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Abstract— Pathology reports are a primary source of
information for cancer registries which process high
volumes of free-text reports annually. Information
extraction and coding is a manual, labor-intensive process.
In this study we investigated deep learning and a
convolutional neural network (CNN), for extracting ICD-
0-3 topographic codes from a corpus of breast and lung
cancer pathology reports. We performed two experiments,
using a CNN and a more conventional term frequency
vector approach, to assess the effects of class prevalence and
inter-class transfer learning. The experiments were based
on a set of 942 pathology reports with human expert
annotations as the gold standard. CNN performance was
compared against a more conventional term frequency
vector space approach. We observed that the deep learning
models consistently outperformed the conventional
approaches in the class prevalence experiment, resulting in
micro and macro-F score increases of up to 0.132 and 0.226
respectively when class labels were well populated.
Specifically, the best performing CNN achieved a micro-F
score of 0.722 over 12 ICD-O-3 topography codes. Transfer
learning provided a consistent but modest performance
boost for the deep learning methods but trends were
contingent on CNN method and cancer site. These
encouraging results demonstrate the potential of deep
learning for automated abstraction of pathology reports.

Index Terms—deep learning, convolutional neural network,
natural language processing, information extraction, pathology
reports, primary cancer site.
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[. INTRODUCTION

ancer is the second leading cause of death in the United

States [1]. Over the course of a cancer patient’s diagnosis

and treatment, pathologists record highly descriptive and
specific observations of cells and tissues in pathology reports.
Because these individualized yet mass produced clinical reports
are encoded in mostly unstructured text, the potential
accessibility of vast amounts of data is contingent on the
performance of natural language processing (NLP) tools for
automated information extraction [2].

Cancer registries process a very high volume of pathology
reports, hundreds of thousands in the Surveillance,
Epidemiology and End Results (SEER) registries alone, which
cover 30% of US population [3]. These reports are highly
variable, as they come from hundreds of healthcare providers
and laboratories. There are also data quality issues due to
human fatigue, differences in interpretation and application of
coding rules, etc. Moreover, the clinical details from pathology
and other reports that are needed to characterize cancer patient
trajectories are increasing as patients live longer and have more
complex treatments. At this scale, manual information
extraction and coding is expensive to sustain, and registries are
unlikely to address issues of volume, variability, and timeliness
of reporting without some automation.

Since the registries have access to high volumes of electronic
pathology reports and coded variables extracted from those
reports, a machine learning approach to feature and classifier
development could offer an effective path for registries to
implement automation using artificial intelligence for
information extraction and coding. For cancer registries, an
important piece of information in a pathology report is the
corresponding ICD-O-3 topographical code, which describes
the specific anatomical site of a tumor’s origin [4]. Although
multiple sites may be mentioned in a pathology report, for the
most part, only one primary site is discussed per report.
Extraction and coding of primary sites by ICD-O-3
topographical codes provides a well-documented starting point
for exploration of deep learning NLP techniques to support
cancer surveillance.

Within the biomedical informatics literature, NLP
approaches for information extraction range from strictly
defined, manually tuned rule-based systems [5], to generalized
and domain-specific systems relying on feature-based machine
learning classifiers [6], to recent deep learning approaches for
both automated feature development [7] and supervised
classifier models [8]. Though these prior techniques have
individually demonstrated effective performance within their
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own experiments, a systematic comparison of methods across
varying distributions of clinical documents has yet to be
studied.

Since 1971, Vector Space Models (VSM) utilizing term and
document frequency counts as automatic document feature
extractors have been used to retrieve information from a corpus
of documents [9, 10]. Recent deep learning applications for
NLP have resulted in great progress for both automated feature
extraction and classification tasks. Multilayered neural
networks extend automated feature extraction techniques
beyond document-level representation to a machine learned
latent vector space representation for words. These word-level
learned features do not need to be task specific, as word training
has been performed on unlabeled but vast corpora such as
Wikipedia or a national periodical such as the Wall Street
Journal [11]. These learned word features are called “word
embeddings” and like document VSMs, attempt to capture
semantic information via observed similarities in word
contexts. This completely automated and generalized approach
nonetheless resulted in state-of-the-art performance in NLP
benchmark subtasks against even highly engineered task-
specific prior techniques [11]. Researchers have investigated
techniques for making this feature extraction more task-specific
with either word pre-training on a domain specific corpus [7,
12] or by simultaneously learning latent word features
alongside a particular class task [11]. Previous deep learning
approaches focused on the sequential nature of text data with
recurrent networks [22] or encoding documents into individual
latent feature vectors [13]. Such approaches focus mainly on
documents-wide attributes, such as form and structure.
Convolutional neural networks (CNN), initially developed for
computer vision [14] and subsequently applied to NLP
applications [15], demonstrated superior performance for
document-level information extraction and classification
utilizing word embeddings [16]. Specifically, the CNN'’s
convolving filters and max-over time pooling scheme result in
a highly effective document feature extraction and selection
[16], which greatly improve upon the traditional VSM'’s
limitations of a sparse high dimensionality feature space and
inability to directly utilize word order.

In this paper, we investigate the performance of these recent
deep learning NLP techniques for extracting ICDs-O-3 codes
by conducting two experiments. First, we examine the effect of
dataset size and class imbalance on classifier performance.
Therefore, our first experiment uses a dataset with only well-
populated classes and an expanded dataset including both well
and minimally populated classes. In the second experiment, we
explore the learning tradeoffs of increased data specificity
versus increased data size. We partition our data by primary
organ site and evaluate classifier performance against
classifiers trained across primary sites.

The manuscript is organized as follows: Section II discusses
our dataset used in the information extraction task and describes
our model and our experimental procedure in detail. Section III
presents our experimental results which we discuss in Section
V.

TABLE I
ICD-0-3 TOPOGRAPHICAL CODES

Code Count  Description
C340 26 Main Bronchus
C34.1 139 Upper lobe, lung
C342 11 Middle lobe, lung
C343 78 Lower lobe, lung
C349 191 Lung, NOS
C50.1 13 Central portion of breast
C50.2 36 Upper-inner quadrant of breast
C503 10 Lower-inner quadrant of breast
C50.4 63 Upper-outer quadrant of breast
C50.5 21 Lower-outer quadrant of breast
C50.8 62 Overlapping lesion of breast
C50.9 292 Breast NOS
TABLE II
PATHOLOGY REPORT ORIGIN REPOSITORY

Repository  Breast (C50) Lung (C34)

HI 109 102

KY 96 105

NM 131 113

CT 44 32

Seattle 117 93

II. MATERIALS AND METHODS

A. Pathology Dataset

Our analysis used a corpus of 942 de-identified pathology
reports matched to 12 ICD-O-3 topography codes
corresponding to 7 breast and 5 lung primary sites. For 6 ICD-
0-3 codes the dataset included at least 50 observations per code
but the remaining 6 ICD-0-3 codes were minimally populated
with at least 10 but less than 50 observations per code. Table I
describes the 12 topography codes and the corresponding
observation count per code included in the database.

The pathology reports were provided from five different
SEER cancer registries (CT, HI, KY, NM, Seattle) with the
proper IRB-approved protocol. Cancer registry experts
manually annotated all pathology reports based on standard
guidelines and coding instructions used in cancer surveillance.
Their annotations served as the gold standard. For label
consistency in our training set, we only used pathology reports
with a single topography code sourced only from the “Final
Diagnosis” section of the report to minimize variation in our
training data, though we investigated further the robustness of
our findings when including reports with ground truth labels
sourced from other report sections (i.e., e.g. Clinical History,
Microscopic Description, Clinical Information). Since some
report sections available in each pathology report vary across
pathology labs and registries, we aggregated the text content of
every section in the pre-processing phase. The average length
of the reports was 469 words. Table II includes the number and
types of pathology reports provided by each SEER registry.

B. Vector Space Models and Word-Feature Training
With VSMs, documents within a corpus are encoded with a
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feature vector based on word counts, also known as the ‘bag of
words’ feature representation [10]. For decades, this
conceptually simple and relatively effective document
representation was the basis for many NLP tasks, particularly
information retrieval and extraction [8, 9]. Likewise, word
embedding approaches use observed similarities to derive
meaning from word occurrence. Unlike VSMs, word
embeddings are learned representations of words rather than
observed representations of documents, and are trained with
temporal context windows utilizing deep learning feature
development techniques. The word vector representation is
expressed as the following: given a sequence of words x;, x>,
...Xs, there are corresponding word vectors w;, wy, ..., wr where
w; € R [15]. One recent approach to training word vectors is
Mikolov’s word2vec skip-gram method, in which vectors are
initialized randomly and a corpus’s word vectors values are
trained by generating contexts for the corpus words and
maximizing the following objective function for a context
containing word w;:

%ZT: Z log p(We4jlwy) (1)

t=1 —csjsc,j#0

where c is the size of the training context w;, wy, ..., wrand p is
the hierarchical softmax function [17] In essence, word vectors
are trained to predict the text context in which they are likely to
appear. In practice, word embeddings are trained by
stochastically traversing a corpora’s contexts, building an
embedding matrix W € Rk where k is the pre-specified
dimensionality for the vector space for learning embeddings,
and v being the number of learned vectors, effectively
corresponding to a vocabulary size.

Since trained word vectors trained to represent a word’s
locality within a corpus, training word vectors with a different
corpus can capture varying word meanings Using a more
domain specific corpus has been observed to result in improved
performance across various biomedical information extraction
tasks [7]. Therefore, in our experiments, we compared the
performance of a deep learning document classifier using
word2vec skip-gram learned embeddings from i) a general
purpose corpus, trained with articles collected by Google News,
ii) a domain specific corpus in the form of word embeddings
trained with biomedical publications hosted on PubMed, as well
as iii) untrained randomly initialized embeddings. Using only
randomly initialized embeddings, is effectively equivalent to
performing word feature learning on the available corpus of
clinical documents. We used Kim’s [16] word vector space of
300 and trained the PubMed embeddings using the Gensim
python package [18] but imported pre-trained Google News
embeddings.

1) Preprocessing

After extracting the pathology report text content, we
tokenized each document by removing all non-alphanumeric
symbols and setting all alphabetical characters to lowercase.
Though non-alphanumeric characters can hold semantic
meaning, in our dataset these symbols are often ambiguous,
such as a period appearing in both end of a sentence and in a
decimal number. For the two pre-trained word embeddings,
tokenized words were matched with their pre-trained

HOH &
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Fig. 1. Convolutional Neural Network Architecture
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embedding’s word vector index; if no embedding existed in the
embeddings vocabulary but the word’s pathology report
document frequency was at least 2, a new word embedding
vector would be initialized, otherwise the word would be
mapped to an embedding vector corresponding to all words
lacking a unique mapping. The decision to remove all non-
alphanumeric characters as well as the minimum document
frequency was made after considering the size and text content
of our dataset and was informed with experimental evidence,
though we found these preprocessing decisions did not have a
statistically significant effect on performance. As our network
is trained, these embedding vectors can be updated via back-
propagated errors, thus making these latent features more task-
specific. A pathology report with n words corresponding to

word vectors w; € [1 ¥ can be represented by a document matrix

A € [1"**. To accommodate for documents of multiple lengths

in our network, we specify a document length parameter n so
that all documents longer than » will be truncated and
documents shorter than n will be padded with corresponding
tokens [15, 16].

2) Network Architecture

In machine learning, a convolution is an automatic feature
generation technique which processes an input with a trainable
regional filter. Similar to applications for image processing, we
can apply a convolutional filter to the document matrix with a
linear filter with region size /4 that corresponds to a context
length of 2 word vectors. Specifically, we can parameterize a
linear filter as a weight matrix w with dimensions Axk A
context window for matrix A starting from the ith word vector
of A with length / can be represented by submatrix A/i:i+h-1]
[15]. A single convolution on the document’s ith word with
context length 4 can be denoted as o; = w * Afi:i+h-1] where o;
€ R=h. Finally, we apply an activation function f with a bias
term b € Rto o; inducing a single feature map c; = f{o;+ b). The
final output of a convolutional filter over document matrix 4
can be expressed as feature mapping ¢ = {c;, ¢2..c,}, which is a
representation of every context window of length % over
document matrix 4 [15, 16].

Through the extraction of all contexts of a particular length,
our CNN learns to consider contexts of multiple sizes
simultaneously when classifying a pathology report, producing
a “feature mapping” to represent each context size. The
subsequent pooling layer trains the convolutional filter to
extract a single feature map scalar from each mapping,
aggregating the selected contexts by concatenation. This
pooling is a highly efficient form of feature selection which
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allows our model to classify documents by learning for every
convolutional filter which is the most useful context instead of
learning some direct document abstraction which can be
difficult to fully develop with datasets of our scale [16]. The
pooled features connect to a fully connected hidden layer,
where we aggregate the selected separate convolutional features
and implement our regularization, including dropout. Our final
layer is the soft-max (multinomial logistic regression) classifier
itself. Further regularization was employed on the hidden layer
with an /l-normalization of weight vectors. Our network
weights were trained with the Adadelta adaptive gradient
descent algorithm [16].

3) Hyper parameter tuning

For guidance in tuning the model’s hyper-parameters, we
used Zhang et al’s CNN sensitivity analysis [15] as a starting
point. Further, we incrementally adjusted model parameters to
maximize average class performance (Macro-F). By optimizing
for Macro-F, we attempted to optimize for algorithm
generalizability across different labels with varying features
and numbers of training observations.

To accommodate the wide lengths of pathology reports
while maintaining reasonable network train times, we defined
the document length input as 1500 words vectors. In our
convolutional layer, we used context window sizes of 3, 4 and
5 along with a Rectified Linear Unit activation function. For our
pooling strategy, we used max-over time pooling, which selects
a single context from the document-spanning convolutions to
present to our final soft-max classifier. Finally, to account for
class imbalance, we weighed our error costs inversely
proportional to a class prevalence in the dataset.

B. Experimental Design

Experiment 1 - Class Prevalence: We first compared
performance when the model is developed using data from the
well populated classes (6 ICD-0-3 classes with a minimum of
50 pathology reports per class) vs. a model developed using
data combining the six well-populated classes with six
minimally-populated classes containing 10-49 pathology
reports per class.

Experiment 2: Transfer Learning: We investigated the cross-
label learning capabilities of each model by evaluating
classification performance for each primary site (lung, breast)
with models trained with only one primary site’s data to models
trained with the entire dataset.

C. Comparative Analysis

In our experiments, we compared the proposed word
embeddings CNN approach with the baseline NLP approach of
unigram and bigram term frequency-inverse document
frequency (TF-IDF) vector space model combined with
conventional classifiers. This document feature representation
is considered a standard approach in both the NLP [10, 19] and
the biomedical informatics information extraction literature
[20, 21]. Similar to the deep-learning approach, we pre-
processed our pathology report data by removing, all non-
alphabetical and numeric characters, and stop words. We then
tokenized the processed pathology reports into n-grams of up to
length 2 and generated an n-gram based term-frequency vector

for each report while aggregating a training corpus document-
frequency dictionary for each n-gram. Through model
development experimentation, we concluded that utilizing an »-
gram feature space of 400 resulted in optimal performance
given our dataset and information extraction task. Therefore,
we removed all but the top 400 document-occurring n-grams
from our corpus vocabulary and finalized the pathology report
feature vector by dividing each report term frequency vectors
by the corpus document frequency vector. We utilized
multinomial Naive Bayes (NB), Logistic Regression (LR), and
Linear Support Vector Machines (SVM) as our baseline ICD-
0-3 topography code classifiers as the literature suggests [19].
To address ICD-O-3 topography code class imbalance, we
trained model parameters weighted inversely proportional to an
observation’s class representation. For network regularization,
the optimal dropout rate appeared to be .5, but our />
normalization appeared to have little impact on performance
metrics.

D. Performance Evaluation

Each of our two experiments contains two classification tasks;
6-class vs 12-class. We utilize a balanced tenfold cross
validation scheme by randomly partitioning the dataset into ten
parts with near balanced label distributions. For each fold we
use one partition once for testing and combine the rest for our
training set, evaluating model performance on the combined
predicted-actual results from each fold. We evaluated each
model primarily using the standard NLP metrics of micro and
macro averaged F-scores, the harmonic mean of related metrics
precision and recall. For each ICD-O-3 topography code C;
from a set of possible code classes in the subtask C, the number
of class true positives is denoted 7P}, class false positives are
FP;, and class false negatives are positives FN,.

We use class-based metrics precision P(C;), recall R(C;), and
F-score F(C;) defined as

PC)= ——
Y7 TPs + FP
R(C) & 2
1" T TR+ FN, @
2P(CHR(C;
pcy = PR
P(Cy) + R(Cy)
Micro-averaged metrics are defined as
. Y¢ TP
pmicro — = J
X¢(TP, + FP)
C .
3 Rmicra — ch TP] _ (3)
& (TP + FN)
meicro Rmicro
Fmicro —
pmicro 4 Rmicro
Macro-averaged metrics are defined as
1 c
pmacro =_,Z P(C;
el L@
c
LRmaero =Y R(G) )
J
1 c
Fmacro — ___, F(C
el L@
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TABLE III
EXPERIMENT I — CLASS PREVELANCE RESULTS
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Minimally Populated — Class Count >10 — 12 ICD-0-3 topography code classes

Approach Micro-F Avg Macro-F Avg Macro-P Macro-R
. 0.591 0.222 0.234 0.225
Naive Bayes (NB) (0.561,0.622) (0.207,0.239) (0217,0251)  (0.207,0.239)
. . 0.654 0.263 0.278 0.280
TE-IDF Logistic Regression (LR) 0.627.0688) 23 (02500281) %% (0.255.0294) (0.266,0.294)
. 0.672 0.291 0.291 0.302
Support Vector Machine (SVM) ) 539  700) (0.273,0.303) (0.276,0.300) (0.286,0.315)
Gooale News oro-trained 0.705 0342 0353 0.358
g P (0.674,0.735) (0.324,0.372) (0323,0372) (0.334,0.374)
‘ 0.713 0.389 0.399 0.407
CNN PubMed pre-trained 06760737 713 (03380411) 030 (03590421) (0.360,0432)
Ne re-trainin 0.722 0372 0.372 0.393
P g (0.682,0.740) (0.334,0.400) (0.347,0415)  (0.359,0.422)
Well Populated — Class Count > 50 - 6 ICD-O-3 topography code classes
Approach Micro-F Avg Macro-F Avg Macro-P Macro-R
. 0.679 0.475 0.500 0.500
Naive Bayes (NB) (0.655,0.718) (0.452,0.525) (0.471,0.523)  (0.472,0.525)
. . 0.744 0.546 0.587 0.552
TE-IDE Logistic Regression (LR) 0.722,0774) %728 (0530,0612) 9% (0.540,0.612) (0.521,0.570)
. 0.760 0.640 0.684 0.625
Support Vector Machine (SVM) 745 302 (0.600,0.672) (0.633,0.723)  (0.580,0.651)
Gooalo Nows ororained 0.794 0.687 0.727 0.692
g P (0.756,0.815) (0.637,0.708) (0.671,0.772)  (0.667,0.738)
‘ 0.797 0.688 0.733 0.695
CNN PubMed pre-trained 0.761,0817) %89 (06400712 %087 (0.672,0779) (0.656,0.723)
No oretrainin 0.811 0.701 0.737 0.707
P g (0.762,0.829) (0.642,0.723) (0.679,0.781) (0.649,0.733)

In summary, micro-averaged metrics have class representation
roughly proportional to their test set representation, whereas
macro-averaged metrics are averaged by class without
weighing by class prevalence [20]. Since micro averaged
precision, recall, and F-scores are equivalent for multiclass
single-label tasks [24], we will use both the micro and macro F-
score metric and only the macro average for the recall and
precision metrics.

III. RESULTS

A. Class Prevalence

Table I1I shows the performance metrics of the first experiment
comparing model performance with a minimally-populated 12
class task compared to a well-populated 6 class task. The Table
includes 95% confidence intervals for each performance metric,
derived using bootstrapping. The proposed CNN classifier
consistently performed better than the vector-space models in
both the minimally populated classification subtask and the
well-populated classification subtask. The TF-IDF approaches
averaged micro- and macro-F scores at 0.639 and 0.259
respectively and the CNN approaches averaged micro- and
macro-F at 0.713 and 0.368 for the minimally populated task.
The TF-IDF approaches averaged micro- and macro-F scores at

0.728 and 0.554 respectively and the CNN approaches averaged
micro- and macro-F scores at 0.804 and 0.692 for the well
populated task. CNNs consistently outperformed all TF-IDF
approaches. Although, the CNN performance metrics were
consistently higher than those achieved by SVM, most
differences were not statistically significant with the exception
of Macro-F.

Figures 2,3,4,5 compare the aggregated normalized
confusion matrices for the highest Macro-F scoring model from
each approach in the minimally populated classification subtask
and the well-populated classification subtask. The true-positive
diagonal has been identified with a black line. False-positives
are indicated on the vertical axis and false-negatives on the
horizontal. From this, we see that the CNN approaches predict
fewer false positives for the C34.9 and C50.9 classes,
particularly for the breast classes in the well populated task.

B. Transfer Learning

Table IV shows the performance metrics of the second
experiment comparing separate breast and lung classification
performance for primary site models trained on data split by
primary site compared to a joint primary site classifier. For the
TF-IDF methods, joint training appears to slightly decrease the
micro- and macro-F scores. The opposite trend was observed
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for CNN with joint training resulting in a slight but consistent
improvement across embeddings methods and cancer sites.
Notable improvement was observed for Breast ICD-O-3 codes;
the embeddings without pre-training resulted in substantial
performance increases with micro- and macro-F scores of 0.685
and 0.265 respectively compared to 0.631 and 0.193 for split
training. For Lung ICD-0-3 codes the PubMed corpus appeared
to be superior with joint training resulting in micro- and macro-
F scores of 0.782 and 0.606 respectively. and 0.501 and 0.606
for split and joint training respectively. For the breast codes
with split training, the Google News embeddings performed
best with micro-F scores of 0.644 and macro-F scores 0f0.213;
the embeddings without pre-training resulted in substantial
performance increases in breast class with joint training
resulting in micro-F scores of .685 and macro-F scores of 0.265.
Overall, this experiment demonstrated the potential benefits of
CNN joint training by transferring learning across primary
cancer sites although the general trend appeared to be
contingent upon the cancer site and the embeddings training
method.

IV. DISCUSSION

Based on the performance metrics shown in tables III and IV,
we see that the word-vector representation with CNN classifier
performs consistently better than conventional TF-IDF
approaches on every metric, particularly macro-F. It is notable
that the most commonly occurring ICD-O-3 topography labels
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Fig. 3. Normalized Confusion Matrix for CNN with PubMed Word Vectors
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C50.9 and C34.9 correspond to a breast or lung tumor in
location ‘Not Otherwise Specified’. The normalized confusion
matrices show how class imbalance and label ambiguity result
in frequent false-positives for the TF-IDF feature
representation, even for the well populated classes. Although
the CNN improvements over macro-F scores resulted from
improved performance in classifying well populated codes with
less than 50 examples (as illustrated in Figures 2-5), poor
performance in classifying rare topographic codes in the
minimally populated subtask demonstrates the well-known
need for sufficient labeled training data when using deep
learning.

In our experiments, we observed that none of the word vector
pre-training approaches consistently outperformed the others,
though in some specific tasks, one pre-training approach may
perform best within that task. For example, compared to the
other pre-training approaches, the PubMed embeddings
achieved the highest performance metrics for both the joint-
trained and split-trained lung classification tasks, but performed
second-best in the breast classification task to the Google News
embeddings for split training and the no-pretraining,
embeddings for joint training. Though other researchers
identified performance increases from using domain specific or
pre-trained embeddings over randomized embeddings [4, 14].
Our labeled dataset’s comparatively small size, class
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TABLE IV

EXPERIMENT 2 — TRANSFER LEARNING RESULTS

Split Trained — 7 Breast and 5 Lung ICD-O-3 Topography Code Classes

Breast Generic Site - 7 ICD-O-3 Classes Lung Generic Site - 5 ICD-0O-3 Classes
Approach Micro-F  Macro-F Macro-P  Macro-R | Micro-F Macro-F  Macro-P  Macro-R
NB 0.573 0.182 0.170 0.203 0.638 0.339 0.415 0.357
TF-IDF LR 0.590 0.143 0.174 0.163 0.737 0.438 0.477 0.443
SVM 0.618 0.191 0.186 0.204 0.774 0.509 0.500 0.590
GNews 0.644 0.213 0.218 0.236 0.765 0.473 0.461 0.494
CNN PubMed 0.631 0.205 0.221 0.226 0.781 0.501 0.488 0.531
No pre-training  0.631 0.193 0.185 0.217 0.772 0.481 0.475 0.503
Joint Trained — 12 ICD-0-3 Topography Code Classes
Breast Generic Site - 7 ICD-O-3 Classes Lung Generic Site - 5 ICD-0-3 Classes
Approach Micro-F  Macro-F Macro-P  Macro-R | Micro-F Macro-F  Macro-P  Macro-R
NB 0.564 0.168 0.162 0.184 0.620 0.301 0.411 0.340
TF-IDF LR 0.586 0.143 0.161 0.161 0.727 0.440 0.461 0.446
SVM 0.602 0.168 0.160 0.184 0.751 0.472 0.478 0.479
GNews 0.643 0.241 0.266 0.255 0.774 0.485 0.476 0.502
CNN PubMed 0.653 0.234 0.254 0.256 0.782 0.606 0.602 0.619
No pre-training  0.685 0.265 0.266 0.291 0.764 0.522 0.520 0.535

distribution, or merely the pathology report’s unique language
style may be the cause. To explore this, we attempted to utilize
n-grams derived from a PubMed corpus as features [23]. All our
TF-IDF classifiers performed equally poorly for both
classification tasks, with dramatically low micro-F and macro-
F scores, indicating an inability for this representation to
meaningfully differentiate between our pathology reports
(detailed results not shown here due to inferior performance).
Finally, although we did not observe consistent performance
superiority among the pre-training CNN approaches, we can
distinguish word embeddings’ ability to transfer information
across corpuses while maintaining adequate representation of
the data.

In our experiments, the various implementation parameters
such as the CNN optimal filter window size, the minimum
number of word occurrences required for a unique embedding
vector, and the exclusion of non-alphanumeric characters were
set based literature recommendations that seemed intuitively
appropriate for the specific task [15]. For example, despite
using entire pathology reports as network inputs, we found the
CNN filter window sizes of 3, 4 and 5 used in sentence
classification were still effective. This may be task related, as it
seems probable that topographical code may be inferred from
such a small context. To set the minimum number of word
occurrences required for a unique embedding vector, we
empirically investigated a range of 1 to 5. We observed that
using a minimum document frequency parameter of 2 worked
well across all tasks and word embeddings methods, although
the differences were not statistically significant. Similarly, with
respect to the inclusion or exclusion of non-alphanumeric

characters, there was no statistical significance among the
various performance metrics. Previous deep learning NLP
experiments using less domain-specific training sets have
retained non-alphanumeric characters as individual punctuation
tokens with individual embedding vectors [15]. However, we
chose to exclude the non-alphanumeric characters since they
tend to be ambiguous in pathology reports. Although the above
implementation decisions had marginal effects on classifier
performance, it remains unclear if our observations are a result
of the writing style of the pathology reports, the particular
information extraction task, or merely just because of the
relatively low number of training observations.

A possible limitation in our study is that our corpus included
pathology reports for which the ground truth was sourced only
using the final diagnosis section of the report. To better
understand the impact of our case selection criterion, we
performed a set of additional experiments comparing the
performance of our original final-diagnosis-only trained CNN’s
against networks trained with an additional 144 pathology
reports with ICD-0O-3 labels sourced from outside the final
diagnosis section (e.g., synoptic report, clinical history). The
12-class prevalence was similar to the one in the original
dataset. In a series of cross-validation experiments, we
observed that the reported trends remained consistent. Although
several differences were noted, none of them turn out to be
statistically significant. This finding suggests that the CNN
approaches are fairly robust.

Although the training data used for these experiments was
small relative to the total volume and variety of pathology
reports used in state and national cancer surveillance, and the
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primary site variable is relatively well-characterized, this work
was an important first step in applying deep learning NLP
methods to assist the work of cancer registries cancer. Work is
underway to obtain a larger set of training and validation data
from cancer registries to expand the scale and scope of this
approach.

V. CONCLUSION

We performed a set of experiments comparing the ICD-O-3
topographical information extraction performance of a
temporal convolutional network against a more traditional TF-
IDF classifier approach over varying datasets of pathology
reports. We observed that consistently the CNN outperformed
the more traditional classifier, peaking at a micro-F score of
0.811 and a macro-F score of 0.701 for the 6-class task and
achieving an overall micro-F score of 0.722 and a macro-F
score of 0.389 for the 12-class task. We also tested how pre-
trained word embeddings features on differing corpora can
influence performance on certain subtasks. Our results
suggested that for the information extraction problem with
well-populated classes randomized embeddings lead to superior
performance. However, when the classification task included
classes with low prevalence, pre-trained embeddings achieved
better performance.
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