferromagnetic phase in URu2Si2},
author = {Hall, Jesse S. and Movassagh, M. Rahimi and Wilson, M. N. and Luke, G. M. and Kanchanavatee, N. and Huang, K. and Janoschek, M. and Maple, M. B. and Timusk, T.},
abstractNote = {Here, we present data on the optical conductivity of URu2-x(Fe,Os)xSi2. While the parent material URu2Si2 enters the enigmatic hidden order (HO) phase below 17.5 K, an antiferromagnetic (AFM) phase is induced by the substitution of Fe or Os onto the Ru sites. We find that both the HO and the AFM phases exhibit an identical gap structure that is characterized by a loss of conductivity below the gap energy with spectral weight transferred to a narrow frequency region just above the gap, the typical optical signature of a density wave. The AFM phase is marked by strong increases in both transition temperature and the energy of the gap associated with the transition. In the normal phase just above the transition the optical scattering rate varies as ω2. We find that in both the HO and the AFM phases, our data are consistent with elastic resonant scattering of a Fermi liquid. This indicates that the appearance of a coherent state is a necessary condition for either ordered phase to emerge. Our measurements favor models in which the HO and the AFM phases are driven by the common physics of a nesting-induced density wave gap.},
doi = {10.1103/PhysRevB.92.195111},
journal = {Physical Review. B, Condensed Matter and Materials Physics},
number = 19,
volume = 92,
place = {United States},
year = {Fri Nov 06 00:00:00 EST 2015},
month = {Fri Nov 06 00:00:00 EST 2015}
}

Journal Article:

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Temperature and doping dependence of the reflectance of doped samples of URu2−x(Fe,Os)xSi2. The top panels shows the absolute reflectance for a) Fe doping, b) Os doping, both in the AFM state as a function of temperature. The bottom panels show the absolute reflectance as function of doping formore » c) Fe doping and d) Os doping. The prominent depression of reflectance that develops in the 5 to 10 meV region in all the samples is a signature of a gap in the density of states. Doping with Fe and Os causes the reflectance minimum to move to higher frequency but the signature of the gap, a single minimum of reflectance, does not change with doping.« less

Save / Share:

Works referenced in this record:

Effect of Pressure on Tiny Antiferromagnetic Moment in the Heavy-Electron Compound URu 2 Si 2
journal, December 1999


Hidden order in
journal, April 2005


The appearance of homogeneous antiferromagnetism in URu 2 Si 2 under high pressure: a 29 Si nuclear magnetic resonance study
journal, March 2003


Anisotropic electrical resistivity of the magnetic heavy-fermion superconductor URu 2 Si 2
journal, May 1986


Partially gapped Fermi surface in the heavy-electron superconductor URu 2 Si 2
journal, January 1986


Gapped itinerant spin excitations account for missing entropy in the hidden-order state of URu2Si2
journal, January 2007

  • Wiebe, C. R.; Janik, J. A.; MacDougall, G. J.
  • Nature Physics, Vol. 3, Issue 2
  • DOI: 10.1038/nphys522

Fermi-surface instability at the ‘hidden-order’ transition of URu2Si2
journal, July 2009

  • Santander-Syro, Andrés F.; Klein, Markus; Boariu, Florin L.
  • Nature Physics, Vol. 5, Issue 9
  • DOI: 10.1038/nphys1361

Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2
journal, June 2010

  • Schmidt, A. R.; Hamidian, M. H.; Wahl, P.
  • Nature, Vol. 465, Issue 7298
  • DOI: 10.1038/nature09073

Visualizing the formation of the Kondo lattice and the hidden order in URu2Si2
journal, May 2010

  • Aynajian, P.; da Silva Neto, E. H.; Parker, C. V.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 23
  • DOI: 10.1073/pnas.1005892107

Similarity of the Fermi Surface in the Hidden Order State and in the Antiferromagnetic State of URu 2 Si 2
journal, November 2010


Arrested Kondo effect and hidden order in URu2Si2
journal, September 2009

  • Haule, Kristjan; Kotliar, Gabriel
  • Nature Physics, Vol. 5, Issue 11
  • DOI: 10.1038/nphys1392

Hybridization Wave as the “Hidden Order” in URu 2 Si 2
journal, February 2011


Hastatic order in the heavy-fermion compound URu2Si2
journal, January 2013

  • Chandra, Premala; Coleman, Piers; Flint, Rebecca
  • Nature, Vol. 493, Issue 7434
  • DOI: 10.1038/nature11820

Phase transition arising from the underscreened Anderson lattice model: A candidate concept for explaining hidden order in URu 2 Si 2
journal, April 2012


Imprints of spin-orbit density wave in the hidden-order state of URu 2 Si 2
journal, January 2014


Effect of pressure on competing electronic correlations in the heavy-electron system URu 2 Si 2
journal, January 1987

  • McElfresh, M. W.; Thompson, J. D.; Willis, J. O.
  • Physical Review B, Vol. 35, Issue 1
  • DOI: 10.1103/PhysRevB.35.43

Pressure–temperature phase diagram of the heavy-electron superconductor
journal, March 2007

  • Amitsuka, H.; Matsuda, K.; Kawasaki, I.
  • Journal of Magnetism and Magnetic Materials, Vol. 310, Issue 2
  • DOI: 10.1016/j.jmmm.2006.10.008

Neutron scattering studies on URu 2 Si 2
journal, July 2014

  • Bourdarot, Frederic; Raymond, Stephane; Regnault, Louis-Pierre
  • Philosophical Magazine, Vol. 94, Issue 32-33
  • DOI: 10.1080/14786435.2014.935513

The de Haas–van Alphen effect in URu 2 Si 2 under pressure
journal, July 2003


Hidden order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking
journal, February 2009

  • Elgazzar, S.; Rusz, J.; Amft, M.
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2395

Spin and orbital hybridization at specifically nested Fermi surfaces in URu 2 Si 2
journal, December 2011


Twofold enhancement of the hidden-order/large-moment antiferromagnetic phase boundary in the URu 2 x Fe x Si 2 system
journal, December 2011


Chemical pressure tuning of URu 2 Si 2 via isoelectronic substitution of Ru with Fe
journal, February 2015


Enhancement of the hidden order/large moment antiferromagnetic transition temperature in the URu 2− x Os x Si 2 system
journal, April 2014


Competing Ordered Phases in URu 2 Si 2 : Hydrostatic Pressure and Rhenium Substitution
journal, November 2007


Technique for measuring the reflectance of irregular, submillimeter-sized samples
journal, January 1993

  • Homes, Christopher C.; Reedyk, M.; Cradles, D. A.
  • Applied Optics, Vol. 32, Issue 16
  • DOI: 10.1364/AO.32.002976

Observation of multiple-gap structure in hidden order state of URu 2 Si 2 from optical conductivity
journal, July 2012


The evolution of the ordered states of single-crystal URu 2 Si 2 under pressure
journal, February 2008


Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid
journal, October 2012

  • Nagel, U.; Uleksin, T.; Room, T.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 47
  • DOI: 10.1073/pnas.1208249109

Hybridization gap versus hidden-order gap in URu 2 Si 2 as revealed by optical spectroscopy
journal, May 2012


Optical study of hybridization and hidden order in URu 2 Si 2
journal, April 2014


First-Matsubara-frequency rule in a Fermi liquid. II. Optical conductivity and comparison to experiment
journal, October 2012


Evolution of the bosonic spectral density of the high-temperature superconductor Bi 2 Sr 2 Ca Cu 2 O 8 + δ
journal, April 2007


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.