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Highlights

• The context is ALE remap between grids of potentially dissimilar connectivity.
• A new higher order, center of mass (CM) reconstruction method is presented.
• CM reconstruction is shown to be superior to the traditional centroidal reconstruction.
• A new “compatible” (CE) method for conservatively remapping energy is derived.
• CE is shown to be better than common total and internal energy conserving methods.
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Abstract

From the very origins of numerical hydrodynamics in the Lagrangian work of von Neumann and Richtmyer [83],
the issue of total energy conservation as well as entropy production has been problematic. Because of well known
problems with mesh deformation, Lagrangian schemes have evolved into Arbitrary Lagrangian-Eulerian (ALE) meth-
ods [39] that combine the best properties of Lagrangian and Eulerian methods. Energy issues have persisted for this
class of methods. We believe that fundamental issues of energy conservation and entropy production in ALE require
further examination.

The context of the paper is an ALE scheme that is extended in the sense that it permits cyclic or periodic remap
of data between grids of the same or differing connectivity. The principal design goals for a remap method then
consist of total energy conservation, bounded internal energy, and compatibility of kinetic energy and momentum. We
also have secondary objectives of limiting velocity and stress in a non-directional manner, keeping primitive variables
monotone, and providing a higher than second order reconstruction of remapped variables.

In particular, the new contributions fall into three categories associated with: energy conservation and entropy
production, reconstruction and bounds preservation of scalar and tensor fields, and conservative remap of nonlinear
fields. The paper presents a derivation of the methods, details of implementation, and numerical results for a number
of test problems. The methods requires volume integration of polynomial functions in polytopal cells with planar
facets, and the requisite expressions are derived for arbitrary order.

Keywords: Lagrangian, hydrodynamics, remap, energy conserving, bounds preserving, mimetic, cell-centered,
ALE, exact intersection, KE fixup, finite-volume

1. Introduction

From the very origins of numerical hydrodynamics in the Lagrangian work of von Neumann and Richtmyer [83],
the issue of total energy conservation as well as entropy production has been problematic. Only in recent years
have methods for conserving energy within the traditional spatially staggered Lagrange framework (SGH) become
widespread. The lack of conservation was a consequence of staggered differencing in which internal energy naturally
resided in the cell and kinetic energy at the nodes. The earliest work in 1D was due to Trulio and Trigger [77]. Conser-
vation in the multi-dimensional SGH framework was eventually enabled by the development of so-called compatible
energy hydro schemes [11, 10, 13, 12, 23]. In the last decade, cell-centered Lagrangian schemes (CCH) based on
Godunov methods have appeared that naturally conserve total energy [29, 57, 16].

Because of well known problems with mesh deformation, Lagrangian schemes have since evolved into Arbitrary
Lagrangian-Eulerian (ALE) methods [39] that combine the best properties of Lagrangian and Eulerian methods. Tra-
ditional ALE schemes advect material only between adjacent cells within a mesh that is incrementally adapted. The
context of the paper is an extended ALE scheme that permits cyclic or periodic transfer of data between grids of the
same or differing connectivity. Viewed in detail, the ALE procedure involves: (a) a Lagrange step, (b) mesh opti-
mization, (c) determination of intersection volumes, (d) reconstruction of fields within donor cells, (e) a conservative
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(a) Noh density (b) Coggershall specific internal energy

Figure 1: Scatter plots for two ALE test problems that are discussed in detail later. Both simulations used a polar mesh. Figure (a) shows density
vs. distance for the Noh problem (Section 6.1.2) at t=0.6. The figure compares results from an internal energy (IE) conserving method (green) and
a total energy (TE) conserving method (blue) with the analytic solution (black). Figure (b) shows specific internal energy on a logarithmic scale vs.
distance for the Coggeshall problem (Section 6.2.2) at t=0.5. Again, the same IE and TE methods are compared with the analytic results. However,
in (a), the TE method yields the best result, while in (b), the IE result is best. These calculations used a reconstruction method (designated CM)
discussed later.

remap, and finally (f) a repartition of kinetic and internal energy in acceptor cells. Although the overall context is
more general, the focus of this paper is on the physics and numerics of the reconstruction (d) through repartition steps
(f). In particular, the new contributions fall into three categories associated with: energy conservation and entropy
production, reconstruction and bounds preservation of scalar and tensor fields, and conservative remap of nonlinear
fields.

1.1. Energy and entropy remap

We believe that fundamental issues of energy conservation and entropy production have persisted for ALE methods
and require further examination. Although total energy conservation is numerically straightforward, the literature
addressing entropy production in ALE is sparse. We examine the fundamental entropy issues in Section 5. Although
we discuss entropy production in a conceptual sense, entropy itself is not usually calculated. Rather, we use the term
to imply the dissipation of kinetic energy into internal energy.

Internal energy (IE) method. Early ALE, as well as Eulerian codes, were based on SGH and typically conserved
momentum and internal energy, but not total energy, just as the Lagrangian codes did. In CCH as well as SGH, this
can cause entropy errors that affect shock states and propagation velocities as demonstrated in test problems such as
the Noh problem [63, 18].

Total energy (TE) method. An alternative strategy is to conservatively remap the total energy and calculate the internal
energy by subtracting kinetic energy from the total energy. Total energy conserving methods can produce significant
errors in problems involving isentropic flows such as the Coggeshall problem [27].

The calculations presented in Figure 1 as well as all figures throughout the paper were carried out with the same
underlying code [14] with only algorithmic components varied. The Noh and Coggeshall problems will be discussed
in more detail in Sections 6.1.2 and 6.2.2. Here, we present a preview to highlight the energy issue. We use a center
of mass reconstruction scheme described in the next section. Figure 1(a) compares results from the Noh problem
using an IE method with a TE method. The IE method is not conservative, produces a slow propagation velocity and
overshot the shock state, while the TE method matches the arrival and plateau quite well. Both methods show the
expected wall heating near the origin [63]. Figure 1(b) is a scatter plot of specific internal energy vs. distance for the
Coggeshall problem and again compares the IE and TE methods. In contrast to the Noh problem, the IE method gives
the correct solution (uniform across the mesh), while the TE method is in error by nearly two orders of magnitude
because of excess heating during remap.
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The point, of course, is that neither IE nor TE methods solve both shock and smooth flow problems. In Section 5,
we derive a new compatible energy (CE) method that resolves the energy issues.

KE fixup method. A quasi-total energy scheme called KE f ixup is attributed to Roger DeBar [28]. The method
is discussed by Benson [5] and is also mentioned in [42], but is otherwise not well documented. The underlying
principle of KE f ixup is based on algorithmic choice rather than fundamental physical principle. The method tries to

synchronize the advected cell kinetic energy K with the cell average momentum U2
/
2M. Enforcement of total energy

conservation then requires an adjustment in the internal energy. The adjustment is accomplished by calculating a
quantity

Q = K − U2

2M

that is the difference between advected kinetic energy K and kinetic energy inferred from the momentum equation.
Q is then added selectively to the advected internal energy and subtracted from the kinetic energy. Note that Q is an
energy and not an artificial viscosity.

By adding Q in shocks, but not in smooth flows, the entropy error in smooth flows is avoided. The scheme is
sensitive to the shock detection criterion. Without the selective application of Q, this would be a total energy scheme
since both internal and kinetic energy would be conserved. However, with the selective application, the scheme does
not completely enforce conservation of total energy.

Our CE method bears some similarity to KE f ixup, but in Section 5, we re-examine the aforementioned underlying
principle and reach differing conclusions.

1.2. Reconstruction

In the reconstruction step, conserved quantities are redistributed within the cell. The redistribution is constrained
to avoid producing local extrema within the vicinity of the cell. The methods of doing this are of three basic types: a

priori methods of van Leer [78, 79] and Barth and Jespersen [3, 2] that limit gradients in the donor cells; a posteriori

procedures such as the repair scheduledme of Shashkov and Wendroff [72] that correct the acceptor cells; and inter-
mediate methods that modify the fluxes, such as the sign preserving scheme of Margolin and Shashkov [59] and flux
corrected transport (FCT) [7, 86, 50].

Following common terminology, we refer to intensive quantities as primitive variables. We further classify specific
variables (per mass) as mass-weighted, and generalized densities (per volume) as volume-weighted. Most conserved

variables are volume-weighted products of density times some specific variable. Thus, a primitive specific variable φ
has a conserved counterpart ρφ.

Center of volume (CV) or centroidal reconstruction. In the remap, compatibility issues arise if relationships between
variables are not maintained during the process, especially in reconstruction. The most commonly used a priori

reconstructions distribute the density ρ and other conserved variables ρφ linearly through the centroid of the cell. The
gradients of both are then limited to keep the distribution within local bounds. This gives rise to a compatibility error
because the recomputed value of the specific variable φ = (ρφ)/ρ is not necessarily within bounds of adjacent cells.
This can produce negative internal energies, giving rise to imaginary sound speeds for some equations of state. It can
also cause catastrophic instabilities, especially in problems with high speeds and low internal energy, and this was an
issue driving the work of [58, 72].

The flux corrected transport (FCT) of Boris and Book [7, 86, 50] was extended by Schar and Smolarkiewicz [70]
who used FCT to synchronize the limiters for ρ and ρφ such that the φ was also bounded. Many variables can be
synchronized with the density, but this tends to increase dissipation by forcing the density field toward first order. For
CV reconstruction and internal energy conservation (IE), synchronization of density and only specific internal energy
is the usual practice.

For CV reconstruction and total energy conservation (TE), the situation is yet more complicated. Internal energy is
constrained to be the difference between total and kinetic energy. As the difference of two monotonic functions is not
necessarily monotonic, this can give rise to instabilities [60, 1, 5, 18]. Historically, these instabilities have often been
erroneously attributed to round off errors in subtracting two large numbers, but they actually result from truncation
errors arising from incompatible numerical approximations used in calculating the total and kinetic energy. Such
instabilities can appear in the smooth flow region of the Noh problem that is characterized by large kinetic energy and
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Figure 2: Scatter plots of density vs. distance for the Noh problem (Section 6.1.2) at t=0.6 using a box mesh. For CV reconstruction, the figure
compares results from an internal energy (IE) conserving method (green) and a total energy (TE) conserving method (blue) with the analytic
solution (black). Both IE and TE methods are noisy. These results should be compared with Figure 1(a) that used a CM reconstruction rather than
CV.

low internal energy as exemplified in Figure 2. Such a scheme requires a more complicated approach because limiting
must be synchronized for not only density and internal energy, but also velocity. Because of the additional variable,
increased dissipation would be expected. Liska, Shashkov, Váchal, and Wendroff [53, 54] developed a flux-corrected
scheme that synchronized limiters for density, internal energy, and velocity. In [80], it was found that the second order
method was excessively dissipative and that results were improved by using third order.

Center of mass (CM) reconstruction. An alternative a priori solution to the synchronization problem was proposed
in another context by Dukowicz and Baumgardner [32]. They distributed ρ linearly about the centroid, but φ linearly
about the center of mass, so that limiting was done with respect to the specific variable φ rather than the conserved
variable ρφ. Because ρ and φ are linear functions, the product distribution ρφ is quadratic. The method was recently
applied to the internal energy in an SGH ALE context by Kucharik and Shashkov [49]. CM reconstruction does
guarantee that all specific quantities are bounded, avoiding the previously discussed instabilities. The difference
between the CM and CV methods can be seen by comparing Figures 1(a) and 2.

We use the CM reconstruction method as derived in Section 3, but with an additional constraint on internal energy
discussed in Section 3.1 that also guarantees the boundedness of the internal energy density ρe. This makes a substan-
tial improvement in the Sod problem of Section 6.1.1. As with the Schar and Smolarkiewicz method, applying this to
additional variables can give rise to excessive dissipation.

1.3. Advection vs. remap

Swept face advection. The most common method of determining the exchange volume in ALE calculates the volume
swept out by the movement of a cell face. The method has the advantage of being simple, but has several distinct
disadvantages. The time step is limited by the relative velocity of the fluid with respect to the mesh. Advection is only
through surfaces, so there is no direct coupling across cell corners. It is possible for the swept volume to consist of a
bowtie (a non-convex polygon), so there could be advection in opposing directions, making the centroid ill defined.
Lastly, its use is restricted to meshes of the same connectivity.

Exact intersection remap. An alternative to swept face advection is remap that derives from the pioneering work of
Dukowicz and collaborators [34, 67, 68, 35, 33] and uses the exact geometrical intersections of donor and acceptor
meshes and surface integrals to calculate the quantities transferred. Unlike swept face advection, remap permits
large mesh adjustments or even completely new meshes. It is not constrained to incremental movement of material
through cell surfaces, thereby permitting large timesteps. Corner coupling is automatic, as is the handling of bowtie
configurations. References [20, 17, 18, 43, 47] showed that the error can be significantly reduced by employing exact
intersection remap methods in lieu of swept face methods. Remap also opens the door to mesh management strategies
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such as periodic remeshing of Lagrangian meshes and the reconnection based Arbitrary Lagrangian Eulerian (ReALE)
method [55, 6].

The relevance of the advection vs. remap issue to the current work is that the remap requirement places constraints
on the formulation that would not be present in a swept-face scheme. That is, the formulation cannot rely upon logical
relationships between old and new meshes.

1.4. Design goals

The specific design goals for our compatible remap method then consist of the following.

Lagrange hydro. The context of this work is a remap method appropriate to cell-centered hydrodynamics (CCH)
such as described in [29, 57, 16, 19]. To the extent possible, our intent is to avoid placing additional constraints on
the underlying Lagrange method. An exception to this is the treatment of kinetic energy.

Exact intersection remap. The method must be able to remap between meshes of the same or differing connectivity.
The geometry of the volumes of intersection must be determined by an exact intersection method. We note that,
although the methods presented are formulated for an exact intersection scheme, they are also suitable for swept face
methods without connectivity change.

Conservation. Quantities conserved in the Lagrange equations, especially total energy, must be conserved in the
remap.

Compatibility. Hydrodynamic variables are interrelated in the Lagrange step, and the remap must preserve these
relationships. In particular, the partition of kinetic and internal energy at the point at which the constitutive model is
applied should be compatible with the velocity at that point.

Entropy production. In addition to conservation of total energy and boundedness of internal energy, the formu-
lation must include an entropy production mechanism that tends to synchronize kinetic energy and momentum. In
particular, the mechanism should produce entropy in shocks, but not in isentropic flows.

Reconstruction. The reconstruction of conserved quantities must be second order or greater.
Bounds. Primitive variables corresponding to quantities conserved in the Lagrange equations must be bounded by

the cell averages in adjacent cells. In particular, the specific internal energy must be bounded. Further, vector and
tensor variables must be bounded in a non-directional manner.

1.5. Omissions

As the focus of this paper is on the physics and numerics of the remap, the following topics, that are important
components of a fully functional ALE code, will be discussed only briefly.

Geometry. Although we consider only 2D XY geometry in the test problems, we derive the conservation integrals
for 3D as well as 2D XY and RZ in Appendix B.

Mesh intersections. A number of methods are available for determining the geometry of the intersecting volumes
of polytopal cells. For details, see [34, 33, 18, 43, 49, 26, 37, 36] .

Mesh optimization. Discussion of various mesh optimization strategies is well beyond the scope of the paper, aside
from what is necessary to explain the test problems of Section 6.

Mixtures and multi-material cells. Similarly, while important in ALE schemes, description of interface recon-
struction methods is also beyond the scope of the paper, as are closure models.

Constitutive models. As the focus of this work is remap and not constitutive formulations, the development is
directed toward hypo elastic/plastic formulations such as that of Wilkins [85].

1.6. Notation

Intensive and extensive quantities. Extensive quantities (that depend upon how much of something is present) are
indicated by capital letters, while intensive ones are lower case. For example, k is the specific kinetic energy and K is
the kinetic energy in a particular control volume.

Superscripts and subscripts. Superscripts will be used principally to indicate spatial location. Donor and acceptor
cells are denoted A and B respectively, whereas I denotes a volume of intersection between donor and acceptor. Upper
case {A, B, I} refer to the center of mass (CM), whereas, lower case {a, b, i} refer to the centroid.
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Scalars, vectors, tensors. Where typographic fonts permit, vectors and tensors will be bold faced, and scalars not.
Scalar products are indicated by a dot, such as n̂ ·σ↔ n̂iσi j. Dyadic tensors are indicated by juxtaposition n̂ u↔ n̂iu j.
The double scalar product is expressed σ: G↔ σi jGi j.

1.7. Organization of the paper

The organization of the paper is as follows. The Lagrange step is summarized in Section 2, and Section 2.2
describes alternatives for partitioning of total energy into kinetic and internal components. A new method for recon-
structing fields within donor cells is discussed in Section 3. Section 3.1 describes procedures for limiting gradients of
scalars and vectors, as well as a new method for tensors. A new method for conservatively remapping higher order
polynomial fields is presented in Section 4.1. A new perspective on entropy production and repartitioning of energy
after remap is discussed in Section 5. The results of a number of test problems are given in Section 6. Our conclu-
sions are summarized in Section 7. Appendix A discusses polynomial integration. Appendix B presents previously
unpublished equations for 2D and 3D moment integrals of higher order polynomial functions for polytopal volumes.

2. Lagrange formulation

We begin with the Lagrange equations that are taken from [16] but are typical of cell-centered formulations. The
equations are not solved here, but are summarized to introduce notation, to call attention to conservation requirements,
and to point out key assumptions in the partitioning of kinetic and internal energy. In particular, the section calls
attention to the usual practice of inferring the kinetic energy from the momentum equation as U2

/
2M instead of

explicitly integrating it. As discussed in Section 5, this is a critical point relating to entropy production in remap.

2.1. Finite volume equations

The extensive conserved quantities are volume V , mass M, deformation G, momentum U, and total energy H. The
rate equations for these are surface integrals are

Ṁ = 0 (1)

Ġ = Mġ =
∮

dN u (2)

U̇ = Mu̇ =
∮

dN · σ (3)

Ḣ = Mḣ =

∮
dN · σ · u (4)

in which dN is a normal surface vector, u is the surface velocity, and the quantity σ is the Cauchy stress tensor.
The rates for the preceding conserved quantities are temporally integrated, for example,

H =

∫
dt Ḣ

The corresponding cell averages are given by h = H/M or, in the case of density, by ρ = M/V . As discussed later
in an ALE context, the mass density will be associated with an integration point at the cell centroid and the specific
quantities will be associated with the cell center of mass.

Deformation. The quantity ġ represents a conserved Lagrangian measure of the deformation rate. The normalization
is largely a matter of convention. We have chosen to normalize per unit mass to maintain compatibility with the
volume equation that is simply the trace of the deformation equation

V̇ = Mv̇ =

∮
dN · u = tr

(
Ġ

)
(5)
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Another common convention defines volumetric strain per some constant reference volume. The difference between
the two forms is taken up by a constant density factor in the constitutive model. As a third variation, in hypo elastic
models [85], the left hand side of the deformation equation is normalized per current volume to yield the discrete
form of the velocity gradient, that is a non-conservative measure of deformation. The velocity gradient is related to
the preceding deformation rate by

∇u = ρġ

The symmetrized deformation rate tensor is

Ḟ = M ḟ =
1
2

(
Ġ + ĠT

)
In the discrete implementation of the volume equation (5), it is important to enforce volumetric compatibility, also

known as the Geometric Conservation Law (GCL) [76, 75, 84, 56]. That is, the volume change of a cell, calculated
from the surface integral (5), must algebraically equal that determined from the volume change calculated from the
displacement of the bounding nodes. The Lagrange scheme discussed here has been shown to satisfy the GCL in
Cartesian [16] and axisymmetric [15] geometry.

2.2. Energy partitioning

Partitioning of total energy into kinetic and internal components is part of the Lagrange step, but is not formally
part of the finite volume methodology. Energy is partitioned into kinetic and internal components solely to obtain
specific internal energy at an integration point x for use in a constitutive model. This partitioning can be accomplished
in two different ways.

Canonical partitioning. In a canonical method that is used in SGH [11, 10, 13, 12, 23] and many of the CCH com-
patible energy schemes [29, 57], the total energy is first integrated in time

H =

∫
dt Ḣ

The cell kinetic energy at time n is assumed to be compatible with the extensive cell momentum Un and is given by

Kn =
(Un)2

2M
(6)

Then, the change during the time step is given exactly by

ΔK =
1

2M

[(
Un+1

)2 − (Un)2
]

(7)

=
1

2M

(
Un+1 − Un

)
·
(
Un+1 + Un

)
(8)

=
(
U̇δt

)
· ū (9)

in which δt is the timestep and ū is the temporal average velocity

ū =
1
2

(
un+1 + un

)
(10)

The integrated internal energy is then given exactly by

E = H − K

As kinetic energy is a function of the cell momentum in the canonical partitioning, it does not need to be explicitly
integrated. This partitioning further assumes that the specific kinetic and internal energies at the integration point x
are

k (x) = K/M (11)
e (x) = E/M (12)
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The specific internal energy is then an input to the constitutive model that is evaluated at the point x.
As we will show in Section 5, the extensive kinetic energy as defined in (6) is the cause of overheating in isen-

tropic flows, such as the Coggeshall problem of Section 6.2.2. This observation suggests the alternative rate based
partitioning discussed next.

Rate based partitioning. Unlike the canonical partitioning, the rate based partitioning described here does not assume
the cell kinetic energy is given by U2

/
2M. Rather, it is a time integral, requiring an additional history variable. In a

pure Lagrange calculation, the cell kinetic energy will be exactly given by U2
/
2M as in the canonical method, but this

will not be the case in ALE calculations.
The partitioning of the total energy into its various components was derived in [16]. After some manipulation and

making use of the momentum and deformation equations, the evolution equation for total energy can be written

Ḣ =

∮
dN · σ · u (13)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[∮

dN · σ
]
· ū

+ [dN u] : σ̄
+

[∮
dN · (σ − σ̄) · (u − ū)

]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (14)

= U̇ · ū + Ġ : σ̄ + Q̇ (15)
= K̇ + Ẇ + Q̇ (16)

in which the rate equations for kinetic energy, reversible work, and dissipation are given respectively by

K̇ = U̇ · ū (17)

Ẇ = Ġ : σ̄ (18)

Q̇ =

∮
dN · (σ − σ̄) · (u − ū) (19)

The quantity σ̄ is a time centered stress tensor, while ū is as defined in (10). A dissipation relation between σ and u
guarantees that Q̇ is always positive. Note that rate based partitioning uses the same equation for the change in kinetic
energy as does the canonical method (9).

The internal energy rate is that part of the total energy not associated with the bulk flow, so that

Ė = Ḣ − K̇ (20)

It is also true that
Ė = Ẇ + Q̇

but this relation is not actually used because the internal energy can be obtained from (20), so that it is not necessary
to explicitly calculate Ẇ or Q̇. The total energy rate Ḣ corresponds to the Hamiltonian, and the Lagrangian is the
difference between the kinetic and internal energy L̇ = K̇ − Ė. The effect of the dissipation is to reduce the Lagrangian
until the flow is smooth.

In the partitioning described in [16], total, kinetic, and internal energy are all temporally integrated

H =

∫
dt Ḣ

K =

∫
dt K̇

E =

∫
dt

(
Ḣ − K̇

)
The internal energy is explicitly integrated to reduce numerical roundoff, but is formally E = H − K. As in canonical
partitioning, the specific internal energy at the integration point is taken to be the cell average.
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Linearized kinetic energy. There is an incompatibility in the CCH Lagrange formulation regarding the velocity dis-
tribution. A linear velocity field is assumed in the second-order CCH reconstruction, corresponding to a quadratic
kinetic energy distribution. However, in the two energy partitionings (9) and (17), the velocity field ū is assumed
to be uniform. This is a first order approximation that corresponds to a linear distribution of kinetic energy. This
incompatibility has entropy implications that are discussed in detail in Section 5.

2.3. Constitutive models

We focus on hypo elastic/plastic models that are heavily used in engineering applications, but note that they are not
rigorously conservative. These models tend to be based upon the work of Wilkins [85]. The remap formulation can be
readily adapted to hyper elastic/plastic models, but such is beyond the scope of this work. For an excellent discussion
of hyper elasticity in the context of cell-centered hydrodynamics, see [48]. In hypo elastic models, the Lagrangian
deformation tensor G is not usually integrated. Instead, the symmetric strain rate tensor ε̇ and asymmetric spin tensor
ω̇ are inferred from the Lagrangian deformation rate Ġ. These are used in the constitutive model to correct for
rotations and calculate a stress rate σ̇ that is temporally integrated to yield the Cauchy stress σ. We note that elastic
deformation, and not stress, is a formally conserved quantity. However, as is usual in hypo elastic formulations, a
pseudo conservation equation is invoked in Section 4, for stress in lieu of deformation,

Σ = Vσ

The constitutive model may have an arbitrary number of additional variables that must be conserved, for example,
plastic strain.

3. Center of mass (CM) reconstruction

In the sequence of operations, the Lagrange step described in the previous section is followed by a mesh optimiza-
tion step and then a reconstruction or redistribution step. The finite volume method provides no direct information
regarding the distribution of conserved quantities, so that this information must be inferred from adjacent cells. In a
second-order method, linear distributions are assumed for fields. Unlimited gradients are denoted ∇̃ and are obtained
by a least squares fit to values in neighboring cells. These gradients are then limited as described later to assure
monotonicity of the distributions, yielding limited gradients ∇.

As discussed in Section 1, for specific variables φ, the CV reconstruction method [70] linearizes the product
ρφ, resulting in a remapped φ field that is not necessarily monotonic. To avoid this problem, we employ the CM
reconstruction method of Dukowicz and Baumgardner [32] that was mentioned in Section 1.2. We note that the CM
method was recently applied to the internal energy in an SGH context in [49].

Suppose the mass in a donor cell A is described by a distribution ρ (x) such that the total mass in the cell is given
by

M =

∫
A

dV ρ (x)

The cell average mass density is ρ̄ = M/V . For a linear distribution, the density at the cell centroid xa (note lower
case superscript) is equal to the cell volume average ρa ≡ ρ (xa) = ρ̄.

Now, consider a specific quantity described by a distribution φ (x) such that the extensive quantity in the cell is
given by

Φ =

∫
A

dV ρ (x) φ (x)

The mass average of the specific variable is φ̄ = Φ/M. For a linear distribution of a specific quantity, the value at the
center of mass xA (note upper case superscript) is equal to the cell mass average φA ≡ φ

(
xA

)
= φ̄. Then

Φ = Mφ
(
xA

)
(21)
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The linear distributions of ρ and other volume-weighted fields are relative to the centroid xa while those for specific
quantities φ relative to the CM xA

ρ (x) = ρa + (x − xa) · ∇ρ (22)

φ (x) = φA +
(
x − xA

)
· ∇φ (23)

The product ρφ is the corresponding conserved variable and is represented by a higher than second order polynomial.

3.1. Limiters for remap

The monotonicity of the primitive distributions is achieved by limiting the gradients. Following Barth-Jespersen
[3], we do this by guaranteeing that every point within the donor cell lies within the range of bounding cells. Our set
of bounding cells includes all cells sharing common nodes, not simply those across cell faces. Using the unlimited
gradients, we project to each corner of the donor cell and calculate a limiting factor such that the bounds are satisfied.
See Figure 3 that illustrates projection from either the centroid (a) or the CM (A) to the corner of a donor cell.

For CV reconstruction, the same limiting method is commonly applied to both scalars as well as individual com-
ponents of vectors and tensors. In the following CM reconstruction, however, different procedures are used depending
upon whether fields are volume-weighted or mass-weighted or whether they are scalar, vector, or tensor fields. Further,
special procedures are applied to the density and specific internal energy.

Density. Consider first, the mass density ρ. The distance from the cell centroid xa to a point on the cell boundary xp

is xpa = xp − xa. The unlimited density difference between the two points is δρ = xpa · ∇̃ρ. The limiting procedure is
straightforward. First, express δρ as a sum of positive and negative contributions

δρ = δρ+ − δρ− (24)

in which the sign convention is chosen such that δρ+ and δρ− are positive

δρ+ =

{
δρ δρ ≥ 0
0 δρ < 0

δρ− =
{

0 δρ ≥ 0
−δρ δρ < 0

For each point bordering a donor cell, we must determine α± such that

ρa
min ≤

(
ρa + α+δρ+ − α−δρ−) ≤ ρa

max

in which ρa = M/V is the cell average density, assumed to be the value at the centroid. The bounding factors are given
by

α− ≤ ρ
a − ρa

min

δρ−

α+ ≤ ρ
a
max − ρa

δρ+

and the limitation imposed by point p is

αp ≤ max
[
0,min

(
1, α−, α+

)]
and for the entire donor cell a

αρ ≤ min
{
αp

}a

p
(25)

in which the notation indicates the minimum of all surrounding points p on the surface of donor cell a. This provides
a bound on the density limiter αρ. As described in the next section, there may be additional constraints.
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Figure 3: Projection from the centroid (a) or CM (A) to the corner of a donor cell.

Explicit limiting of internal energy density, ρe. Although the CM reconstruction described here guarantees that ρ and
specific quantities φ are individually bounded, it does not guarantee that the product ρφ is bounded. In the following,
we show how the product can also be limited. However, as with the Schar and Smolarkiewicz method, requiring
multiple φ fields to satisfy this can give rise to excessive dissipation. For this reason, we only require that the internal
energy density ρe be bounded. As we will show in the Sod problem of Section 6.1.1, this can make an appreciable
difference. We know

(ρe)min ≤ ρaeA ≤ (ρe)max

and must guarantee that
(ρe)min ≤ ρpep ≤ (ρe)max

at every node p surrounding the donor cell. The expansion for energy

ep = eA + xpA · ∇̃e = eA + δe

is relative to the center of mass CM that depends upon the density gradient that is now being limited. In the following,
we approximate the CM location with that obtained from the limiting of density alone. Then

ρpep =
(
ρa + δρ

) (
eA + δe

)
= ρaeA + ρaδe + eAδρ + δρδe

Consider the left inequality

0 ≤
[
ρaeA − (ρe)min

]
+

[
ρaδe+ + eAδρ+ + δρ+δe+ + δρ−δe−

]
− α−

[
ρaδe− + eAδρ− + δρ+δe− + δρ−δe+

]
in which we have inserted a factor α− to limit the negative terms. (To avoid unnecessary notational complexity, we
reuse the symbols α± from the preceding section, but with different meaning.) Then it follows that

α− ≤ ρaeA − (ρe)min

ρaδe− + eAδρ− + δρ+δe− + δρ−δe+

Similarly for the right inequality

α+ ≤ (ρe)max − ρaeA

ρaδe+ + eAδρ+ + δρ+δe+ + δρ−δe−

11



Then the constraints on density and internal energy from this cell corner must be

αρ ≤
{
α+ δρ ≥ 0
α− δρ < 0

αe ≤
{
α+ δe ≥ 0
α− δe < 0

αρ, αe ≤
{ √
α+ δρδe ≥ 0√
α− δρδe < 0

The square root in the last equation occurs because the product terms δρδe must be limited by α. Then it is sufficient
to limit the individual factors δρ and δe by the square root. As in (25), the bound for the cell is the minimum of the
bounds calculated for the corners. The density limiter αρ is then the minimum of the above and that obtained from
(25), so that the limited density gradient is

∇ρ = αρ∇̄ρ

The above also provides a bound on the specific internal energy limiter αe. As described in the next section, there are
additional constraints.

Center of mass. Now that the limited density gradient is known, the CM of the donor cell (xA) can be calculated.
This requires nonlinear polynomial integration. As shown in Appendix A, third order is needed in XY geometry and
fourth order in RZ. The necessary moment integrals are derived in Appendix B.

3.2. Other scalars

Other volume weighted quantities are limited as was mass density above. Specific or mass-weighted variables can
be limited after the CM is determined as described above. This is done in a similar manner as density, but using the
distance from the CM.

xpA = xp − xA

δφ = xpA · ∇̃φ
We must find αφ such that

φA
min ≤

(
φA + αφδφ

)
≤ φA

max

in which φA is the mass average assumed to be the value at the CM. The resulting limited gradient is

∇φ = αφ∇̄φ
In particular, this yields an additional bound on the internal energy limiter αe that becomes the minimum of the new
bound and that from the preceding section. The limited internal energy gradient is then

∇e = αe∇̄e

3.3. Vectors and tensors

Monotonicity is basically a scalar notion that does not extend directly to vectors and tensors. We require that vector
and tensor variables be bounded in a non-directional manner. Here, we describe three methods for accomplishing this
and test them in Section 6.

Component limiting. A common method of limiting both vector and tensor gradients is to simply treat each compo-
nent in the global coordinate system as a scalar, creating a limiting coefficient for each. This approach is known to
produce asymmetry in radial flow problems that can be reduced by applying the smallest coefficient to all components.
However, a consequence is that minor perturbations in one direction can limit gradients in other directions.

12



Tensor limiting. If, instead of a global coordinate system, the components of a vector are limited in a physically
relevant one, the notion of component limiting can be significantly improved. Maire [57] proposed a limiter calculated
in the principal coordinate system of the unlimited velocity gradient. We have previously used this in a Lagrangian
context [16, 19], and here apply it to the remap problem. In the global system, the unlimited extrapolation to each
bounding point from the CM of a cell is

δu =
(
xp − xA

)
· ∇̃u

We wish to limit the gradient with a tensor L so that

up = uA + L · δu
The eigenvectors of the velocity gradient tensor are used to construct a rotation matrix R in each cell. We denote
vectors in the rotated system with a bar so that ū = Ru and

ūp = ūA + L̄ · δū
In the rotated system, L̄ is a diagonal tensor whose components are the coefficients determined from component
limiting in this system. A complication is that the bounds for velocity components in each cell must be determined by
rotating velocities in adjacent cells to the same coordinate system. Given L̄, the tensor in the global system is then

L = R−1L̄R

so that the limited velocity gradient becomes
∇u = L · ∇̃u

To our knowledge, the tensor limiter method has not been previously applied to the stress gradient because the
proper coordinate system for the gradient of a tensor is less obvious. Here, we choose such a system by requiring that
force density, instead of the stress tensor itself, be bounded. The force density is the projection of the stress tensor in
the direction of acceleration (stress divergence)

f = σ · n̂
in which the unit vector is

n̂ =
∇̃ · σ∣∣∣∇̃ · σ∣∣∣

The solution is now analogous to that for velocity. Eigenvectors of ∇̃f are used to construct a rotation matrix and
limiting coefficients are calculated in the rotated frame

f̄ p = f̄a + L̄ · δf̄
in which the centroid is used for the extrapolation instead of the CM because stress is a volume weighted field. Again,
the forces in adjacent cells must also be rotated to determine the bounds. After rotation back to the global frame, the
limited stress gradient is given by

∇σ = L · ∇̃σ
Limiting of rotational invariants. A third strategy is based upon limiting of rotational invariants, so that velocity and
stress can be limited independently of orientation. In a Lagrangian context, we used this method to limit the stress
tensor in [16, 69]. The method has a conceptual issue in that, by design, it is insensitive to variations in orientation.

For velocity, the rotational invariant is the specific kinetic energy. From the Lagrange step, we know that (Section
2.2), the compatible kinetic energy has a linear, not quadratic distribution. Thus, if velocity is reconstructed linearly
∇̃u, the gradient of the linearized kinetic energy is

∇̃k =
(
∇̃u

)
· uA

in which uA is the velocity at the CM of the donor cell. The kinetic energy can then be limited as other specific fields
yielding αk. The limiter for the velocity is the same as the limiter for the linearized kinetic energy αu = αk.
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In practice, this velocity limiter has limited utility because it is not Galilean invariant. However, a similar strategy
applied to the deviatoric stress tensor s is useful, as we described in [16, 69]. The stress tensor is decomposed into
mean π and deviatoric s stress components

σ = 1π + s

in which π = tr (σ)/3. The deviatoric stress has a rotational invariant

y = s : s/2 (26)

The linearized gradient of the second deviatoric invariant y = s : s/2, is given by

∇̃y =
(
∇̃s

)
: sa

in which sa is the deviatoric stress at the centroid and ∇̃s is the unlimited gradient. The quantity y can then be limited
as was mass density, yielding αy. Because the gradients of the deviatoric stress tensor and the second invariant are
related, the limiter for the deviatoric tensor is the same as that of the invariant αs = αy.

4. Conservative remap

Having addressed the Lagrange and reconstruction steps, we now turn to a new conservative remap method for
polynomial distributions. With respect to the GCL, we note that volume compatibility is satisfied exactly in Cartesian
geometry by the exact intersection methodology. In axisymmetric geometry, it is also satisfied exactly but requires
the polynomial integrals of Appendix A.

For the distributions of ρ and φ of (23), the product ρ (x) φ (x) is a higher than second order polynomial. In
Appendix B, we consider general volume integrals of such polynomials. However, referring to (21), the integrals for

linear functions in the CM formulation reduce to simply mass times the value of the reconstruction φ
(
xI

)
at the CM

of the volume of intersection

ΦI =

∫
I

dV ρ (x) φ (x)

= MIφI

in which φI is the value of φ (x) at the CM of the intersection volume.
As was the case for the donor cell A, determining the location of the CM (xI) requires nonlinear polynomial

integration. As shown in Appendix A, third order is needed in XY geometry and fourth order in RZ. Again, the
necessary moment integrals are derived in Appendix B.

4.1. Remap

We consider first the generalized densities {ρ, σ}. As illustrated in Figure 4, given the donor cell centroid xa , the
distance to the intersection volume centroid xi is

xia = xi − xa

Using the limited gradients from Section 3.1, the value of the mass density at the intersection centroid is

ρ
(
xi

)
= ρa + xia · ∇ρ

and the mass is
MI = VIρ

(
xi

)
This is accumulated into the acceptor cell B

MB =

B∑
I

MI
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Figure 4: Illustration of conservative remap from an intersection volume I to an acceptor cell B.

so that the final remapped density is
ρB = MB

/
VB

The remaining generalized densities are remapped similarly.

The corresponding equations for remapping specific quantities {u, k, e} are also similar. The distance from the cell
CM xA to the intersection CM xI is

xIA = xI − xA

For specific variables, the set of remap equations is

φ
(
xI

)
= φA + xiA · ∇φ

ΦI = MIφ
(
xI

)
ΦB =

B∑
I

ΦI

φB = ΦB
/
MB

again with the other specific primitives remapped in the same way.

5. Entropy production

We now turn to the remaining repartition or entropy production step. Our new method for calculating dissipation
(entropy production) in remap bears some similarity with KE f ixup described in Section 1. However, we question
the underlying principle that the cell kinetic energy must be compatible with the cell momentum, U2

/
2M. For later

reference, we define specific quantities

q = Q/M

u = U/M
e = E/M

As only the acceptor cell is involved in this section, we will omit the superscript B on variables.
In the remap, internal energy E and kinetic energy K from the Lagrange step are first remapped conservatively

and isentropically; that is, they are individually conserved without energy exchange between the two components. A
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Figure 5: Kinetic and internal energy are first remapped isentropically. Then dissipation is introduced to enforce consistency between the cell
averaged momentum and kinetic energy. A linear velocity distribution and the corresponding quadratic kinetic energy distributions are shown in
blue. The midpoint of the kinetic energy distribution (a red dot) corresponds to the cell average velocity. Conserved quantities are represented by
horizontal black lines, and the repartitioned energies in red. The internal energy bounds are represented as a shaded region.

typical situation is illustrated in Figure 5 that depicts a distribution of the relevant quantities across the acceptor cell.
A linear velocity distribution and the corresponding quadratic kinetic energy distributions are shown in blue. The
midpoint of the kinetic energy distribution (a red dot) corresponds to the cell average velocity. Conserved quantities
are represented by horizontal black lines, and the repartitioned energies in red. The internal energy bounds are
represented as an orange shaded region.

For a simple system, the underlying physical principle in the repartition is analogous to a Least Action notion that
minimizes the Lagrangian functional in the cell

L = K − E

subject to constraints. To do this, dissipation is introduced by conservatively transferring kinetic to internal energy

K′ = K − Q (27)
E′ = E + Q (28)
H′ = H (29)

so that total energy is always conserved independent of the definition of Q. After the transfer, the resulting Lagrangian
is smaller

L′ = K′ + E′ = L − 2Q

There are constraints on Q. We consider two alternatives.
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Canonical dissipation method. In the canonical dissipation method, the dissipation is always taken to be

Q = K − U2
/
2M

so that the cell kinetic energy is forced to be consistent with the cell momentum

K′ = U2
/
2M

In Figure 5, this drops the kinetic energy from the black line K to the red line K′ and increases the internal energy
from the black line E to the red line E′. This can move the internal energy outside the bounds denoted by the orange
region. As we show in Section 6.2.2, this leads to overheating in flows such as isentropic compressions.

Compatible dissipation method. The compatible dissipation method further asserts that the dissipation must not force

the internal energy out of equilibrium with the surroundings. That is, Q must be constrained such that

emin ≤ e′ ≤ emax

Because this is an a posteriori calculation, bounds are determined from all donor cells that contribute to each acceptor
cell. With Q defined as above, the necessary limiter is given by

α = min
(
1,

M

Q−
(e − emin) ,

M

Q+
(emax − e)

)

in which Q = Q+ − Q− has been decomposed for limiting as was density. As before, superscripts + and − denote
positive and negative contributions. Then Q is replaced by αQ, and the conserved energies are again as in (27). We
temporarily defer discussion of the implications of negative Q.

If Q does not need to be limited, the result is the same as in the canonical method. In general, however, K′ �
U2

/
2M. The algorithmic implication is that the cell kinetic energy must be time integrated, as opposed to being

inferred from the cell average velocity. This is as described in the rate based partitioning of the Lagrange step of
Section 2.

State at the integration point. Recall that partitioning of energy in the Lagrange step and the repartitioning after
the remap is done solely to obtain specific internal energy at an integration point x. This is then used in the constitutive
model to evaluate stress. The state at the integration point is given by

k′ (x) =
1
2

u2 (x)

e′ (x) = e + q

h′ (x) = k′ (x) + e′ (x)

so that the specific kinetic energy at the point is always compatible with the velocity at that point. However, neither
kinetic nor total energy at the integration point necessarily equal the cell average.

k′ � K′
/
M

h′ � H′
/
M

Positivity of Q. Recall that K and E are remapped isentropically, so that Q represents a change in entropy. The
Second Law requires that it be positive, and positivity is supported by the Cauchy-Schwartz inequality. Consider a
fluid volume with fields ρ and u distributed in an arbitrary manner. The total mass, momentum, and kinetic energy is
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given by

M =

∫
ρdV

U =
∫
ρudV

K =

∫
1
2
ρu2dV

Applying the integral form of the Cauchy-Schwartz inequality yields

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
ρudV

⎫⎪⎪⎪⎬⎪⎪⎪⎭
2

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
ρdV

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
ρu2dV

⎫⎪⎪⎪⎬⎪⎪⎪⎭
or

U2 ≤ 2MK

Then

Q = K − U2

2M
≥ 0

To this point, we find that our dissipation formulation allows Q to be negative. The explanation is that the con-
ditions of the Cauchy-Schwartz inequality are not exactly met. The inequality requires compatibility between the
momentum ρu and kinetic energy 1

2ρu
2 at every point in space, thereby requiring a quadratic form for the latter. Yet,

we remap both velocity and kinetic energy with linear reconstructions.
In a separate unreported study, we did remap kinetic energy as a quadratic function, and found that indeed Q was

always positive. This approach was not followed here because it would require substantial changes in the underlying
Lagrange method, contradicting our design goal. The incompatibility in the two assumed velocity distributions in
the CCH Lagrange formulation was described in Section 2.2. That is, the Lagrange partitioning of total energy
corresponds to a linear, not quadratic, distribution of kinetic energy. If one were to remap kinetic energy as a quadratic
function, the cell kinetic energy would increase relative to the Lagrange partitioning. Conservation would then require
the change to be subtracted from the cell internal energy. As this happens to varying degrees in all cells, there appears
to be no obvious way to establish bounds for the reduced internal energy.

Although the dissipation formulation does not guarantee that Q is positive, we constrain it to be so

Q ≥ 0

This has no effect on conservation. There appear to be no detrimental consequences, as we have also run most test
problems with and without the constraint and found insignificant differences. Section 6.1.3 explores this issue in the
case of the Sedov problem.

6. Test problems

Our fundamental objective is to find remap methods that produce excellent results over a wide range of situations.
To this end, we consider test problems with and without shocks, high and low speed flow, with and without vorticity,
gases and solids, and rectangular and polar grids. All test problems were in XY geometry and involved single mate-
rials. To stress the numerical methods, relatively coarse meshes were used. Most problems were run in an Eulerian
mode in which the remap is back to the original mesh, but a few were run in an ALE mode using mesh relaxation
based on a Laplacian smoothing method [38], the details of which are beyond the scope of this paper. The underlying
Lagrangian hydro method was the cell-centered CGR scheme from [19] and described in Section 2. Flux volumes
were calculated using an exact intersection method that made no assumptions about similar connectivity between the
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donor and acceptor meshes [20, 17, 18, 43]. The test problems do not specifically test the capability of the formulation
to remap between meshes of the same or differing connectivity, but this was done in [22, 21] for two ReALE problems.

There were three principal areas of comparison in the test problems:

1. CM vs. CV reconstruction. The CM formulation is as previously described in Sections 3 and 4 in which density
ρ and specific variables φ are separately limited. In CV methods, the conserved products ρφ are bounded, but as
discussed in Section 1, the specific fields are not necessarily bounded. As noted in the Introduction, the CV method
has a number of known limitations for which a variety of extensions have been proposed. We made no attempt to
assess these extensions to CV, but rather offered an alternative scheme (CM) that does not have the deficiencies.

2. CE, IE, TE energy modes. The internal energy (IE) method remaps only internal energy and has no entropy
production mechanism. The compatible energy (CE) and the total energy (TE) methods were as described in Section
5. In contrast to IE, both CE and TE create entropy as a consequence of the remap. In the CE method, the specific
kinetic energy at the cell center is compatible with the velocity at that location.

3. Limiters. For both the velocity and stress gradients, comparisons are made between the tensor, component, and
rotationally invariant methods described in Section 3.3. For CM reconstruction, the effect of an additional limiter for
the product ρe (Section 3.1) is also considered.

This gave rise to five algorithmic configurations that were the focus of the testing: CM-CE, CM-IE, CM-TE, CV-
IE, and CV-TE. Ultimately, the CM-CE configuration was found to yield the best results and was designated as the
baseline method in the comparisons. In addition, a few comparisons are also made between alternative methods for
limiting velocity and stress.

6.1. Shock-dominated problems

The three shock problems use polytropic gases. In the Sod problem, a shock forms at a contact discontinuity. In
the Noh problem, the shock forms as a reflection from the origin due to a radially inward initial flow. The problem
involves both high and low speed flow. The shock in the Sedov problem is produced by a high energy source at the
origin.

6.1.1. Sod shock tube

The Sod shock tube is a very well known problem defined in [73]. It consists of a shock tube of 100 units in
length. The interface is located at x = 50. At the initial time, the states on the left and the right sides of the interface
are uniform. The left state is a high pressure fluid characterized by {ρL, pL, uL} = {1, 1, 0} the right state is a low
pressure fluid defined by {ρR, pR, uR} = {0.125, 0.1, 0}. The fluid is a polytropic gas defined by γ = 7/5. Physically, the
problem is 1D, but we modeled it on a 2D mesh. The computational domain is defined by

[
x, y

] ∈ [0, 100] × [0, 10].
The initial mesh is a Cartesian grid with 100 × 2 cells. The boundary conditions are reflective. The problem was run
in an Eulerian mode.

CV reconstruction. In Figure 6, we compare the CV reconstruction method in internal and total energy modes
(CV-IE and CV-TE) with our baseline method CM-CE. The CV-IE result is low because energy is not conserved,
while the CV-TE displays an overshoot at the contact discontinuity because monotonicity of specific internal energy
is not guaranteed by the CV method.

CM reconstruction. Figure 7(a) compares the CM method in CE, IE and TE modes. The CE and TE results are
essentially identical, while the IE result is low, again because energy is not conserved. In Figure 7(b), we compare the
CM-CE method with (red) and without (green) the explicit limiting of internal energy density ρe discussed in Section
3.1. The overshoot is significantly reduced with the additional limiting.

6.1.2. Noh problem

The Noh problem [63] has been used extensively to illustrate the difficulties of preserving symmetry as well as
exposing tendencies to produce a well known entropy error known as wall heating [24]. The material is a polytropic
gas with γ = 5/3. Initially the velocity is directed radially inward with a unity magnitude, the density is unity, and
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(a) CV vs. CM (b) CV vs. CM, enlarged

Figure 6: Sod: Specific internal energy vs. distance at t=1.0. The baseline CM-CE reconstruction method (red) is compared with the CV-IE (green)
and CV-TE (blue) methods. The analytical solution is black. The CV-IE result is low because energy is not conserved, while the CV-TE displays
an overshoot at the contact discontinuity.

(a) CM (b) CM: Explicit limiting of ρe

Figure 7: Sod, CM reconstruction method: specific internal energy vs. distance at t=1.0. In (a) we compare the CE, IE and TE modes. The
analytical solution is black. The CE and TE results (red) are identical, while the IE result (green) is low. In (b) we compare CM-CE reconstruction
with (red) and without (green) the explicit limiting of internal energy density ρe described in Section 3.1. The overshoot is significantly reduced
with the additional limiting.
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(a) CM: Polar (b) CM: Box

Figure 8: Noh, CM reconstruction method: scatter plot of density vs. distance at t=0.6 on polar (a) and box (b) meshes. We compare the CE/TE
(red) and IE energy modes (green). The CE and TE modes agree well with the analytical result (black), but the IE result has a slow propagation
velocity and misses the shock state.

the internal energy is small (10−4). The converging flow causes a shock to form at the origin and propagate radially
outward. The density plateau behind the shock wave reaches a uniform value of 16 in XY and 64 in RZ out to a radius
of 0.2 at t=0.6. Numerically, the proper density near the origin is not obtained because of the aforementioned wall
heating.

Here, we consider the Noh problem in XY geometry on both a 10 × 200 polar mesh and a 100 × 100 rectangular
mesh. Outer boundaries were at a distance of 1.2 from the origin. Boundary conditions were reflecting along the axes
and fixed at the outer surfaces. The fixed outer boundary causes a perturbation that propagates inward, so that the
solution must be evaluated in window near the origin. The problems were run in an Eulerian mode to maximize the
amount of remap.

CM reconstruction. In Figures 8(a) and (b), we compare the CM reconstruction method for energy modes CE/TE
(red) and IE (green). For both types of meshes, the CE and TE results are identical because both methods conserve
total energy. They agree well with the analytic solution (black), while the CV-IE result has a slow propagation velocity
and misses the shock state. This is a result of insufficient entropy production and lack of energy conservation (a loss
of about 6 percent on the polar mesh and 3 percent on the box mesh).

CV reconstruction. In Figures 9(a) and (b), we compare the baseline method CM-CE (red) with the CV recon-
struction method in internal and total energy modes (CV-IE and CV-TE) in green and blue respectively. Aside from
the well-known wall heating at the origin, the CM result agrees well with the analytic solution (black). Again, the
CV-IE result has a slow propagation velocity, misses the shock state, and has an energy loss of about 3 percent on the
polar mesh and 5 percent on the box mesh. Although the CV-TE result has about the correct average amplitude and
position, it is clearly unstable on both meshes because monotonicity of specific internal energy is not guaranteed by
the CV method.

Velocity limiter. In Figure 10, for the baseline CM-CE method, we compare the tensor velocity limiter (red) of
Section 3.3 with a simple component limiter (green) and the rotationally invariant limiter (blue). The tensor and
component limiters produce nearly identical results, whereas the invariant limiter results are scattered.

6.1.3. Sedov blast wave

In this section, we present results of the Sedov blast wave [71] as an example of a diverging shock wave with
a similarity solution. The initial setup consists of a square grid extending from 0 to 1.2 in both x and y directions
defining a single quadrant. Calculations were run in XY geometry on a 200 × 200 square mesh in an Eulerian mode.
All boundaries are reflective. The material is a polytropic gas with γ=1.4, initial density of unity, and initial velocity
zero everywhere. The specific internal energy is effectively zero (10−6) except in the source region that is modeled
using a finite volume source at the origin [65]. The source region was 0.024 × 0.024 with a specific internal energy of
426.943.
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(a) CV: Polar (b) CV: Box

Figure 9: Noh, CV reconstruction method: scatter plot of density at t=0.6 on polar (a) and box (b) meshes. We compare the baseline CM-CE
reconstruction method (red) with the CV-IE (green) and CV-TE (blue) methods. The CV-IE result has a slow propagation velocity and misses the
shock state, while the CV-TE is unstable on both meshes.

Figure 10: Noh, CM-CE baseline: scatter plot of density at t=0.6 on a box (b) mesh, comparing the tensor (red), component (green), and rotationally
invariant (blue) velocity limiters. The rotationally invariant limiter performs poorly.
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(a) CM: Density (b) CM: Specific internal energy

Figure 11: Sedov, CM reconstruction: scatter plots of density (a) and specific internal energy (b) vs. distance at t=1.0. We compare the CE/TE
(red) and IE energy modes (green). The CE and TE modes are nearly identical and agree well with the analytical result (black), but the IE result
had a slow propagation velocity and missed the shock state in both density and energy.

(a) CV: Density (b) CV: Specific internal energy

Figure 12: Sedov, CV reconstruction: scatter plots of density (a) and specific internal energy (b) vs. distance at t=1.0. We compare the baseline
CM-CE reconstruction method (red) with the CV-IE (green) and CV-TE (blue) methods. The CM-CE and CV-TE results are similar, but the CV-IE
result is substantially in error.

CM reconstruction. Figure 11(a) is a scatter plot of density vs. distance, and (b) is the specific internal energy on a
logarithmic scale. We compare the CM reconstruction method for energy modes CE/TE (red) and IE (green). As was
the case for the Noh problem of Section 6.1.2, the CE/TE results are identical because both methods conserve total
energy, and both agree well with the analytic solution (black). The IE result had a slow propagation velocity and had
energy errors spanning two orders of magnitude. Again, the poor IE result is a consequence of insufficient entropy
production and lack of energy conservation.

CV reconstruction. In Figure 12, we compare the baseline CM-CE reconstruction method (red) with the CV-IE
(green) and CV-TE (blue) methods. With regard to density, the CM-CE and CV-TE results are nearly identical, but
some differences appear in the specific internal energy. Again, the CV-IE results are in error by a substantial amount.

Sign of Q. The quantity Q of Section 5 is not an artificial viscosity, but is related to dissipation and has units of
energy. As discussed in Section 5, Q can be negative unless explicitly constrained to be positive. Here, we remove
this constraint in a Sedov calculation to evaluate the magnitude of the negativity. Recall that Q is extensive and that
the specific quantity is

q = Q/M

Figure 13 shows regions of positive q in (a) and negative in (b). It is essentially zero except at the shock position
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(a) Positive q (b) Negative q

Figure 13: Sedov, CM-CE method: Regions of positive (a) and negative (b) q clearly delineate the shock position. Regions of q nearly zero are
shaded blue or dark purple in (a) and red or light purple in (b). Recall that q = Q/M.

where it has a maximum of about 10−4. Regions of negative q have magnitudes as large as 10−8 near the shock, four
orders of magnitude lower than the adjacent positive values. In Figure 13, regions of q nearly zero are shaded blue or
dark purple in (a) and red or light purple in (b). Although the test problems presented in this article had q constrained
to be positive, we have also run most without the constraint and found insignificant differences.

6.2. Smooth and adiabatic flow problems

The first three problems involve adiabatic flow. In the Adiabatic Release problem, material is first shocked,
and then the energy is tracked along the release adiabat. The Coggeshall problem describes adiabatic compression
due to an initial velocity gradient, while the Kidder shell problem drives the material adiabatically with a time-
dependent pressure boundary condition. The Taylor-Green problem represents a vortical flow for which there is a
known solution. The preceding problems involve polytropic gases. The Howell problem involves a solid constitutive
model and simulates the collapse of a Be cylinder with an initial velocity distribution.

6.2.1. Adiabatic release

This test problem was originally posed by G. Bazan and R. Rieben [4] to verify the ability to follow adiabatic
release down an isentrope following shock compression to Hugoniot density. An extensive code comparison was
done in [64].

The problem can be viewed as a 1D Riemann problem split into two materials with a contact discontinuity at
x=0.3 as shown in Figure 14. Each material is defined with the following equation of state

p (ρ) =
(
ρ

ρ0
− 1

)
ρ0c2

0 (30)

in which ρ0 is the initial density, ρ is density, and the sound speed at reference density is c0 = 0.4. The initial conditions
are

{u, ρ, e}L = {0.5, 16, 0}
{u, ρ, e}R = {0.0, 16, 0} (31)

The boundary conditions at each end are free, so that the problem was run in an ALE mode. As specified, the
diagnostics consist of two Lagrangian tracer particles located initially at x = 0.36 and x = 0.84, but we only follow
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Figure 14: Adiabatic release. Initial configuration.

Figure 15: Adiabatic release: specific internal energy vs. density during loading and release along the adiabat.

the second here. The calculational mesh was 2x360 on a domain x ∈ [0.005, 0.9] so that the cell size was 0.0025 in
both x and y directions.

The problem is run until t = 1.4 by which time a shock has formed at the contact, interacted with the second tracer
at about t ∼ 0.83, formed a rarefaction at the free surface, and begun the release at the tracer location at about t ∼ 0.98.
As originally defined, the problem was to be run in a Lagrangian mode, so that the tracer moved with the material. In
our ALE simulation, the tracer is stationary.

An expression for the specific internal energy along the adiabat is easily derived. Following [4, 64]

up =
1
2

uL (32)

Based upon the initial conditions, the Hugoniot values are

pH = ρ0up

(
c0 + up

)
ρH = ρ0

(
1 + up

c0

)
eH =

pH (ρH−ρ0)
2ρHρ0

(33)

The adiabatic energy as a function of density is given by

eA (ρ) = eH + c2
0

[
ρ − ρH

ρ0
− ln

(
ρ

ρH

)]
(34)

The figure of merit is the percentage error in this quantity. The specific internal energy as a function of density during
loading and release is shown in Figure 15.

CM reconstruction. Figures 16(a) and (b) show the log of the error in specific internal energy along the adiabat
as a function of density. Figure 16(a) compares energy modes for CM reconstruction. CM-CE (red) and CM-TE (not
shown) are coincident, while CM-IE was in error by about 10 percent. The CM-CE result had an error of about 0.1
percent and compares very favorably with results in Reference [64].

CV reconstruction. Figure 16(b) compares the baseline CM-CE method (red) with CV-IE (green) and CV-TE
(blue). Both CV results were in error by about 10 percent.
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(a) CM (b) CV

Figure 16: Adiabatic release: percent error in specific internal energy vs. density along the adiabat for 2x360 mesh. In (a) CM-CE (red) and
CM-TE are coincident while CM-IE (green) has a much larger error. In (b) CM-CE (red) is compared with CV-IE (green) and CV-TE (blue) both
of which had large errors.

6.2.2. Coggeshall problem

The Coggeshall problem [27] describes the adiabatic compression of a polytropic gas with γ = 5/3. It is similar to
the Noh problem of Section 6.1.2 except the initial velocity is equal to the negative of the coordinate instead of unity.
The analytic solution is given by

u (t) = u0
r (t) = r0 (1 − t)
ρ (t) = ρ0(1 − t)−α

e (t) = e0(1 − t)−α(γ−1)

in which α = {1, 2, 3} respectively for planar, cylindrical, or spherical geometry.
We ran a 2D XY configuration in an Eulerian mode on a 200 × 200 mesh and a calculational domain extending

from 0 to 5 in both x and y directions. The initial conditions were {u0, ρ0, e0} =
{
−r0, 1.0, 10−6

}
in which r0 is the initial

radius. Because the specific internal energy is small and the velocity large, small errors in the velocity solution give
rise to large errors in the thermodynamic variables. The boundary conditions were reflecting along all boundaries. In
the absence of a “flow through” outer boundary condition, the reflecting boundary condition causes a perturbation that
propagates inward, so that the isentropic solution must be evaluated in window near the origin. The calculation was
run to a time of 0.5.

CM reconstruction. Figure 17(a) is a scatter plot of density vs. distance, and (b) is the specific internal energy on
a logarithmic scale. We compare the CM reconstruction method for energy modes CE/IE (red) and TE (blue). Unlike
the case for shocks in which CE and TE agreed (see the Noh problem of Section 6.1.2), here the CE and IE results are
identical and both agree well with the analytic solution (black). The TE result had significant errors in both density
and internal energy.

CV reconstruction. In Figure 18, we compare the baseline CM-CE reconstruction method (red) with CV-TE (blue).
CV-IE results are similar to CM-CE and are not shown. The CV-TE results have very large errors because the CV
reconstruction does not guarantee monotonicity of the specific internal energy. Notice that the density errors are much
larger than those of Figure 17 (a) which has a much more expanded scale.

6.2.3. Kidder shell

Kidder [46, 44, 45, 66] derived a series of exact solutions for the isentropic compression of a gas. In this section,
we calculate the isentropic compression of a hollow shell of gas [45]. Lagrange calculations of the problem have been
published in [56, 25, 82, 62, 19] and an ALE calculation in [8]. Time-varying boundary conditions on the inner and
outer surfaces cause the shell to compress. The goal of the Kidder hollow shell test problem is to assess the ability
of the method to produce symmetric and non-dissipative results. The test problem is isentropic, so that no dissipation
should be generated.
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(a) CM: Density (b) CM: Specific internal energy

Figure 17: Coggeshall, CM reconstruction: scatter plots of density (a) and specific internal energy (b) vs. distance at t=0.5. We compare the CE/IE
(red) and TE energy modes (blue). The CE and IE modes are nearly identical and agree well with the analytical result (black), but the TE result
had errors in both density and internal energy.

(a) CV: Density (b) CV: Specific internal energy

Figure 18: Coggeshall, CV reconstruction: scatter plots of density (a) and specific internal energy (b) vs. distance at t=0.5. We compare the
baseline CM-CE reconstruction method (red) with CV-TE (blue). CV-IE results are similar to CM-CE and are not shown. The CV-TE results have
very large errors arising from the CV reconstruction.
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We ran the problem as specified in [82], but in an ALE mode because the boundaries move. The equation of state
is a polytropic gas with gamma γ = α+2

α
with α = 1, 2, 3 for planar, cylindrical, or spherical geometry respectively, so

that γ = 2.0 for XY geometry. Denoting the inner and outer surfaces with subscripts 1 and 2 respectively, the initial
radii of the shell are r1 = 0.9 and r2 = 1.0. The initial densities at the surfaces are ρ1 = 1.0 and ρ2 = 2.0. The initial
pressure at 1 is p1 = 1.0. The initial distributions within the shell are given by

u0 (r) = 0

ρ0 (r) =
[
ρ
γ−1
1 (1 − β) + βργ−1

2

] 1
γ−1

p0 (r) = ρ0(r)γ

e0 (r) =
p0 (r)

(γ − 1) ρ0 (r)

in which the superscript 0 denotes the initial time, and β (r) =
(
r2 − r2

1

)/(
r2

2 − r2
1

)
. The time dependent solution is

self-similar, so that the radius varies as r (t) = r0η (t) in which η (t) =
√

1 −
(

t
τ

)2
. The focusing time τ is the time at

which the inner radius becomes zero and is given by

τ =

√√√√ (γ − 1)
(
r2

2 − r2
1

)
2
(
c2

2 − c2
1

)
in which the isentropic sound speed is c =

√
γp/ρ =

√
γ (γ − 1) e. In terms of η, the solutions for velocity magnitude,

density, pressure, and specific internal energy are given by

u (r, t) = r0 dη (t)
dt
=

r0t

τ2η (t)

ρ (r, t) = ρ0 (r) η(t)
−2
γ−1

p (r, t) = p0 (r) η(t)
−2γ
γ−1

e (r, t) =
p (r, t)

(γ − 1) ρ (r, t)

For later reference, we define the average radius as r̄ = 1
n

n∑
i

ri and the percent RMS deviation from sphericity as

pct =
100
nr̄

√√
n∑
i

(ri − r̄)2 (35)

with the sum being over boundary points.
We ran the problem in XY geometry, using a 90o polar mesh with 24 angular and 48 radial cells. Boundary

conditions along the axes were reflecting. Time-dependent pressure boundary conditions corresponding to the above
analytic solution were applied at the inner and outer radii. For this configuration, τ = 0.0072648315 and the stop
time was chosen to be t = 0.005. For all reconstruction and energy methods, the average inner and outer radii closely
follow the analytic solution in time as shown in Figure 19. However, as discussed below, deviations from sphericity
varied between methods.

CM reconstruction. In Figure 20 we show results for CM reconstruction. Figures 20(a-c) are scatter plots of
respectively velocity magnitude, density, and specific internal energy vs. distance at t = 0.005 for the 24 × 48 mesh,
a size we chose to highlight some method deficiencies. We note that the 24 × 48 solution (red) differs slightly from
the analytic (black) because it is not converged at this resolution. A formal convergence analysis was not done, but
results for 12 × 24 (blue), 48 × 96 (purple), and 96 × 192 (green) meshes are shown in Figure 20(a). In the figure,
results for the CE (red), IE, and TE modes are coincident and are in good agreement with the analytic results, aside
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Figure 19: Kidder shell, all methods: Average radius r̄ vs. time

from the known convergence error. Because the specific kinetic and internal energies are much closer in value than in
the Coggeshall problem, the Kidder shell problem is much less sensitive to the energy mode. In Figure 20(d), we plot
the percent error in sphericity, as defined in (35), for the inner (+) and outer (•) surfaces vs. time.

CV reconstruction. In Figure 21, we compare the baseline CM-CE reconstruction method (red) with the CV-IE
(green) and CV-TE (blue) methods. As was the case with the Coggeshall problem, the CM-CE and CV-IE results are
nearly identical for velocity magnitude, density, and specific internal energy, but the CV-TE results have large scatter.
With respect to sphericity, both the CV-IE and CV-TE methods have much larger error than the baseline CM-CE.

Velocity limiter. In Figure 22, for the baseline CM-CE method, we compare the sphericity behavior of the tensor
velocity limiter (red) of Section 3.3 with a simple component limiter (green) and the rotationally invariant limiter
(blue). No clear winner emerges. In the Noh problem 6.1.2, the invariant limiter produced a noisy result, whereas
the result on this problem is smooth (blue). It had the lowest error at the outer surface, but a larger error at the inner
surface. The sphericity with the tensor limiter (red) is about a factor of three lower than the component limiter (green)
over most of the time span.

6.2.4. Taylor-Green vortex

This 2D problem was discussed by Taylor [74] and has been revisited by many researchers since then [31, 30, 41,
62]. The problem is of particular interest because it represents a vortical flow problem for which there is a known
solution. We take our description of the problem from [30]. The material is a polytropic gas with γ = 5/3 and unity
density. The domain is a unit square with reflecting boundary conditions on each face. The initial velocity field is a
counterclockwise flow about the center of the square with a magnitude given by

u (x, y) = {sin (πx) cos (πy) ,− cos (πx) sin (πy)} (36)

The magnitude should remain constant in time. The initial pressure is given by

p (x, y) =
ρ

4
[
cos (2πx) + cos (2πy)

]
+ 1

In addition, the problem has an energy source term because the fluid, as modeled, is compressible

ė =
3π
8

[
cos (3πx) cos (πy) − cos (πx) cos (3πy)

]
The magnitude of the initial velocity distribution is shown in Figure 23(a) for a 60x60 mesh. The domain is 0 to 1

in both x and y directions. The velocity magnitude should remain stationary in time as in (b) that shows a Lagrangian
calculation at t=0.5. Because of the large deformation, Lagrangian calculations can only be run for short times.
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(a) CM: Velocity magnitude (b) CM: Density

(c) CM: Specific internal energy (d) CM: Sphericity error

Figure 20: Kidder shell, CM reconstruction: Figures (a)-(c) are scatter plots of velocity magnitude, density, and specific internal energy vs. distance
at t=t = 0.005 for the 24 × 48 mesh. CE, IE, and TE results are coincident, but only the CE (red) result is displayed. Figure (a) also shows velocity
magnitude for additional mesh resolutions: 12 × 24 (blue), 48 × 96 (purple), and 96 × 192 (green). Figure (d) shows percent error in sphericity, as
defined in (35), for the inner (+) and outer (•) surfaces vs. time.
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(a) CV: Velocity magnitude (b) CV: Density

(c) CV: Specific internal energy (d) CV: Sphericity

Figure 21: Kidder shell, CV reconstruction: Figures (a)-(c) are scatter plots of velocity magnitude, density, and specific internal energy vs. distance
at t=t = 0.005 for the 24 × 48 mesh. The CM-CE (red) and CV-IE (not shown) results are nearly identical for velocity magnitude, density, and
specific internal energy. The CV-TE (blue) results are scattered. Figure (d) shows percent error in sphericity, as defined in (35), for the inner (+)
and outer (•) surfaces vs. time. With respect to sphericity, both the CV-IE and CV-TE methods have much larger error than the baseline CM-CE.

Figure 22: Kidder shell, CM reconstruction: sphericity, as defined in (35), for the inner (+) and outer (•) surfaces vs. time, comparing the tensor
(red), component (green), and rotationally invariant (blue) limiters.
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(a) t=0.0 (b) Lagrange mesh, t=0.5

Figure 23: Taylor-Green vortex: (a) Magnitude of initial velocity field on a 60 × 60 mesh on a square domain from 0 to 1. (b) Lagrangian mesh
at about 1/5 revolution (t=0.5), showing stationary contours of velocity magnitude. Colors represent velocity magnitude on a scale of 0 to 1 and
should remain stationary in time.

We ran the problem in an Eulerian mode at mesh resolutions of 10 × 10, 20 × 20, 40 × 40, 80 × 80, and 160 × 160
to a time of t = 0.5, corresponding to about 1/5 revolution. The volume-weighted L1 velocity norm is defined by

L1 =

∑
cells

Vcell |ucell − u (xc, yc)|∑
cells

Vcell

in which Vcell is the cell volume, ucell is the cell-centered velocity, and u (xc, yc) is the magnitude of velocity at the
centroid (xc, yc) as calculated from (36).

CV reconstruction. In Figure 24(a), we plot the L1 norm of velocity magnitude vs. cell size at t = 0.5. Results
from the CV (IE, TE) methods (blue) were insensitive to the energy mode. The convergence rate for the CV method
varied from 2.56 to 1.68.

CM reconstruction. In Figure 24(a), we also show the L1 norm of velocity magnitude for the baseline CM (CE,
IE, TE) methods (red). Results were again insensitive to the energy mode. The convergence rate for the CM method
was much better than for the CV method. For the range of cell sizes tested, the rate varied from 3.01 to 2.69 which
was greater than that of the underlying Lagrange hydro as reported in [19]. In Figure 24(b), we compare the CM
results at t=0.5 with previously documented CM results [9] at 2.56, 5.12, 7.68, and 10.24 corresponding to 1 through
4 full revolutions. Although the absolute error increased with time, the convergence rate remained about the same.

6.2.5. Howell problem

Verney [81] examined the case of finite-radius, spherical copper and uranium shells collapsing under a given
loading and constructed a simplified, approximate mathematical model of the problem, assuming incompressible,
elastic-perfectly-plastic material response. The initial kinetic energy of the material dissipates via conversion to plastic
work. These simplifications lead to a closed-form solution for the final inner radius. Later, Howell [40] considered
the case of cylindrical shells. We reported results for the Lagrange case in [19]. Here, we consider only the cylindrical
Howell variation.

Both variations model the collapse of a 2 cm thick Be shell. The Be is modeled as a compressible material with a
density ρ0= 1.85 g/cm3, shear modulus G= 1.51 Mb, yield strength Y0= 0.0033 Mb, and a Gruneisen equation of state
with c0=0.7998, s=1.124, Γ=1.16. A detailed description of the numerical implementation of the solid model can be
found in [16], Appendix A. The initial velocity magnitude distribution that drives the shell is divergence free and is
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(a) CM vs. CV (b) CM, temporal convergence

Figure 24: Taylor-Green vortex: L1 norm vs. cell size (the edge length of a square cell). (a) Comparison of CM (red) and CV (blue) reconstruction
methods at t=0.5 or 1/5 revolution. The CM rate is nearly 3, while that of CV was much less. Points for all energy modes were coincident. (b)
For CM reconstruction: L1 norm at 1/5 (red), 1 (green), 2 (blue), 3 (purple), and 4 (aqua) revolutions. For all times, the CM convergence rate was
about 3.

given by

u (r) = u0

(
Router

r

)α
(37)

The initial stress state is traceless, on the yield surface, and properly rotated. The initial inner and outer radii were
8 and 10 cm respectively and the azimuthal angle was from 0o to 180o. In the XY Howell problem α = 1.0 and
u0=0.04902 cm/μs. The shell coasts in until the kinetic energy is dissipated as plastic work. The analytic solution has
a stopping time of about 140 μs and an inner radius of 4.0 cm.

Our base mesh had 16 azimuthal cells and 64 radial, but we also calculated 4× 16, 8× 32, 32× 128, and 64× 256.
Boundary conditions are reflecting along the axis, but free on the inner and outer surfaces, requiring the problem to
be run in an ALE rather than Eulerian mode.

CM and CV reconstructions. Figure 25 plots the inner radius vs. time for both reconstruction methods and all
energy variations. At the resolution of Figure 25(a) all methods appear to yield a final radius of 4.0. However, the
numerical solution is compressible, so that the incompressible analytic result does not hold exactly. Because the
kinetic energy is not completely dissipated in the compressible calculation, the solution should oscillate about an
average inner radius. Acoustic waves at a stress level less than the yield surface continue to propagate with minimal
dissipation as shown in the expanded Figure 25(b). A reference Lagrange calculation (black) from [19] slightly
undershoots the 4.0 value, while the ALE solutions (red) for all methods slightly overshoot. It is not until the scale is
further expanded about the first minimum as in Figure 25(c) that differences in the methods become visible. The line
colors are the same in all three figures, but most are not visible except in Figure 25(c): CM-CE (red), CM-IE (green),
CM-TE (blue), CV-IE (purple), and CV-TE (brown). In these figures, none of the methods appear to be markedly
superior to the others.

Because of the acoustic oscillations, we did not perform a conventional convergence analysis, but rather present a
visual result in Figure 26 in which ALE results are shown for resolutions of 4 × 16 (aqua), 8 × 32 (purple), 16 × 64
(blue), 32 × 128 (green), 64 × 256 (red). The last three resolutions are nearly coincident.

Stress limiter. In Figure 27, we compare the sphericity behavior of the baseline CM-CE method (red) using
three stress limiter formulations from Section 3.3. The time interval corresponds to the time at which the greatest
errors occur. In all cases, the velocity limiter was a tensor form. Results from the tensor stress limiter are red, the
component limiter are green, and the rotationally invariant limiter are blue. The tensor form is marginally better than
the rotationally invariant and component forms.
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(a) Full scale (b) Enlarged

(c) Further enlarged

Figure 25: Howell: Inner radius vs. time for all methods for the 16×64 mesh. (a) is full scale and shows a final radius near 4.0 for all methods.
(b) is enlarged to show acoustic oscillations. (c) is further enlarged about the first minimum to show the slight differences in the methods. The line
colors are the same in all figures, but most are not visible except in (c): Lagrange (black), CM-CE (red), CM-IE (green), CM-TE (blue), CV-IE
(purple), CV-TE (brown).

Figure 26: Howell, CM reconstruction: Inner radius vs. time for mesh resolutions of 4 ×16 (black), 8×32 (purple),16×64 (blue), 32×128 (green),
64×256 (red).
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Figure 27: Howell, CM reconstruction: Percent error in sphericity, as defined in (35), vs. time for three stress limiters of Section 3.3. Tensor form
(red), component form (green), rotationally invariant form (blue). Although the differences are small, the tensor form appears better.

7. Summary and conclusions

The paper was presented in a context of an extended ALE scheme that permits cyclic or periodic transfer of data
between grids of the same or differing connectivity. Although the overall context is more general, the focus of this
paper was on the physics and numerics of the remapping of hydrodynamics fields. The new work presented falls into
three categories associated with: energy conservation and entropy production, reconstruction and bounds preservation,
and conservative remap of nonlinear fields.

Energy conservation and entropy production. Energy conservation and entropy production in Lagrangian methods
has been resolved in recent years, but the solution in ALE and Eulerian methods has been elusive. This has been one
of the unsolved challenges in numerical hydrodynamics, and this work has addressed some of the fundamental issues.
In particular, we showed that the traditional methods of conserving either total (TE) or internal energy (IE) may not
work well for both shock and smooth flow problems.

In Section 5, we presented a new compatible energy (CE) method in which total energy conservation was satisfied
by conservatively and isentropically remapping internal and kinetic energy fields from the Lagrange step. The formu-
lation included an entropy production mechanism, based upon a minimization of the Lagrangian that is constrained
to retain monotonicity of the internal energy. This mechanism produced the proper entropy in shocks, while also pro-
ducing no entropy in isentropic flows, as exemplified in the Coggeshall problem that is a critical test of total energy
methods. A feature of the CE method is that the specific kinetic energy at the point at which the constitutive model is
evaluated is always compatible with the velocity at that point. The CE method has no adjustable parameters.

The various energy schemes were sensitive to the reconstruction method that we summarize later. In Section 6,
five algorithmic configurations were the focus of the testing: CM-CE, CM-IE, CM-TE, CV-IE, and CV-TE. Figure
28 is a “Stoplight” table that gives a qualitative summary of these methods on the suite of test problems. Green
indicates a good result, orange a poor result, and red a markedly bad result. The left three columns compare energy
modes for CM reconstruction, and the right two columns for CV reconstruction. The CE method was the only one
that performed well on all problems. The IE method tended to do best on smooth flows, but failed on shocks because
of conservation issues. With CM reconstruction, the TE method performed well on all but the isentropic Coggeshall
problem. However, with CV reconstruction, the TE method performed poorly in all but the Howell problem because
of bounds issues.

Higher order reconstruction. Canonical CV reconstruction methods are second order and linearize the product of
density and specific quantities ρφ. The reconstruction distributes the products about the centroid. Although bounds of
the products are preserved, the remapped specific fields φmay not be. The consequences are apparent in the rightmost
columns of Figure 28. Through the years, there has been an extensive literature written that aimed at improving
the CV method, including such things as synchronized FCT, energy fixup schemes, energy floors, and so forth. We
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Figure 28: “Stoplight” table, a qualitative summary of test problems. Green indicates a good solution, orange a poor solution, and red a bad
solution.

made no attempt to assess these extensions to CV, but rather offered an alternative scheme CM that does not have the
deficiencies.

In Section 3, we described a higher order reconstruction that distributes density fields about the centroid, but
specific fields about the center of mass. Although we used second order distributions for the primitive variables,
their conserved products ρφ corresponded to higher order reconstructions. The method has the advantage that the
specific fields can be easily bounded. Again, the consequences are apparent from the leftmost columns of Figure 28.
A complication of the method is that the higher order polynomial distributions must be remapped.

Monotonicity is a scalar notion, and applying it in a non-directional manner to vector and tensor fields has been
historically problematic. In Section 3.1, we presented three options for addressing this for both vector fields and tensor
fields. These included traditional limiting of components in the global coordinate system, limiting of components in
a physically relevant coordinate system through the use of a tensor limiter, and limiting of rotational invariants. The
component and invariant limiters both have conceptual issues, so the tensor limiter would be expected to perform
the best. The tensor limiter for velocity was better than the component limiter by about a factor of three for the
Kidder Shell. Although the rotationally invariant velocity limiter did well on the Kidder Shell of Section 6.2.3, it was
unacceptably bad on the box Noh problem of Section 6.1.2. Tensor limiting of the stress tensor does not appear to
have been previously done. For the Howell problem of Section 6.2.5, the tensor form of the stress limiter is marginally
better, and the rotationally invariant form marginally worse, with the component form in between.

Conservative remap of nonlinear fields. In Section 4, we presented a conservative remap method for mass, momen-
tum, and total energy, as well as a pseudo conservation method for stress. The use of exact geometric intersections
guarantees that the GCL is obeyed in Cartesian geometry, but axisymmetric geometry requires an additional order of
polynomial integration to satisfy the GCL.

The integration of polynomial functions over polytopal intersection volumes with planar facets is critical to the CM
reconstruction method. As noted, a complication of the method is that not only higher order polynomial distributions
must be remapped, but also the CM itself must be located. In Cartesian geometry, third order integration is sufficient,
but fourth order is required in axisymmetric geometry.

Although we limited the discussion in this paper to 2D Cartesian geometry, the remap method is readily applicable
to 3D and axisymmetric geometry if the integrals are known. In 2D, volume integrals of polynomials can be expressed
as surface integrals of a second polynomial. Although it is known, in principle, that for 3D the surface integral also be
expressed as a line integral of a third polynomial about each facet, the details of such a method are not easily found in
the literature. In Appendix A and Appendix B, we derive the necessary moment integrals to arbitrary order for these
cases.
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Appendix A. Basic integrals

Consider some volume of intersection between the
donor cell and an acceptor cell. We wish to derive ex-
pressions for some basic integrals for the volume of in-
tersection, denoted i. Coordinates x are defined in a lo-
cal system relative to some reference point within the
donor cell located at a global position r0.

Given a polynomial expansion about the reference
point

f (x) = f 0 + x j f 1
j + x jxk f 2

jk + x jxk xl f 3
jkl + ...

in which f n
jkl... are expansion coefficients, the integral

over the intersection volume is given by

F = F0 f 0 + F1
j f 1

j + F2
jk f 2

jk + F3
jkl f 3

jkl + ...

in which expressions for the moments

Fn
jkl... =

∫
i

x jxk xl...dA

are given in Appendix B. The moments are calculated
as integrals about the surface of the intersection volume
in the local coordinate system.

Planar geometry. In terms of these moments for 2D
planar geometry, the area A and centroid xcv

j evaluate
to

A =

∫
i

dA = F0 (A.1)

Axcv
j =

∫
i

x jdA = F1
j (A.2)

In 3D, the expressions are the same with volume V re-
placing area A, but using 3D moment integrals.

The mass M and center of mass xcm
j evaluate to

M =

∫
i

ρdA (A.3)

=

∫
i

(
ρ0 + x j∂ jρ

)
dA (A.4)

= F0ρ0 + F1
j∂ jρ (A.5)

Mxcm
j =

∫
i

x jρdA (A.6)

=

∫
i

x j

(
ρ0 + xk∂kρ

)
dA (A.7)

= F1
jρ

0 + F2
jk∂kρ (A.8)

2D axial geometry. In axial geometry, extensive quan-
tities are normalized per unit angle about the axis of ro-
tation. The distance from the axis of rotation and any
point is given by

r1 = r0
1 + x jδ j1

in which the subscript 1 indicates the vector component
normal to the axis. Then the volume V and centroid xcv

j

evaluate to

V =

∫
i

rdA (A.9)

=

∫
i

(
r0

1 + x jδ j1

)
dA (A.10)

= F0r0
1 + F1

jδ j1 (A.11)

V xcv
j =

∫
i

x jrdA (A.12)

=

∫
i

x j

(
r0

1 + xkδk1

)
dA (A.13)

=

∫
i

[
x jr

0
1 + x jxkδk1

]
dA (A.14)

= F1
j r

0
1 + F2

j1 (A.15)
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(a) 2D configuration (b) 3D configuration

Figure A.29: Geometrical configuration in 2D(a) and 3D(b). Note that n̂ is a unit vector normal to the facet, while ŝ is a unit vector in the plane
of the facet and normal to the edge. Although only a quadrilateral and hexahedron are depicted, the methodology applies to arbitrary polytopal
volumes.

while mass M and center of mass xcm
j are

M =

∫
i

ρrdA (A.16)

=

∫
i

(
ρ0 + x j∂ jρ

) (
r0

1 + xkδk1

)
dA (A.17)

=

∫
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
ρ0r0

1

)
+x j

(
ρ0δ j1 + r0

1∂ jρ
)

+x jxk

(
δk1∂ jρ

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ dA (A.18)

= F0
(
ρ0r0

1

)
+ F1

1

(
ρ0

)
(A.19)

+ F1
j

(
r0

1∂ jρ
)
+ F2

j1

(
∂ jρ

)
(A.20)

Mxcm
j =

∫
i

x jρrdA (A.21)

=

∫
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x j

(
ρ0r0

1

)
+x jxk

(
ρ0δk1 + r0

1∂kρ
)

+x jxk xl (δl1∂kρ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ dA (A.22)

= F1
j

(
ρ0r0

1

)
+ F2

j1

(
ρ0

)
(A.23)

+ F2
jk

(
r0

1∂kρ
)
+ F3

jk1 (∂kρ) (A.24)

Appendix B. 2D and 3D polynomial integration

We present an exact methodology for calculating 3D
volume integrals of arbitrary polynomial functions over
polyhedra with planar facets, as well as 2D area inte-
grals over polygons with straight edges. Expressions for
moment integrals are well known for the first 3 moments
(corresponding to the volume, centroid, and moment of
inertia). However, expressions for higher moments are
less available.

Our methodology is derived from the divergence
theorem method of Lee, Dukowicz, and others [51, 52,

34, 35, 67, 68, 61] in which the polynomial is expressed
as the divergence of a second polynomial. The volume
integral can then be expressed as a surface integral of the
second polynomial. Although it is known, in principle,
that the surface integral also be expressed as a line in-
tegral of a third function about each facet, the details of
such a method are not easily found in the literature. We
give explicit expressions up to the 5th moment (poly-
nomial degree 4), and the methodology extends triv-
ially to higher moments. Although superficially compli-
cated, the method can be implemented with very com-
pact code.
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Appendix B.1. 2D (XY) case

Consider a polynomial

f (x) = f 0 + x j f 1
j + x jxk f 2

jk + x jxk xl f 3
jkl + ...

in which f n
j... are coefficients of a Taylor series expan-

sion and repeated indices are summed from 1 to 3. The
distances x j are relative to some local reference point.
In the 2D case, the coefficients normal to the plane are
zero, so that the sum is effectively reduced to 1 to 2.
Note that f could represent any component of a tensor.
We wish to calculate the area integral

F =

∫
z

f (x)dA

over a polygonal cell z with planar edges. The origin
is some arbitrary point about which the Taylor series is
expanded, commonly the cell centroid. The geometrical
configuration and notation is shown in Figure A.29(a).

It will be advantageous to express the function f in a
more compact notation. Define a tensor Xn that contains
all of the geometrical information

X0 = 1

X1
j = x j

X2
jk = x jxk

etc. or
Xn =

∏
n

x

in which juxtaposition of tensors is an outer product.
Then

f (x) =
∑

n

fn ∗ Xn

in which * denotes the appropriate tensor contraction.
The area integral is then given by

F =

∫
z

f (x) dA =
∑

n

fn ∗
∫
z

Xn dA

=
∑

n

fn ∗ Fn

in which the moment integrals are

Fn =

∫
z

Xn (x) dA

These can be expressed as surface integrals

Fn =

∮
∂z

dS ŝ · hn

providing we can find functions h such that

∇ · (hn) = Xn

In 2D, it can be readily verified that, using indicial no-
tation,

∂i (xi) = 2

∂i

(
xix j

)
=

(
2x j + δi j xi

)
= 3x j

and so forth, so that we can write

∇ · x = 2
∇ · (xx) = 3x
∇ · (xxx) = 4xx

...

∇ ·
(
Xn+1

)
= (n + 2) Xn

Then the desired function is

hn =
xXn

n + 2
The moment integrals can then be written as a sum over
cell edges

Fn =

∮
∂z

dS ŝ · hn =

∮
∂z

dS (ŝ · x)
Xn

n + 2

=

z∑
e

De

n + 2

∫
e

dS Xn

=

z∑
e

S eDe

n + 2
Kn

in which the sum
z∑
e

implies a counterclockwise sum of

edges surrounding the cell. Denote a and b as the start-
ing and ending points on the edge. The quantity

De = ŝ · x = |a × b|
can be shown to be the normal distance from the origin
to the edge and can be factored out because it is constant
along the edge. For an edge of length S e, the K integral
is

Kn =
1

S e

∫
e

dS Xn

=

1∫
0

ds Xn

in which ds = dS /S e. These integrals are evaluated in
Appendix B.4. Up to second order, the integral can be
approximated

Kn � 1
2

[
Xn (a) + Xn (b)

]
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Summary. In summary, then

F =
∑

n

fn ∗ Fn

Fn
z∑
e

S eDe

n + 2
Kn

Kn =

1∫
0

ds Xn

Appendix B.2. 2D (RZ) case

The case of axial symmetry (RZ) is addressed by
modifying the polynomial coefficients. Recall that x is
relative to some reference point within the cell that is
located at r0 in global coordinates, so that r = r0 + x is
the position in global coordinates. Designate the vector
component normal to the axis of rotation by subscript 1.
We wish to find the integral of

G =

∫
z

g (x)dA

in which

g (x) = f (x) r1 (x)

= f (x)
(
r0

1 + xmδm1

)
=

(
f 0r0

1

)
+ x j

(
f 1

j r0
1 + f 0δ j1

)
+ x jxk

(
f 2

jkr0
1 + f 1

j δk1

)
+ ...

= g0 + x jg
1
j + x jxkg2

jk + ...

We have identified

g0 = f 0r0
1

g1
j = f 1

j r0
1 + f 0δ j1

g2
jk = f 2

jkr0
1 + f 1

j δk1

gn
j...kl = f n

j...klr
0
1 + f n−1

j...k δl1

The desired integral is then given by

G =
∑

n

gn ∗ Fn

with Fn being the moment integrals as derived for the
preceding XY case.

Appendix B.3. 3D case

The geometrical configuration and notation is
shown in Figure A.29(b). Note that n̂ is a unit vector
normal to a facet and that ŝ is a unit vector normal to

an edge but in the plane of the facet. Similarly N rep-
resents an area of a facet and S refers to an edge length
as in 2D. In the 3D case, the volume integral is again of
the form

F =

∫
z

f (x) dV =
∑

n

fn ∗
∫
z

Xn dV

=
∑

n

fn ∗ Fn

in which the moment integrals over the 3D volume are

Fn =

∫
z

Xn (x) dV

These 3D moments can be expressed as surface integrals
over facets with outward normals n̂

Fn =

∮
∂z

dN n̂ · gn

providing we can find functions g such that

∇ · (gn) = Xn

In 3D, It can be readily verified that

∇ · x = 3
∇ · (xx) = 4x
∇ · (xxx) = 5xx

...

∇ ·
(
Xn+1

)
= (n + 3) Xn

so that such a function is

gn =
xXn

n + 3
The moment integrals can then be written as a sum over
faces

Fn =

∮
∂z

dN n̂ · gn =

∮
∂z

dN (n̂ · x)
Xn (x)
n + 3

=

z∑
f

D f

n + 3

∫
f

dN Xn (x)

=

z∑
f

D f N f

n + 3
X̄n

f

in which the sum
z∑
f

implies a sum over outward facing

facets surrounding the volume and

X̄n
f =

1
Nf

∫
f

dN Xn (x)
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Now, we express x as the sum of a normal distance
to the facet d and a displacement y within the facet. This
is analogous to the parallel axis theorem that translates
the surface by a distance d.

Df = x · n̂
d = Df n̂
y = x − d

Then, we must explicitly evaluate

X̄n
f =

1
Nf

∫
f

dN Xn (d + y)

for each value of n

X̄0
f =

1
Nf

∫
f

dN = 1

X̄1
f =

1
Nf

∫
f

dN (d + y)

= d +
1

Nf

∫
f

dN y

= X1 (d) + Ȳ1
f

X̄2
f =

1
Nf

∫
f

dN (d + y) (d + y)

=
1

Nf

∫
f

dN (dd + dy + yd + yy)

= dd + dȲ1
f + Ȳ1

f d + Ȳ2
f

= X2 (d) + ... + Ȳ2
f

X̄n
f = Xn (d) + ... + Ȳn

f

The 3D area integral on the undisplaced surface f can
be expressed as a 2D surface integral about ∂ f

Ȳm
f =

1
Nf

∫
f

dN Xm (y) =
1

Nf

∮
∂ f

dS ŝ · hm

providing we can find a functions h such that

∇ · (hm) = Xm

Such a function is again

hm = y
Xm (y)
m + 2

so that

Ȳm
f =

1
Nf

∮
∂z

dS (ŝ · y)
Xm (y)
m + 2

=
1

Nf

f∑
e

De

m + 2

∫
e

dS Xm (y)

=
1

Nf

f∑
e

DeS e

m + 2
Km (y)

in which

Km (y) =

1∫
0

ds Xm (y)

and
DeS e = |a × b|

Summary. In summary, then

F =
∑

n

fn ∗ Fn

Fn = VzX̄n
z

X̄n
z =

1
Vz

z∑
f

D f N f

n + 3
X̄n

f

X̄n
f = Xn (d) + ... + Ȳn

f

Ȳm
f =

1
Nf

f∑
e

DeS e

m + 2
Km

Km =

1∫
0

ds Xm (y)

Appendix B.4. Evaluation of K integrals

It only remains to evaluate the K integrals

Kn =

1∫
0

ds Xn (x)

in which ds = dS /S e, so that s ∈ [0, 1]. Denoting a and
b as the starting and ending points of a line segment

x = a + s(b − a)
= a(1 − s) + sb

This can be written in terms of Bernstein polynomials,
[61] that are defined by

An
k = sk(1 − s)n−k
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so that

x j = a j (1 − s) + b js = a jA
1
0 + b jA

1
1

Bernstein polynomials have the property

A
p

i A
q

j = A
p+q

i+ j

and their integral is known to be

Ln
k =

1∫
0

An
kds =

k! (n − k)!
(n + 1)!

In particular

L1
k =

1
2!
{1, 1}

L2
k =

1
3!
{2, 1, 2}

L3
k =

1
4!
{6, 2, 2, 6}

L4
k =

1
5!
{24, 6, 4, 6, 24}

and so forth.

First order (degree 0) is trivial

K0 =

1∫
0

ds =

1∫
0

A0
0ds = L0

0 = 1

Second order (degree 1). Now, denote the starting and
ending coordinates of an edge as {ai, bi}. In terms of the
polynomials,

x j = a jA
1
0 + b jA

1
1

so that

K1
j =

1∫
0

x jds

=

1∫
0

(
a jA

1
0 + b jA

1
1

)
ds

= a jL
1
0 + b jL

1
1

=
1
2!

(
a j + b j

)

Third order (degree 2). For higher orders, the recursion
relation is used.

x jxk =
(
a jA

1
0 + b jA

1
1

) (
akA1

0 + bkA1
1

)
=

{
a jakA1

0A1
0 + a jbkA1

0A1
1+

b jakA1
0A1

1 + b jbkA1
1A1

1

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a jakA2

0+(
a jbk + b jak

)
A2

1+

b jbkA2
2

= a2
jkA2

0 + b2
jkA2

1 + c2
jkA2

2

in which we define superscripted coefficients that are
functions of previously calculated lower order coeffi-
cients

a2
jk = a jak

b2
jk = a jbk + b jak

and so forth. Then

K2
jk =

1∫
0

x jxkds

=
1
3!

[
a2

jkL2
0 + b2

jkL2
1 + c2

jkL2
2

]
=

1
3!

[
2a2

jk + b2
jk + 2c2

jk

]

Fourth order (degree 3). Similarly

x jxk xl =

⎧⎪⎪⎨⎪⎪⎩
(
a2

jkA2
0 + b2

jkA2
1 + c2

jkA2
2

)
×(

alA
1
0 + blA

1
1

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a2
jkalA

3
0+(

a2
jkbl + b2

jkal

)
A3

1+(
c2

jkal + b2
jkbl

)
A3

2+

c2
jkblA

3
3

=

{
a3

jklA
3
0 + b3

jklA
3
1+

c3
jklA

3
2 + d3

jklA
3
3

Then

K3
jkl =

1∫
0

x jxk xlds

=
1
4!

[
a3

jklL
3
0 + b3

jklL
3
1+

c3
jklL

3
2 + d3

jklL
3
3

]

=
1
4!

[
6a3

jkl + 2b3
jkl+

2c3
jkl + 6d3

jkl

]
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Fifth order (degree 4). Similarly

x jxk xlxm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(

a3
jklA

3
0 + b3

jklA
3
1+

c3
jklA

3
2 + d3

jklA
3
3

)
×(

amA1
0 + bmA1

1

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3
jklamA4

0+(
a3

jklbm + b3
jklam

)
A4

1+(
b3

jklbm + c3
jklam

)
A4

2+(
c3

jklbm + d3
jklam

)
A4

3+

d3
jklbmA4

4

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a4

jklmA4
0 + b4

jklmA4
1+

c4
jklmA4

2+

d4
jklmA4

3 + e4
jklmA4

4

Then

K4
jklm =

1∫
0

x jxk xlxmds

=
1
5!

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
a4

jklmL4
0 + b4

jklmL4
1+

c4
jklmL4

2+

d4
jklmL4

3 + e4
jklmL4

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1
5!

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
24a4

jklm + 6b4
jklm+

4c4
jklm+

6d4
jklm + 24e4

jklm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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