DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Capping Ligand Vortices as “Atomic Orbitals” in Nanocrystal Self-Assembly

Abstract

In this work, we present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.

Authors:
 [1];  [1];  [2]
  1. Ames Lab. and Iowa State Univ., Ames, IA (United States). Department of Materials Science and Engineering
  2. Ames Lab. and Iowa State Univ., Ames, IA (United States). Department of Physics and Astronomy and Department of Materials Science and Engineering
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1417346
Report Number(s):
IS-J-9534
Journal ID: ISSN 1936-0851; TRN: US1801034
Grant/Contract Number:  
AC02-07CH11358; PHY-1607611; DMR-1606336
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 11; Journal Issue: 11; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; nanocrystal; self-assembly; skyrmions; superlattices; thermodynamics; vortices

Citation Formats

Waltmann, Curt, Horst, Nathan, and Travesset, Alex. Capping Ligand Vortices as “Atomic Orbitals” in Nanocrystal Self-Assembly. United States: N. p., 2017. Web. doi:10.1021/acsnano.7b05694.
Waltmann, Curt, Horst, Nathan, & Travesset, Alex. Capping Ligand Vortices as “Atomic Orbitals” in Nanocrystal Self-Assembly. United States. https://doi.org/10.1021/acsnano.7b05694
Waltmann, Curt, Horst, Nathan, and Travesset, Alex. Fri . "Capping Ligand Vortices as “Atomic Orbitals” in Nanocrystal Self-Assembly". United States. https://doi.org/10.1021/acsnano.7b05694. https://www.osti.gov/servlets/purl/1417346.
@article{osti_1417346,
title = {Capping Ligand Vortices as “Atomic Orbitals” in Nanocrystal Self-Assembly},
author = {Waltmann, Curt and Horst, Nathan and Travesset, Alex},
abstractNote = {In this work, we present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.},
doi = {10.1021/acsnano.7b05694},
journal = {ACS Nano},
number = 11,
volume = 11,
place = {United States},
year = {Fri Oct 27 00:00:00 EDT 2017},
month = {Fri Oct 27 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Crystal Structures of Molecular Gold Nanocrystal Arrays
journal, May 1999

  • Whetten, Robert L.; Shafigullin, Marat N.; Khoury, Joseph T.
  • Accounts of Chemical Research, Vol. 32, Issue 5
  • DOI: 10.1021/ar970239t

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

Macroscopic and tunable nanoparticle superlattices
journal, January 2017

  • Zhang, Honghu; Wang, Wenjie; Mallapragada, Surya
  • Nanoscale, Vol. 9, Issue 1
  • DOI: 10.1039/C6NR07136H

Ion-Specific Interfacial Crystallization of Polymer-Grafted Nanoparticles
journal, July 2017

  • Zhang, Honghu; Wang, Wenjie; Mallapragada, Surya
  • The Journal of Physical Chemistry C, Vol. 121, Issue 28
  • DOI: 10.1021/acs.jpcc.7b02549

Assembling and ordering polymer-grafted nanoparticles in three dimensions
journal, January 2017

  • Zhang, Honghu; Wang, Wenjie; Akinc, Mufit
  • Nanoscale, Vol. 9, Issue 25
  • DOI: 10.1039/C7NR00787F

Polymorphism in AB 13 Nanoparticle Superlattices:  An Example of Semiconductor−Metal Metamaterials
journal, June 2005

  • Shevchenko, Elena V.; Talapin, Dmitri V.; O'Brien, Stephen
  • Journal of the American Chemical Society, Vol. 127, Issue 24
  • DOI: 10.1021/ja050510z

Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices
journal, March 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Murray, Christopher B.
  • Journal of the American Chemical Society, Vol. 128, Issue 11
  • DOI: 10.1021/ja0564261

Structure Direction of II−VI Semiconductor Quantum Dot Binary Nanoparticle Superlattices by Tuning Radius Ratio
journal, May 2008

  • Chen, Zhuoying; O’Brien, Stephen
  • ACS Nano, Vol. 2, Issue 6
  • DOI: 10.1021/nn800129s

Quasicrystalline order in self-assembled binary nanoparticle superlattices
journal, October 2009

  • Talapin, Dmitri V.; Shevchenko, Elena V.; Bodnarchuk, Maryna I.
  • Nature, Vol. 461, Issue 7266
  • DOI: 10.1038/nature08439

Energetic and Entropic Contributions to Self-Assembly of Binary Nanocrystal Superlattices: Temperature as the Structure-Directing Factor
journal, September 2010

  • Bodnarchuk, Maryna I.; Kovalenko, Maksym V.; Heiss, Wolfgang
  • Journal of the American Chemical Society, Vol. 132, Issue 34
  • DOI: 10.1021/ja103083q

Entropy-Driven Formation of Binary Semiconductor-Nanocrystal Superlattices
journal, October 2010

  • Evers, Wiel H.; Nijs, Bart De; Filion, Laura
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl102705p

Polymorphism in Self-Assembled AB 6 Binary Nanocrystal Superlattices
journal, March 2011

  • Ye, Xingchen; Chen, Jun; Murray, Christopher B.
  • Journal of the American Chemical Society, Vol. 133, Issue 8
  • DOI: 10.1021/ja108708v

Electron Tomography Resolves a Novel Crystal Structure in a Binary Nanocrystal Superlattice
journal, February 2013

  • Boneschanscher, Mark P.; Evers, Wiel H.; Qi, Weikai
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl400100c

Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices
journal, November 2015

  • Wei, Jingjing; Schaeffer, Nicolas; Pileni, Marie-Paule
  • Journal of the American Chemical Society, Vol. 137, Issue 46
  • DOI: 10.1021/jacs.5b09959

Beyond Entropy: Magnetic Forces Induce Formation of Quasicrystalline Structure in Binary Nanocrystal Superlattices
journal, March 2015

  • Yang, Zhijie; Wei, Jingjing; Bonville, Pierre
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/jacs.5b00332

Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals
journal, December 2015

  • Ye, Xingchen; Zhu, Chenhui; Ercius, Peter
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10052

Many-Body Effects in Nanocrystal Superlattices: Departure from Sphere Packing Explains Stability of Binary Phases
journal, March 2015

  • Boles, Michael A.; Talapin, Dmitri V.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/jacs.5b00839

Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials
journal, August 2016


Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements
journal, December 1980


Binary Nanoparticle Superlattices in the Semiconductor−Semiconductor System:  CdTe and CdSe
journal, December 2007

  • Chen, Zhuoying; Moore, Jenny; Radtke, Guillaume
  • Journal of the American Chemical Society, Vol. 129, Issue 50
  • DOI: 10.1021/ja076698z

Binary nanoparticle superlattices of soft-particle systems
journal, July 2015


Prediction of binary nanoparticle superlattices from soft potentials
journal, January 2016

  • Horst, Nathan; Travesset, Alex
  • The Journal of Chemical Physics, Vol. 144, Issue 1
  • DOI: 10.1063/1.4939238

Generic phase diagram of binary superlattices
journal, August 2016

  • Tkachenko, Alexei V.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 37
  • DOI: 10.1073/pnas.1525358113

Small is different: energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies
journal, January 2004

  • Landman, Uzi; Luedtke, W. D.
  • Faraday Discussions, Vol. 125
  • DOI: 10.1039/b312640b

Understanding interactions between capped nanocrystals: Three-body and chain packing effects
journal, September 2009

  • Schapotschnikow, Philipp; Vlugt, Thijs J. H.
  • The Journal of Chemical Physics, Vol. 131, Issue 12
  • DOI: 10.1063/1.3227043

Coarse-grained model for gold nanocrystals with an organic capping layer
journal, December 2007

  • Schapotschnikow, Philipp; Pool, René; Vlugt, Thijs J. H.
  • Molecular Physics, Vol. 105, Issue 23-24
  • DOI: 10.1080/00268970701802432

Molecular Simulations of Interacting Nanocrystals
journal, September 2008

  • Schapotschnikow, Philipp; Pool, René; Vlugt, Thijs J. H.
  • Nano Letters, Vol. 8, Issue 9
  • DOI: 10.1021/nl8017862

Fluctuation-driven anisotropy in effective pair interactions between nanoparticles: Thiolated gold nanoparticles in ethane
journal, October 2014

  • Jabes, B. Shadrack; Yadav, Hari O. S.; Kumar, Sanat K.
  • The Journal of Chemical Physics, Vol. 141, Issue 15
  • DOI: 10.1063/1.4897541

Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly
journal, June 2016

  • Yadav, Hari O. S.; Shrivastav, Gourav; Agarwal, Manish
  • The Journal of Chemical Physics, Vol. 144, Issue 24
  • DOI: 10.1063/1.4954325

Different ways of looking at the force between two nanocrystals
journal, December 2015

  • Lange, Alexander; Danecker, Fabian; Bauer, Gernot
  • The Journal of Chemical Physics, Vol. 143, Issue 24
  • DOI: 10.1063/1.4937395

Three-body effects in triplets of capped gold nanocrystals
journal, August 2016


Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites
journal, August 1998

  • Luedtke, W. D.; Landman, Uzi
  • The Journal of Physical Chemistry B, Vol. 102, Issue 34
  • DOI: 10.1021/jp981745i

Sulfur−Gold Orbital Interactions which Determine the Structure of Alkanethiolate/Au(111) Self-Assembled Monolayer Systems
journal, December 2002

  • Tachibana, Masamitsu; Yoshizawa, Kazunari; Ogawa, Atsushi
  • The Journal of Physical Chemistry B, Vol. 106, Issue 49
  • DOI: 10.1021/jp020993i

Simulation of a monolayer of alkyl thiol chains
journal, October 1989

  • Hautman, Joseph; Klein, Michael L.
  • The Journal of Chemical Physics, Vol. 91, Issue 8
  • DOI: 10.1063/1.457621

Permanent dipole moment and charges in colloidal semiconductor quantum dots
journal, October 1999

  • Shim, Moonsub; Guyot-Sionnest, Philippe
  • The Journal of Chemical Physics, Vol. 111, Issue 15
  • DOI: 10.1063/1.479988

Dipole−Dipole Interactions in Nanoparticle Superlattices
journal, May 2007

  • Talapin, Dmitri V.; Shevchenko, Elena V.; Murray, Christopher B.
  • Nano Letters, Vol. 7, Issue 5, p. 1213-1219
  • DOI: 10.1021/nl070058c

MPI for Python
journal, September 2005

  • Dalcín, Lisandro; Paz, Rodrigo; Storti, Mario
  • Journal of Parallel and Distributed Computing, Vol. 65, Issue 9
  • DOI: 10.1016/j.jpdc.2005.03.010

General purpose molecular dynamics simulations fully implemented on graphics processing units
journal, May 2008

  • Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.
  • Journal of Computational Physics, Vol. 227, Issue 10
  • DOI: 10.1016/j.jcp.2008.01.047

Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units
journal, November 2011

  • Nguyen, Trung Dac; Phillips, Carolyn L.; Anderson, Joshua A.
  • Computer Physics Communications, Vol. 182, Issue 11
  • DOI: 10.1016/j.cpc.2011.06.005

Structure, Dynamics, and Thermodynamics of Passivated Gold Nanocrystallites and Their Assemblies
journal, January 1996

  • Luedtke, W. D.; Landman, Uzi
  • The Journal of Physical Chemistry, Vol. 100, Issue 32
  • DOI: 10.1021/jp961721g

THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
journal, October 1992

  • Kumar, Shankar; Rosenberg, John M.; Bouzida, Djamal
  • Journal of Computational Chemistry, Vol. 13, Issue 8
  • DOI: 10.1002/jcc.540130812

Phase diagram of power law and Lennard-Jones systems: Crystal phases
journal, October 2014

  • Travesset, Alex
  • The Journal of Chemical Physics, Vol. 141, Issue 16
  • DOI: 10.1063/1.4898371

Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices
journal, March 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Murray, Christopher B.
  • Journal of the American Chemical Society, Vol. 128, Issue 11
  • DOI: 10.1021/ja0564261

Dipole−Dipole Interactions in Nanoparticle Superlattices
journal, May 2007

  • Talapin, Dmitri V.; Shevchenko, Elena V.; Murray, Christopher B.
  • Nano Letters, Vol. 7, Issue 5, p. 1213-1219
  • DOI: 10.1021/nl070058c

Electron Tomography Resolves a Novel Crystal Structure in a Binary Nanocrystal Superlattice
journal, February 2013

  • Boneschanscher, Mark P.; Evers, Wiel H.; Qi, Weikai
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl400100c

Molecular Simulations of Interacting Nanocrystals
journal, September 2008

  • Schapotschnikow, Philipp; Pool, René; Vlugt, Thijs J. H.
  • Nano Letters, Vol. 8, Issue 9
  • DOI: 10.1021/nl8017862

Small is different: energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies
journal, January 2004

  • Landman, Uzi; Luedtke, W. D.
  • Faraday Discussions, Vol. 125
  • DOI: 10.1039/b312640b

Role of ligand–ligand vs. core–core interactions in gold nanoclusters
journal, January 2016

  • Milowska, Karolina Z.; Stolarczyk, Jacek K.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 18
  • DOI: 10.1039/c5cp06795b

Topological structure prediction in binary nanoparticle superlattices
journal, January 2017


Permanent dipole moment and charges in colloidal semiconductor quantum dots
journal, October 1999

  • Shim, Moonsub; Guyot-Sionnest, Philippe
  • The Journal of Chemical Physics, Vol. 111, Issue 15
  • DOI: 10.1063/1.479988

Prediction of binary nanoparticle superlattices from soft potentials
journal, January 2016

  • Horst, Nathan; Travesset, Alex
  • The Journal of Chemical Physics, Vol. 144, Issue 1
  • DOI: 10.1063/1.4939238

Binary nanoparticle superlattices of soft-particle systems
journal, July 2015


Origin and Scaling of the Permanent Dipole Moment in CdSe Nanorods
journal, March 2003


Works referencing / citing this record:

Mixing–demixing transition in polymer-grafted spherical nanoparticles
journal, January 2020

  • Yatsyshin, Peter; Fytas, Nikolaos G.; Theodorakis, Panagiotis E.
  • Soft Matter, Vol. 16, Issue 3
  • DOI: 10.1039/c9sm01639b

Interaction between capped tetrahedral gold nanocrystals: dependence on effective softness
journal, January 2019

  • Liu, Xuepeng; Ni, Yong; He, Linghui
  • Soft Matter, Vol. 15, Issue 41
  • DOI: 10.1039/c9sm01389j

Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices
journal, January 2019

  • Patra, Tarak K.; Chan, Henry; Podsiadlo, Paul
  • Nanoscale, Vol. 11, Issue 22
  • DOI: 10.1039/c8nr09699f

Assembly by solvent evaporation: equilibrium structures and relaxation times
journal, January 2019


Superlattice assembly by interpolymer complexation
journal, January 2019

  • Horst, Nathan; Nayak, Srikanth; Wang, Wenjie
  • Soft Matter, Vol. 15, Issue 47
  • DOI: 10.1039/c9sm01659g

Potential of mean force for two nanocrystals: Core geometry and size, hydrocarbon unsaturation, and universality with respect to the force field
journal, July 2018

  • Waltmann, Curt; Horst, Nathan; Travesset, Alex
  • The Journal of Chemical Physics, Vol. 149, Issue 3
  • DOI: 10.1063/1.5039495

Molecular interaction between asymmetric ligand-capped gold nanocrystals
journal, January 2019

  • Liu, Xuepeng; Lu, Pin; Zhai, Hua
  • The Journal of Chemical Physics, Vol. 150, Issue 3
  • DOI: 10.1063/1.5065476

Relevance of packing to colloidal self-assembly
journal, January 2018

  • Cersonsky, Rose K.; van Anders, Greg; Dodd, Paul M.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 7
  • DOI: 10.1073/pnas.1720139115

Mixing--Demixing Transition in Polymer-Grafted Spherical Nanoparticles
text, January 2019


Colloidal Stability of Apolar Nanoparticles: The Role of Particle Size and Ligand Shell Structure
journal, May 2018


On the colloidal stability of apolar nanoparticles: The role of ligand length
text, January 2019