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 Abstract— Pathology reports are a primary source of 
information for cancer registries which process high 
volumes of free-text reports annually. Information 
extraction and coding is a manual, labor-intensive process. 
In this study we investigated deep learning and a 
convolutional neural network (CNN), for extracting ICD-
O-3 topographic codes from a corpus of breast and lung 
cancer pathology reports. We performed two experiments, 
using a CNN and a more conventional term frequency 
vector approach, to assess the effects of class prevalence and 
inter-class transfer learning. The experiments were based 
on a set of 942 pathology reports with human expert 
annotations as the gold standard. CNN performance was 
compared against a more conventional term frequency 
vector space approach. We observed that the deep learning 
models consistently outperformed the conventional 
approaches in the class prevalence experiment, resulting in 
micro and macro-F score increases of up to 0.132 and 0.226 
respectively when class labels were well populated. 
Specifically, the best performing CNN achieved a micro-F 
score of 0.722 over 12 ICD-O-3 topography codes. Transfer 
learning provided a consistent but modest performance 
boost for the deep learning methods but trends were 
contingent on CNN method and cancer site. These 
encouraging results demonstrate the potential of deep 
learning for automated abstraction of pathology reports. 
 

Index Terms—deep learning, convolutional neural network, 
natural language processing, information extraction, pathology 
reports, primary cancer site.  

 
 

I. INTRODUCTION 
ancer is the second leading cause of death in the United 
States [1]. Over the course of a cancer patient’s diagnosis 
and treatment, pathologists record highly descriptive and 

specific observations of cells and tissues in pathology reports. 
Because these individualized yet mass produced clinical reports 
are encoded in mostly unstructured text, the potential 
accessibility of vast amounts of data is contingent on the 
performance of natural language processing (NLP) tools for 
automated information extraction [2]. 
 Cancer registries process a very high volume of pathology 
reports, hundreds of thousands in the Surveillance, 
Epidemiology and End Results (SEER) registries alone, which 
cover 30% of US population [3]. These reports are highly 
variable, as they come from hundreds of healthcare providers 
and laboratories. There are also data quality issues due to 
human fatigue, differences in interpretation and application of 
coding rules, etc. Moreover, the clinical details from pathology 
and other reports that are needed to characterize cancer patient 
trajectories are increasing as patients live longer and have more 
complex treatments. At this scale, manual information 
extraction and coding is expensive to sustain, and registries are 
unlikely to address issues of volume, variability, and timeliness 
of reporting without some automation.  

Since the registries have access to high volumes of electronic 
pathology reports and coded variables extracted from those 
reports, a machine learning approach to feature and classifier 
development could offer an effective path for registries to 
implement automation using artificial intelligence for 
information extraction and coding. For cancer registries, an 
important piece of information in a pathology report is the 
corresponding ICD-O-3 topographical code, which describes 
the specific anatomical site of a tumor’s origin [4]. Although 
multiple sites may be mentioned in a pathology report, for the 
most part, only one primary site is discussed per report. 
Extraction and coding of primary sites by ICD-O-3 
topographical codes provides a well-documented starting point 
for exploration of deep learning NLP techniques to support 
cancer surveillance. 

Within the biomedical informatics literature, NLP 
approaches for information extraction range from strictly 
defined, manually tuned rule-based systems [5], to generalized 
and domain-specific systems relying on feature-based machine 
learning classifiers [6], to recent deep learning approaches for 
both automated feature development [7] and supervised 
classifier models [8]. Though these prior techniques have 
individually demonstrated effective performance within their 
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own experiments, a systematic comparison of methods across 
varying distributions of clinical documents has yet to be 
studied. 

Since 1971, Vector Space Models (VSM) utilizing term and 
document frequency counts as automatic document feature 
extractors have been used to retrieve information from a corpus 
of documents [9, 10]. Recent deep learning applications for 
NLP have resulted in great progress for both automated feature 
extraction and classification tasks. Multilayered neural 
networks extend automated feature extraction techniques 
beyond document-level representation to a machine learned 
latent vector space representation for words. These word-level 
learned features do not need to be task specific, as word training 
has been performed on unlabeled but vast corpora such as 
Wikipedia or a national periodical such as the Wall Street 
Journal [11]. These learned word features are called “word 
embeddings” and like document VSMs, attempt to capture 
semantic information via observed similarities in word 
contexts.  This completely automated and generalized approach 
nonetheless resulted in state-of-the-art performance in NLP 
benchmark subtasks against even highly engineered task-
specific prior techniques [11]. Researchers have investigated 
techniques for making this feature extraction more task-specific 
with either word pre-training on a domain specific corpus [7, 
12] or by simultaneously learning latent word features 
alongside a particular class task [11]. Previous deep learning 
approaches focused on the sequential nature of text data with 
recurrent networks [22] or encoding documents into individual 
latent feature vectors [13]. Such approaches focus mainly on 
documents-wide attributes, such as form and structure. 
Convolutional neural networks (CNN), initially developed for 
computer vision [14] and subsequently applied to NLP 
applications [15], demonstrated superior performance for 
document-level information extraction and classification 
utilizing word embeddings [16]. Specifically, the CNN’s 
convolving filters and max-over time pooling scheme result in 
a highly effective document feature extraction and selection 
[16], which greatly improve upon the traditional VSM’s 
limitations of a sparse high dimensionality feature space and 
inability to directly utilize word order. 

In this paper, we investigate the performance of these recent 
deep learning NLP techniques for extracting ICDs-O-3 codes 
by conducting two experiments. First, we examine the effect of 
dataset size and class imbalance on classifier performance. 
Therefore, our first experiment uses a dataset with only well-
populated classes and an expanded dataset including both well 
and minimally populated classes. In the second experiment, we 
explore the learning tradeoffs of increased data specificity 
versus increased data size. We partition our data by primary 
organ site and evaluate classifier performance against 
classifiers trained across primary sites.  
 The manuscript is organized as follows: Section II discusses 
our dataset used in the information extraction task and describes 
our model and our experimental procedure in detail. Section III 
presents our experimental results which we discuss in Section 
IV. 

II. MATERIALS AND METHODS 
A. Pathology Dataset 
Our analysis used a corpus of 942 de-identified pathology 
reports matched to 12 ICD-O-3 topography codes 
corresponding to 7 breast and 5 lung primary sites. For 6 ICD-
O-3 codes the dataset included at least 50 observations per code 
but the remaining 6 ICD-O-3 codes were minimally populated 
with at least 10 but less than 50 observations per code. Table I 
describes the 12 topography codes and the corresponding 
observation count per code included in the database.  

The pathology reports were provided from five different 
SEER cancer registries (CT, HI, KY, NM, Seattle) with the 
proper IRB-approved protocol. Cancer registry experts 
manually annotated all pathology reports based on standard 
guidelines and coding instructions used in cancer surveillance. 
Their annotations served as the gold standard. For label 
consistency in our training set, we only used pathology reports 
with a single topography code sourced only from the “Final 
Diagnosis” section of the report to minimize variation in our 
training data, though we investigated further the robustness of 
our findings when including reports with ground truth labels 
sourced from other report sections (i.e., e.g. Clinical History, 
Microscopic Description, Clinical Information). Since some 
report sections available in each pathology report vary across 
pathology labs and registries, we aggregated the text content of 
every section in the pre-processing phase. The average length 
of the reports was 469 words. Table II includes the number and 
types of pathology reports provided by each SEER registry. 
B. Vector Space Models and Word-Feature Training 
With VSMs, documents within a corpus are encoded with a 

TABLE I 
ICD-O-3 TOPOGRAPHICAL CODES 

Code Count Description 
C34.0 26 Main Bronchus 
C34.1 139 Upper lobe, lung 

C34.2 11 Middle lobe, lung 
C34.3 78 Lower lobe, lung 
C34.9 191 Lung, NOS 
C50.1 13 Central portion of breast 
C50.2 36 Upper-inner quadrant of breast 
C50.3 10 Lower-inner quadrant of breast 
C50.4 63 Upper-outer quadrant of breast 
C50.5 21 Lower-outer quadrant of breast 
C50.8 62 Overlapping lesion of breast 
C50.9 292 Breast NOS 

TABLE II 
PATHOLOGY REPORT ORIGIN REPOSITORY 

Repository Breast (C50) Lung (C34) 
HI 109 102 

KY 96 105 
NM 131 113 
CT  44 32 
Seattle 117 93 

 



2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2700722, IEEE Journal of
Biomedical and Health Informatics

JBHI-00761-2016.R1 

feature vector based on word counts, also known as the ‘bag of 
words’ feature representation [10]. For decades, this 
conceptually simple and relatively effective document 
representation was the basis for many NLP tasks, particularly 
information retrieval and extraction [8, 9]. Likewise, word 
embedding approaches use observed similarities to derive 
meaning from word occurrence. Unlike VSMs, word 
embeddings are learned representations of words rather than 
observed representations of documents, and are trained with 
temporal context windows utilizing deep learning feature 
development techniques. The word vector representation is 
expressed as the following: given a sequence of words x1, x2, …xt, there are corresponding word vectors w1, w2, …, wT where 
wi ∈ ℝk [15]. One recent approach to training word vectors is 
Mikolov’s word2vec skip-gram method, in which vectors are 
initialized randomly and a corpus’s word vectors values are 
trained by generating contexts for the corpus words and 
maximizing the following objective function for a context 
containing word wt: 

1
ܶ ෍ ෍ log ݌(ݓ௧ା௝|ݓ௧)

ି௖ஸ௝ஸ௖,௝ஷ଴

்

௧ୀଵ
 (1) 

where c is the size of the training context w1, w2, …, wT and p is 
the hierarchical softmax function [17] In essence, word vectors 
are trained to predict the text context in which they are likely to 
appear. In practice, word embeddings are trained by 
stochastically traversing a corpora’s contexts, building an 
embedding matrix W ∈ ℝv×k, where k is the pre-specified 
dimensionality for the vector space for learning embeddings, 
and v being the number of learned vectors, effectively 
corresponding to a vocabulary size. 

Since trained word vectors trained to represent a word’s 
locality within a corpus, training word vectors with a different 
corpus can capture varying word meanings Using a more 
domain specific corpus has been observed to result in improved 
performance across various biomedical information extraction 
tasks [7]. Therefore, in our experiments, we compared the 
performance of a deep learning document classifier using 
word2vec skip-gram learned embeddings from i) a general 
purpose corpus, trained with articles collected by Google News, 
ii) a domain specific corpus in the form of word embeddings 
trained with biomedical publications hosted on PubMed, as well 
as iii) untrained randomly initialized embeddings. Using only 
randomly initialized embeddings, is effectively equivalent to 
performing word feature learning on the available corpus of 
clinical documents. We used Kim’s [16] word vector space of 
300 and trained the PubMed embeddings using the Gensim 
python package [18] but imported pre-trained Google News 
embeddings.  
1) Preprocessing  

After extracting the pathology report text content, we 
tokenized each document by removing all non-alphanumeric 
symbols and setting all alphabetical characters to lowercase. 
Though non-alphanumeric characters can hold semantic 
meaning, in our dataset these symbols are often ambiguous, 
such as a period appearing in both end of a sentence and in a 
decimal number. For the two pre-trained word embeddings, 
tokenized words were matched with their pre-trained 

embedding’s word vector index; if no embedding existed in the 
embeddings vocabulary but the word’s pathology report 
document frequency was at least 2, a new word embedding 
vector would be initialized, otherwise the word would be 
mapped to an embedding vector corresponding to all words 
lacking a unique mapping. The decision to remove all non-
alphanumeric characters as well as the minimum document 
frequency was made after considering the size and text content 
of our dataset and was informed with experimental evidence, 
though we found these preprocessing decisions did not have a 
statistically significant effect on performance. As our network 
is trained, these embedding vectors can be updated via back-
propagated errors, thus making these latent features more task-
specific. A pathology report with n words corresponding to 
word vectors wi ∈ ℝ k can be represented by a document matrix 
A ∈ ℝn×k. To accommodate for documents of multiple lengths 
in our network, we specify a document length parameter n so 
that all documents longer than n will be truncated and 
documents shorter than n will be padded with corresponding 
tokens [15, 16]. 
2) Network Architecture 

In machine learning, a convolution is an automatic feature 
generation technique which processes an input with a trainable 
regional filter. Similar to applications for image processing, we 
can apply a convolutional filter to the document matrix with a 
linear filter with region size h that corresponds to a context 
length of h word vectors. Specifically, we can parameterize a 
linear filter as a weight matrix w with dimensions h×k. A 
context window for matrix A starting from the ith word vector 
of A with length h can be represented by submatrix A[i:i+h-1] 
[15]. A single convolution on the document’s ith word with 
context length h can be denoted as oi = w ∙ A[i:i+h-1] where oi ∈ ℝn-h. Finally, we apply an activation function f with a bias 
term b ∈ ℝ to oi, inducing a single feature map ci = f(oi + b). The 
final output of a convolutional filter over document matrix A 
can be expressed as feature mapping c = {c1, c2…cn}, which is a 
representation of every context window of length h over 
document matrix A [15, 16].  

Through the extraction of all contexts of a particular length, 
our CNN learns to consider contexts of multiple sizes 
simultaneously when classifying a pathology report, producing 
a “feature mapping” to represent each context size. The 
subsequent pooling layer trains the convolutional filter to 
extract a single feature map scalar from each mapping, 
aggregating the selected contexts by concatenation. This 
pooling is a highly efficient form of feature selection which 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Convolutional Neural Network Architecture 
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allows our model to classify documents by learning for every 
convolutional filter which is the most useful context instead of 
learning some direct document abstraction which can be 
difficult to fully develop with datasets of our scale [16]. The 
pooled features connect to a fully connected hidden layer, 
where we aggregate the selected separate convolutional features 
and implement our regularization, including dropout. Our final 
layer is the soft-max (multinomial logistic regression) classifier 
itself. Further regularization was employed on the hidden layer 
with an l2-normalization of weight vectors. Our network 
weights were trained with the Adadelta adaptive gradient 
descent algorithm [16]. 
3) Hyper parameter tuning 

For guidance in tuning the model’s hyper-parameters, we 
used Zhang et al’s CNN sensitivity analysis [15] as a starting 
point. Further, we incrementally adjusted model parameters to 
maximize average class performance (Macro-F). By optimizing 
for Macro-F, we attempted to optimize for algorithm 
generalizability across different labels with varying features 
and numbers of training observations. 

  To accommodate the wide lengths of pathology reports 
while maintaining reasonable network train times, we defined 
the document length input as 1500 words vectors.  In our 
convolutional layer, we used context window sizes of 3, 4 and 
5 along with a Rectified Linear Unit activation function. For our 
pooling strategy, we used max-over time pooling, which selects 
a single context from the document-spanning convolutions to 
present to our final soft-max classifier. Finally, to account for 
class imbalance, we weighed our error costs inversely 
proportional to a class prevalence in the dataset. 
B. Experimental Design 
Experiment 1 - Class Prevalence: We first compared 
performance when the model is developed using data from the 
well populated classes (6 ICD-O-3 classes with a minimum of 
50 pathology reports per class) vs. a model developed using 
data combining the six well-populated classes with six 
minimally-populated classes containing 10-49 pathology 
reports per class. 
 
Experiment 2: Transfer Learning: We investigated the cross-
label learning capabilities of each model by evaluating 
classification performance for each primary site (lung, breast) 
with models trained with only one primary site’s data to models 
trained with the entire dataset. 
C. Comparative Analysis   
In our experiments, we compared the proposed word 
embeddings CNN approach with the baseline NLP approach of 
unigram and bigram term frequency-inverse document 
frequency (TF-IDF) vector space model combined with 
conventional classifiers. This document feature representation 
is considered a standard approach in both the NLP [10, 19] and 
the biomedical informatics information extraction literature 
[20, 21]. Similar to the deep-learning approach, we pre-
processed our pathology report data by removing, all non-
alphabetical and numeric characters, and stop words. We then 
tokenized the processed pathology reports into n-grams of up to 
length 2 and generated an n-gram based term-frequency vector 

for each report while aggregating a training corpus document-
frequency dictionary for each n-gram. Through model 
development experimentation, we concluded that utilizing an n-
gram feature space of 400 resulted in optimal performance 
given our dataset and information extraction task. Therefore, 
we removed all but the top 400 document-occurring n-grams 
from our corpus vocabulary and finalized the pathology report 
feature vector by dividing each report term frequency vectors 
by the corpus document frequency vector. We utilized 
multinomial Naive Bayes (NB), Logistic Regression (LR), and 
Linear Support Vector Machines (SVM) as our baseline ICD-
O-3 topography code classifiers as the literature suggests [19]. 
To address ICD-O-3 topography code class imbalance, we 
trained model parameters weighted inversely proportional to an 
observation’s class representation. For network regularization, 
the optimal dropout rate appeared to be .5, but our l2 normalization appeared to have little impact on performance 
metrics. 
D. Performance Evaluation 
Each of our two experiments contains two classification tasks; 
6-class vs 12-class. We utilize a balanced tenfold cross 
validation scheme by randomly partitioning the dataset into ten 
parts with near balanced label distributions. For each fold we 
use one partition once for testing and combine the rest for our 
training set, evaluating model performance on the combined 
predicted-actual results from each fold. We evaluated each 
model primarily using the standard NLP metrics of micro and 
macro averaged F-scores, the harmonic mean of related metrics 
precision and recall. For each ICD-O-3 topography code Cj from a set of possible code classes in the subtask C, the number 
of class true positives is denoted TPj, class false positives are 
FPj, and class false negatives are positives FNj. We use class-based metrics precision P(Ci), recall R(Ci), and 
F-score F(Ci) defined as 

ەۖ
۔ۖ
ۖۖ
(௜ܥ)ܲۓ = ܶ ௝ܲ

ܶ ௝ܲݏ + ܨ  ௝ܲ
(௜ܥ)ܴ = ܶ ௝ܲ

ܶ ௝ܲ  + ܨ  ௝ܰ
(௜ܥ)ܨ = (௜ܥ)ܴ(௜ܥ)2ܲ

(௜ܥ)ܲ  + (௜ܥ)ܴ 

 (2) 

Micro-averaged metrics are defined as 

ەۖ

۔ۖ
ۖۖ
௠௜௖௥௢ܲۓ = ∑ ܶ ௝ܲ࡯஼ೕ

∑ (ܶ ௝ܲ + ܨ  ௝ܲ)࡯஼ೕ

ܴ௠௜௖௥௢ = ∑ ܶ ௝ܲ࡯஼ೕ
∑ (ܶ ௝ܲ + ܨ  ௝ܰ)࡯஼ೕ

௠௜௖௥௢ܨ = 2ܲ௠௜௖௥௢ܴ௠௜௖௥௢
ܲ௠௜௖௥௢  + ܴ௠௜௖௥௢

 (3) 

Macro-averaged metrics are defined as 

ەۖ
۔ۖ
ۖۖ
௠௔௖௥௢ܲۓ = 1

|࡯| ∙ ෍ ࡯(௝ܥ)ܲ
஼ೕ

ܴ௠௔௖௥௢ = 1
|࡯| ∙ ෍ ࡯(௝ܥ)ܴ

஼ೕ

௠௔௖௥௢ܨ = 1
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஼ೕ

 (4) 
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In summary, micro-averaged metrics have class representation 
roughly proportional to their test set representation, whereas 
macro-averaged metrics are averaged by class without 
weighing by class prevalence [20]. Since micro averaged 
precision, recall, and F-scores are equivalent for multiclass 
single-label tasks [24], we will use both the micro and macro F-
score metric and only the macro average for the recall and 
precision metrics.   

III. RESULTS 
A. Class Prevalence 
Table III shows the performance metrics of the first experiment 
comparing model performance with a minimally-populated 12 
class task compared to a well-populated 6 class task. The Table 
includes 95% confidence intervals for each performance metric, 
derived using bootstrapping. The proposed CNN classifier 
consistently performed better than the vector-space models in 
both the minimally populated classification subtask and the 
well-populated classification subtask. The TF-IDF approaches 
averaged micro- and macro-F scores at 0.639 and 0.259 
respectively and the CNN approaches averaged micro- and 
macro-F at 0.713 and 0.368 for the minimally populated task. 
The TF-IDF approaches averaged micro- and macro-F scores at 

0.728 and 0.554 respectively and the CNN approaches averaged 
micro- and macro-F scores at 0.804 and 0.692 for the well 
populated task. CNNs consistently outperformed all TF-IDF 
approaches. Although, the CNN performance metrics were 
consistently higher than those achieved by SVM, most 
differences were not statistically significant with the exception 
of Macro-F. 

Figures 2,3,4,5 compare the aggregated normalized 
confusion matrices for the highest Macro-F scoring model from 
each approach in the minimally populated classification subtask 
and the well-populated classification subtask. The true-positive 
diagonal has been identified with a black line. False-positives 
are indicated on the vertical axis and false-negatives on the 
horizontal. From this, we see that the CNN approaches predict 
fewer false positives for the C34.9 and C50.9 classes, 
particularly for the breast classes in the well populated task. 
B. Transfer Learning 

Table IV shows the performance metrics of the second 
experiment comparing separate breast and lung classification 
performance for primary site models trained on data split by 
primary site compared to a joint primary site classifier. For the 
TF-IDF methods, joint training appears to slightly decrease the 
micro- and macro-F scores. The opposite trend was observed 

TABLE III 
EXPERIMENT I – CLASS PREVELANCE RESULTS 

 
Minimally Populated – Class Count >10 – 12 ICD-O-3 topography code classes 

Approach Micro-F Avg Macro-F Avg Macro-P Macro-R 

TF-IDF 
Naïve Bayes (NB) 0.591 

(0.561,0.622) 
0.639 

0.222 
(0.207,0.239) 

0.259 

0.234 
(0.217,0.251) 

0.225 
(0.207,0.239) 

Logistic Regression (LR) 0.654 
(0.627,0.688) 

0.263 
(0.250,0.281) 

0.278 
(0.255,0.294) 

0.280 
(0.266,0.294) 

Support Vector Machine (SVM) 0.672 
(0.639,0.700) 

0.291 
(0.273,0.303) 

0.291 
(0.276,0.300) 

0.302 
(0.286,0.315) 

CNN 
Google News pre-trained 0.705 

(0.674,0.735) 
0.713 

0.342 
(0.324,0.372) 

0.368 

0.353 
(0.323,0.372) 

0.358 
(0.334,0.374) 

PubMed pre-trained 0.713 
(0.676,0.737) 

0.389 
(0.338,0.411) 

0.399 
(0.359,0.421) 

0.407 
(0.360,0.432) 

No pre-training 0.722 (0.682,0.740) 
0.372 

(0.334,0.409) 
0.372 

(0.347,0.415) 
0.393 

(0.359,0.422) 
Well Populated – Class Count > 50 - 6 ICD-O-3 topography code classes 

Approach Micro-F Avg Macro-F Avg Macro-P Macro-R 

TF-IDF 
Naïve Bayes (NB) 0.679 

(0.655,0.718) 
0.728 

0.475 
(0.452,0.525) 

0.554 

0.500 
(0.471,0.523) 

0.500 
(0.472,0.525) 

Logistic Regression (LR) 0.744 
(0.722,0.774) 

0.546 
(0.539,0.612) 

0.587 
(0.540,0.612) 

0.552 
(0.521,0.570) 

Support Vector Machine (SVM) 0.760 
(0.745,0.802) 

0.640 
(0.600,0.672) 

0.684 
(0.633,0.723) 

0.625 
(0.580,0.651) 

CNN 
Google News pre-trained 0.794 

(0.756,0.815) 
0.804 

0.687 
(0.637,0.708) 

0.687 

0.727 
(0.671,0.772) 

0.692 
(0.667,0.738) 

PubMed pre-trained 0.797 
(0.761,0.817) 

0.688 
(0.640,0.712) 

0.733 
(0.672,0.779) 

0.695 
(0.656,0.723) 

No pre-training 0.811 
(0.762,0.829) 

0.701 
(0.642,0.723) 

0.737 
(0.679,0.781) 

0.707 
(0.649,0.733) 
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for CNN with joint training resulting in a slight but consistent 
improvement across embeddings methods and cancer sites. 
Notable improvement was observed for Breast ICD-O-3 codes; 
the embeddings without pre-training resulted in substantial 
performance increases with micro- and macro-F scores of 0.685 
and 0.265 respectively compared to 0.631 and 0.193 for split 
training. For Lung ICD-O-3 codes the PubMed corpus appeared 
to be superior with joint training resulting in micro- and macro-
F scores of 0.782 and 0.606 respectively. and 0.501 and 0.606 
for split and joint training respectively. For the breast codes 
with split training, the Google News embeddings performed 
best with micro-F scores of 0.644 and macro-F scores of 0.213; 
the embeddings without pre-training resulted in substantial 
performance increases in breast class with joint training 
resulting in micro-F scores of .685 and macro-F scores of 0.265. 
Overall, this experiment demonstrated the potential benefits of 
CNN joint training by transferring learning across primary 
cancer sites although the general trend appeared to be 
contingent upon the cancer site and the embeddings training 
method. 

IV. DISCUSSION  
Based on the performance metrics shown in tables III and IV, 
we see that the word-vector representation with CNN classifier 
performs consistently better than conventional TF-IDF 
approaches on every metric, particularly macro-F. It is notable 
that the most commonly occurring ICD-O-3 topography labels 

C50.9 and C34.9 correspond to a breast or lung tumor in 
location ‘Not Otherwise Specified’. The normalized confusion 
matrices show how class imbalance and label ambiguity result 
in frequent false-positives for the TF-IDF feature 
representation, even for the well populated classes. Although 
the CNN improvements over macro-F scores resulted from 
improved performance in classifying well populated codes with 
less than 50 examples (as illustrated in Figures 2-5), poor 
performance in classifying rare topographic codes in the 
minimally populated subtask demonstrates the well-known 
need for sufficient labeled training data when using deep 
learning.  

In our experiments, we observed that none of the word vector 
pre-training approaches consistently outperformed the others, 
though in some specific tasks, one pre-training approach may 
perform best within that task. For example, compared to the 
other pre-training approaches, the PubMed embeddings 
achieved the highest performance metrics for both the joint-
trained and split-trained lung classification tasks, but performed 
second-best in the breast classification task to the Google News 
embeddings for split training and the no-pretraining, 
embeddings for joint training. Though other researchers 
identified performance increases from using domain specific or 
pre-trained embeddings over randomized embeddings [4, 14]. 
Our labeled dataset’s comparatively small size, class 

    Fig. 2.  Normalized Confusion Matrix for Support Vector Machine 
Minimally Populated Task 

Fig. 3. Normalized Confusion Matrix for CNN with PubMed Word Vectors 
Minimally Populated Task 

 
 

           Fig. 4.  Normalized Confusion Matrix for Support Vector Machine 
Well Populated Task 

Fig. 5. Normalized Confusion Matrix for CNN with Untrained Word Vectors Well 
Populated Task 

 



2168-2194 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2700722, IEEE Journal of
Biomedical and Health Informatics

JBHI-00761-2016.R1 

distribution, or merely the pathology report’s unique language 
style may be the cause. To explore this, we attempted to utilize 
n-grams derived from a PubMed corpus as features [23]. All our 
TF-IDF classifiers performed equally poorly for both 
classification tasks, with dramatically low micro-F and macro-
F scores, indicating an inability for this representation to 
meaningfully differentiate between our pathology reports 
(detailed results not shown here due to inferior performance). 
Finally, although we did not observe consistent performance 
superiority among the pre-training CNN approaches, we can 
distinguish word embeddings’ ability to transfer information 
across corpuses while maintaining adequate representation of 
the data. 

In our experiments, the various implementation parameters 
such as the CNN optimal filter window size, the minimum 
number of word occurrences required for a unique embedding 
vector, and the exclusion of non-alphanumeric characters were 
set based literature recommendations that seemed intuitively 
appropriate for the specific task [15]. For example, despite 
using entire pathology reports as network inputs, we found the 
CNN filter window sizes of 3, 4 and 5 used in sentence 
classification were still effective. This may be task related, as it 
seems probable that topographical code may be inferred from 
such a small context. To set the minimum number of word 
occurrences required for a unique embedding vector, we 
empirically investigated a range of 1 to 5. We observed that 
using a minimum document frequency parameter of 2 worked 
well across all tasks and word embeddings methods, although 
the differences were not statistically significant. Similarly, with 
respect to the inclusion or exclusion of non-alphanumeric 

characters, there was no statistical significance among the 
various performance metrics. Previous deep learning NLP 
experiments using less domain-specific training sets have 
retained non-alphanumeric characters as individual punctuation 
tokens with individual embedding vectors [15]. However, we 
chose to exclude the non-alphanumeric characters since they 
tend to be ambiguous in pathology reports.  Although the above 
implementation decisions had marginal effects on classifier 
performance, it remains unclear if our observations are a result 
of the writing style of the pathology reports, the particular 
information extraction task, or merely just because of the 
relatively low number of training observations. 

A possible limitation in our study is that our corpus included 
pathology reports for which the ground truth was sourced only 
using the final diagnosis section of the report. To better 
understand the impact of our case selection criterion, we 
performed a set of additional experiments comparing the 
performance of our original final-diagnosis-only trained CNNs 
against networks trained with an additional 144 pathology 
reports with ICD-O-3 labels sourced from outside the final 
diagnosis section (e.g., synoptic report, clinical history). The 
12-class prevalence was similar to the one in the original 
dataset. In a series of cross-validation experiments, we 
observed that the reported trends remained consistent. Although 
several differences were noted, none of them turn out to be 
statistically significant.  This finding suggests that the CNN 
approaches are fairly robust.  

Although the training data used for these experiments was 
small relative to the total volume and variety of pathology 
reports used in state and national cancer surveillance, and the 

TABLE IV 
EXPERIMENT 2 – TRANSFER LEARNING RESULTS 

Split Trained – 7 Breast and 5 Lung ICD-O-3 Topography Code Classes 
                          Breast Generic Site - 7 ICD-O-3 Classes Lung Generic Site - 5 ICD-O-3 Classes 

Approach Micro-F Macro-F Macro-P Macro-R Micro-F Macro-F Macro-P Macro-R 

TF-IDF 
NB 0.573 0.182 0.170 0.203 0.638 0.339 0.415 0.357 
LR 0.590 0.143 0.174 0.163 0.737 0.438 0.477 0.443 

SVM 0.618 0.191 0.186 0.204 0.774 0.509 0.500 0.590 

CNN 
GNews 0.644 0.213 0.218 0.236 0.765 0.473 0.461 0.494 
PubMed 0.631 0.205 0.221 0.226 0.781 0.501 0.488 0.531 

No pre-training 0.631 0.193 0.185 0.217 0.772 0.481 0.475 0.503 
Joint Trained – 12 ICD-O-3 Topography Code Classes 

                          Breast Generic Site - 7 ICD-O-3 Classes Lung Generic Site - 5 ICD-O-3 Classes 
Approach Micro-F Macro-F Macro-P Macro-R Micro-F Macro-F Macro-P Macro-R 

TF-IDF 
NB 0.564 0.168 0.162 0.184 0.620 0.301 0.411 0.340 
LR 0.586 0.143 0.161 0.161 0.727 0.440 0.461 0.446 

SVM 0.602 0.168 0.160 0.184 0.751 0.472 0.478 0.479 

CNN 
GNews 0.643 0.241 0.266 0.255 0.774 0.485 0.476 0.502 
PubMed 0.653 0.234 0.254 0.256 0.782 0.606 0.602 0.619 

No pre-training 0.685 0.265 0.266 0.291 0.764 0.522 0.520 0.535 
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primary site variable is relatively well-characterized, this work 
was an important first step in applying deep learning NLP 
methods to assist the work of cancer registries cancer. Work is 
underway to obtain a larger set of training and validation data 
from cancer registries to expand the scale and scope of this 
approach. 

V. CONCLUSION 
We performed a set of experiments comparing the ICD-O-3 
topographical information extraction performance of a 
temporal convolutional network against a more traditional TF-
IDF classifier approach over varying datasets of pathology 
reports. We observed that consistently the CNN outperformed 
the more traditional classifier, peaking at a micro-F score of 
0.811 and a macro-F score of 0.701 for the 6-class task and 
achieving an overall micro-F score of 0.722 and a macro-F 
score of 0.389 for the 12-class task.  We also tested how pre-
trained word embeddings features on differing corpora can 
influence performance on certain subtasks. Our results 
suggested that for the information extraction problem with 
well-populated classes randomized embeddings lead to superior 
performance. However, when the classification task included 
classes with low prevalence, pre-trained embeddings achieved 
better performance. 
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