DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas

Abstract

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

Authors:
 [1];  [2];  [1];  [3];  [4];  [5];  [6];  [1]; ORCiD logo [7];  [4];  [8];  [9];  [7];  [10];  [7];  [6];  [4];  [11];  [12];  [8] more »;  [13];  [14];  [7];  [6];  [8];  [15];  [1];  [2];  [16] « less
  1. Univ. of Oxford (United Kingdom)
  2. Univ. of Chicago, IL (United States)
  3. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL); Univ. of Strathclyde, Glasgow (United Kingdom)
  4. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)
  5. Max Planck Society, Garching (Germany). Max Planck Inst. for Astrophysics; Space Research Inst., Moscow (Russia)
  6. Univ. of York (United Kingdom)
  7. Univ. of Michigan, Ann Arbor, MI (United States)
  8. Univ. Paris Ecole Polytechnique, Palaiseau (France)
  9. Osaka Univ. (Japan); National Central Univ., Taoyuan (Taiwan)
  10. Univ. of California, Santa Cruz, CA (United States)
  11. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  12. Univ. Paris Ecole Polytechnique, Palaiseau (France); Helmholtz-Zentrum Dresden-Rossendorf, (Germany)
  13. Queen's Univ., Belfast, Northern Ireland (United Kingdom)
  14. Osaka Univ. (Japan)
  15. ETH Zurich (Switzerland)
  16. Univ. of Oxford (United Kingdom); Univ. of Chicago, IL (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1414370
Report Number(s):
LLNL-JRNL-742436
Journal ID: ISSN 0027-8424
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 112; Journal Issue: 27; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 79 ASTRONOMY AND ASTROPHYSICS; 70 PLASMA PHYSICS AND FUSION; Galaxy clusters; laboratory analogues; lasers; magnetic fields; turbulence

Citation Formats

Meinecke, Jena, Tzeferacos, Petros, Bell, Anthony, Bingham, Robert, Clarke, Robert, Churazov, Eugene, Crowston, Robert, Doyle, Hugo, Drake, R. Paul, Heathcote, Robert, Koenig, Michel, Kuramitsu, Yasuhiro, Kuranz, Carolyn, Lee, Dongwook, MacDonald, Michael, Murphy, Christopher, Notley, Margaret, Park, Hye-Sook, Pelka, Alexander, Ravasio, Alessandra, Reville, Brian, Sakawa, Youichi, Wan, Willow, Woolsey, Nigel, Yurchak, Roman, Miniati, Francesco, Schekochihin, Alexander, Lamb, Don, and Gregori, Gianluca. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas. United States: N. p., 2015. Web. doi:10.1073/pnas.1502079112.
Meinecke, Jena, Tzeferacos, Petros, Bell, Anthony, Bingham, Robert, Clarke, Robert, Churazov, Eugene, Crowston, Robert, Doyle, Hugo, Drake, R. Paul, Heathcote, Robert, Koenig, Michel, Kuramitsu, Yasuhiro, Kuranz, Carolyn, Lee, Dongwook, MacDonald, Michael, Murphy, Christopher, Notley, Margaret, Park, Hye-Sook, Pelka, Alexander, Ravasio, Alessandra, Reville, Brian, Sakawa, Youichi, Wan, Willow, Woolsey, Nigel, Yurchak, Roman, Miniati, Francesco, Schekochihin, Alexander, Lamb, Don, & Gregori, Gianluca. Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas. United States. https://doi.org/10.1073/pnas.1502079112
Meinecke, Jena, Tzeferacos, Petros, Bell, Anthony, Bingham, Robert, Clarke, Robert, Churazov, Eugene, Crowston, Robert, Doyle, Hugo, Drake, R. Paul, Heathcote, Robert, Koenig, Michel, Kuramitsu, Yasuhiro, Kuranz, Carolyn, Lee, Dongwook, MacDonald, Michael, Murphy, Christopher, Notley, Margaret, Park, Hye-Sook, Pelka, Alexander, Ravasio, Alessandra, Reville, Brian, Sakawa, Youichi, Wan, Willow, Woolsey, Nigel, Yurchak, Roman, Miniati, Francesco, Schekochihin, Alexander, Lamb, Don, and Gregori, Gianluca. Mon . "Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas". United States. https://doi.org/10.1073/pnas.1502079112. https://www.osti.gov/servlets/purl/1414370.
@article{osti_1414370,
title = {Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas},
author = {Meinecke, Jena and Tzeferacos, Petros and Bell, Anthony and Bingham, Robert and Clarke, Robert and Churazov, Eugene and Crowston, Robert and Doyle, Hugo and Drake, R. Paul and Heathcote, Robert and Koenig, Michel and Kuramitsu, Yasuhiro and Kuranz, Carolyn and Lee, Dongwook and MacDonald, Michael and Murphy, Christopher and Notley, Margaret and Park, Hye-Sook and Pelka, Alexander and Ravasio, Alessandra and Reville, Brian and Sakawa, Youichi and Wan, Willow and Woolsey, Nigel and Yurchak, Roman and Miniati, Francesco and Schekochihin, Alexander and Lamb, Don and Gregori, Gianluca},
abstractNote = {The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.},
doi = {10.1073/pnas.1502079112},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 27,
volume = 112,
place = {United States},
year = {Mon Jun 22 00:00:00 EDT 2015},
month = {Mon Jun 22 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 50 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code
journal, October 2009


FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes
journal, November 2000

  • Fryxell, B.; Olson, K.; Ricker, P.
  • The Astrophysical Journal Supplement Series, Vol. 131, Issue 1
  • DOI: 10.1086/317361

HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006

  • MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.031

Scaling of Magneto-Quantum-Radiative Hydrodynamic Equations: from Laser-Produced Plasmas to Astrophysics
journal, October 2014


An approximate method for calculating Planck and Rosseland mean opacities in hot, dense plasmas
journal, November 1987

  • Tsakiris, G. D.; Eidmann, K.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 38, Issue 5
  • DOI: 10.1016/0022-4073(87)90030-6

The amplification of a weak applied magnetic field by turbulence in fluids of moderate conductivity
journal, December 1961


Nonrelativistic Collisionless Shocks in Unmagnetized Electron-Ion Plasmas
journal, June 2008

  • Kato, Tsunehiko N.; Takabe, Hideaki
  • The Astrophysical Journal, Vol. 681, Issue 2
  • DOI: 10.1086/590387

FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments
journal, December 2012


Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers
journal, August 2007


Probing turbulence in the Coma galaxy cluster
journal, October 2004


Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves
journal, January 2012

  • Gregori, G.; Ravasio, A.; Murphy, C. D.
  • Nature, Vol. 481, Issue 7382
  • DOI: 10.1038/nature10747

Resistive Magnetic Field Generation at Cosmic dawn
journal, February 2011


X-ray surface brightness and gas density fluctuations in the Coma cluster: X-ray surface brightness fluctuations in the Coma cluster
journal, January 2012


Turbulence, magnetic fields, and plasma physics in clusters of galaxies
journal, May 2006

  • Schekochihin, A. A.; Cowley, S. C.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2179053

Cluster Magnetic Fields from Large-Scale Structure and Galaxy Cluster Shocks
journal, April 2006

  • Medvedev, Mikhail V.; Silva, Luis O.; Kamionkowski, Marc
  • The Astrophysical Journal, Vol. 642, Issue 1
  • DOI: 10.1086/504470

On the thermal instability of galactic and cluster halos
journal, August 1987

  • Malagoli, A.; Rosner, R.; Bodo, G.
  • The Astrophysical Journal, Vol. 319
  • DOI: 10.1086/165483

Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe
journal, May 2008


Turbulent amplification of magnetic fields in laboratory laser-produced shock waves
journal, June 2014

  • Meinecke, J.; Doyle, H. W.; Miniati, F.
  • Nature Physics, Vol. 10, Issue 7
  • DOI: 10.1038/nphys2978

Strong magnetic fields in normal galaxies at high redshift
journal, July 2008

  • Bernet, Martin L.; Miniati, Francesco; Lilly, Simon J.
  • Nature, Vol. 454, Issue 7202
  • DOI: 10.1038/nature07105

Magnetic fields from reionisation
journal, November 2005


Cosmological magnetic fields: their generation, evolution and observation
journal, June 2013


The Relation Between gas Density and Velocity Power Spectra in Galaxy Clusters: Qualitative Treatment and Cosmological Simulations
journal, May 2014


Schlieren and Shadowgraph Techniques
book, January 2001


Magnetic Fields in Clusters of Galaxies
journal, September 2004

  • Govoni, Federica; Feretti, Luigina
  • International Journal of Modern Physics D, Vol. 13, Issue 08
  • DOI: 10.1142/S0218271804005080

Collisionless shock experiments with lasers and observation of Weibel instabilitiesa)
journal, May 2015

  • Park, H. -S.; Huntington, C. M.; Fiuza, F.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920959

Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics
journal, June 1999

  • Ryutov, D.; Drake, R. P.; Kane, J.
  • The Astrophysical Journal, Vol. 518, Issue 2
  • DOI: 10.1086/307293

Design Considerations for Unmagnetized Collisionless-Shock Measurements in Homologous Flows
journal, April 2012


Turbulence and star formation in molecular clouds
journal, April 1981


On the universality of supersonic turbulence
journal, September 2013

  • Federrath, Christoph
  • Monthly Notices of the Royal Astronomical Society, Vol. 436, Issue 2
  • DOI: 10.1093/mnras/stt1644

Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers
journal, March 2012


Properties of Cosmic Shock Waves in Large‐Scale Structure Formation
journal, October 2000

  • Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung
  • The Astrophysical Journal, Vol. 542, Issue 2
  • DOI: 10.1086/317027

Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
journal, January 2015

  • Huntington, C. M.; Fiuza, F.; Ross, J. S.
  • Nature Physics, Vol. 11, Issue 2
  • DOI: 10.1038/nphys3178

Modeling HEDLA magnetic field generation experiments on laser facilities
journal, March 2013


FLASH MHD simulations of experiments that study shock-generated magnetic fields
journal, December 2015


Generation of Magnetic Fields in the Radiation ERA
journal, March 1970

  • Harrison, E. R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 147, Issue 3
  • DOI: 10.1093/mnras/147.3.279

Review paper A5. Data needs, priorities and accuracies for plasma spectroscopy
journal, February 1978


Equation of state and phase diagram of dense hydrogen
journal, January 1972


Turbulent heating in galaxy clusters brightest in X-rays
journal, October 2014

  • Zhuravleva, I.; Churazov, E.; Schekochihin, A. A.
  • Nature, Vol. 515, Issue 7525
  • DOI: 10.1038/nature13830

Magnetic fields in galaxies and beyond
journal, January 1997

  • Zweibel, Ellen G.; Heiles, Carl
  • Nature, Vol. 385, Issue 6612
  • DOI: 10.1038/385131a0

SPECT3D – A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output
journal, May 2007


The reflexion coefficients of ionospheric regions.
journal, February 1938

  • Appleton, Edward Victor; Piddington, J. H.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 164, Issue 919
  • DOI: 10.1098/rspa.1938.0031

Cosmological Magnetic Field Generation by the Weibel Instability
journal, December 2003

  • Schlickeiser, R.; Shukla, P. K.
  • The Astrophysical Journal, Vol. 599, Issue 2
  • DOI: 10.1086/381246

An HLLC Riemann solver for magneto-hydrodynamics
journal, February 2005


Magnetic fields in clusters of galaxies
journal, December 2004


Hydromagnetic Dynamo Models.
journal, July 1955

  • Parker, Eugene N.
  • The Astrophysical Journal, Vol. 122
  • DOI: 10.1086/146087

Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum
journal, February 1950


Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers
text, January 2007


Strong magnetic fields in normal galaxies at high redshifts
text, January 2008


Resistive Magnetic Field Generation at Cosmic Dawn
text, January 2010


Magnetic Field in Clusters of Galaxies
text, January 2004


Magnetic fields from reionisation
text, January 2005


Works referencing / citing this record:

Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma
journal, February 2018


Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma
text, January 2018


Analytical estimates of proton acceleration in laser-produced turbulent plasmas
journal, November 2018

  • Beyer, Konstantin A.; Reville, Brian; Bott, Archie F. A.
  • Journal of Plasma Physics, Vol. 84, Issue 6
  • DOI: 10.1017/s0022377818001149

The dividends of investing in computational software design: A case study
journal, November 2017

  • Dubey, Anshu; Tzeferacos, Petros; Lamb, Don Q.
  • The International Journal of High Performance Computing Applications, Vol. 33, Issue 2
  • DOI: 10.1177/1094342017747692

Analytical Estimates of Proton Acceleration in Laser-produced Turbulent Plasmas
image, January 2018


Numerical simulation of turbulence and terahertz magnetosonic waves generation in collisionless plasmas
journal, January 2018

  • Kumar, Narender; Singh, Ram Kishor; Sharma, Swati
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.5003333

Identifying the linear phase of the relativistic Kelvin-Helmholtz instability and measuring its growth rate via radiation
journal, July 2017


Supersonic plasma turbulence in the laboratory
journal, April 2019


Analytical Estimates of Proton Acceleration in Laser-produced Turbulent Plasmas
image, January 2018


Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios
journal, June 2017

  • Chatterjee, Gourab; Schoeffler, Kevin M.; Kumar Singh, Prashant
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15970

Magnetic Field Amplification in Galaxy Clusters and Its Simulation
journal, November 2018


Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios
journal, June 2017

  • Chatterjee, Gourab; Schoeffler, Kevin M.; Kumar Singh, Prashant
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15970

Supersonic plasma turbulence in the laboratory
journal, April 2019


Evidence of a "current-mediated" turbulent regime in space and astrophysical plasmas
preprint, January 2020