

Article

pubs.acs.org/journal/apchd5

Transient Negative Optical Nonlinearity of Indium Oxide Nanorod Arrays in the Full-Visible Range

- ³ Peijun Guo, [†] Robert P. H. Chang, *, [‡] and Richard D. Schaller *, [†], [§]
- ⁴ [†]Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- s [‡]Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United
- 6 State

9

10

11

12

13

14

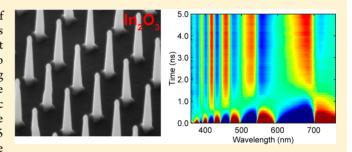
15

16

17

18

19


20

21

22

- ⁷ Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- 8 Supporting Information

ABSTRACT: Dynamic control of the optical response of materials at visible wavelengths is key to future metamaterials and photonic integrated circuits. Materials such as transparent conducting oxides have attracted significant attention due to their large optical nonlinearity under resonant optical pumping condition. However, optical nonlinearities of TCOs are positive in sign and are mostly in the ε -near-zero to metallic range where materials can become lossy. Here we demonstrate large amplitude, negative optical nonlinearity (Δn from -0.05 to -0.09) of indium oxide nanorod arrays in the full-visible

range where the material is transparent. We experimentally quantify and theoretically calculate the optical nonlinearity, which arises from a strong modification of interband optical transitions. The approach toward negative optical nonlinearity can be generalized to other transparent semiconducting oxides and opens door to reconfigurable, subwavelength optical components.

KEYWORDS: indium oxide, transparent semiconducting oxide, negative optical nonlinearity, transient, ultrafast, full-visible range

he development of miniaturized optical components necessitates strong nonlinear optical response of materials 25 for active modulation and switching of optical signals at the 26 nanoscale. Optical nonlinearity typically requires strong optical 27 intensity and can arise from a variety of mechanisms. For 28 example, the Kerr optical nonlinearity arising from the third-29 harmonic response of materials is described as $n = n_0 + n_2 I_1$ 30 where n_0 is the linear refractive index and n_2 is the nonlinear 31 refractive index. The change of refractive index due to light-32 matter interactions has enabled control of light in the spatial 33 and frequency domains, and created numerous applications 34 such as optical switching, 2,3 ultrafast pulse generation, 4 and 35 solitons. Although nonresonant-type optical nonlinearity is 36 often an inherently weak effect, artificial metamaterials can 37 significantly enhance the effective nonlinear response at 38 subwavelength scales due to resonant light-matter interac-39 tions. 6-12 Emerging plasmonic materials such as transparent 40 conducting oxides (TCOs)^{13,14} have been shown to exhibit 41 large optical nonlinearities arising from free carrier behaviors 42 that can be tuned by resonant optical pumping. 15-19 However, 43 the large nonlinear response of TCOs achieved in the ε -near-44 zero²⁰ to the metallic range (primarily in the near- to mid-45 infrared) comes with a price of intrinsic material loss, which 46 may ultimately limit the efficiency of desired optical functions. 47 The transparent semiconducting oxide (TSO) counterparts of 48 TCOs, which have been deployed in next-generation 49 optoelectronic devices, 21 represent another class of potential 50 nonlinear optical materials. For example, indium oxide (IO),

the TSO version of ITO, is transparent from the visible to the 51 infrared with a direct bandgap in the ultraviolet (UV). ^{22,23} The 52 unique electronic configuration of IO lends itself to strong 53 redistributions of valence electrons under readily accessible UV 54 pumping, which in turn may largely impact its optical response. 55 Here we demonstrate large negative optical nonlinearity of IO 56 arranged in periodic nanorod array structures. Interband optical 57 excitation transiently photodope indium oxide nanorod arrays 58 (IO-NRAs), resulting in a reduction of the real component of 59 refractive index without introducing any additional loss into the 60 full-visible range.

■ RESULTS AND DISCUSSION

Periodic, vertically aligned IO-NRAs were grown via the 63 vapor—liquid—solid mechanism (see Supporting Information, 64 Section 1, and Figure S1). A scanning electron micrograph of 65 the IO-NRA with height, pitch size, and average edge length of 66 2.55 μ m, 1 μ m, and 180 nm is shown in Figure 1a. The single- 67 f1 crystalline IO-NRAs were epitaxially grown on lattice-matched 68 yttria-stabilized-zirconia substrates along the [001] direction 69 (see Figure S2). Figure 1b shows the visible transmission 70 spectrum. Five transmission dips, centered at 691, 541, 468, 71 424, and 393 nm, arise from the destructive interference 72 between light propagating in nanorods and in free space, where 73

Received: March 19, 2017

62

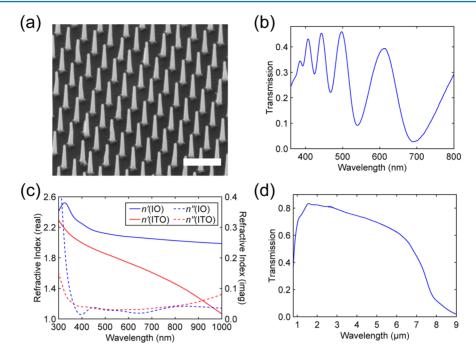


Figure 1. Static optical properties of the IO-NRA. (a) Scanning electron micrograph of the IO-NRA under 30° viewing angle (scale bar: $2 \mu m$). (b) Visible transmission spectrum of the IO-NRA. (c) $n'(\omega)$ and $n''(\omega)$ of epitaxial IO and ITO films obtained from ellipsometric measurements. (d) Infrared transmission spectrum of the IO-NRA. Both (b) and (d) are taken at normal incidence and referenced to air.

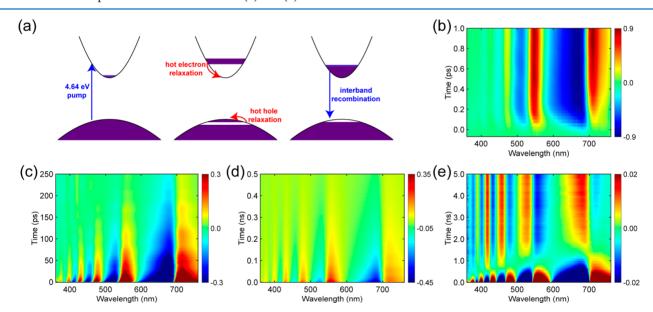


Figure 2. Transient optical response. (a) Schematic drawing of the electronic processes following the 267 nm pump excitation. (b-e) $\Delta T/T$ transient spectral maps for delay time windows up to 1 ps, 250 ps, 0.5 ns, and 5 ns, respectively. Pump fluences from (b) to (e) are 6.45, 4.44, 1.12, and 1.12 mJ·cm⁻².

74 the dielectric array behaves as a two-dimensional optical 75 grating. ^{24,25} Various higher diffraction orders were produced by 76 the nanorod array; here, in both the static and time-resolved 77 experiments, we only collected the (0, 0) order. Similar to the 8 ITO nanorod array case, at the transmission minima of the (0, 79 0) order shown in Figure 1b, diffraction into the higher orders 80 is maximized, which corresponds to an out-of-phase condition 81 for waves propagating inside the IO nanorod and in air. ^{24,25} 82 Note that the reddest dip at 691 nm is ~100 nm redder than 83 that observed for ITO-NRA with similar dimensions; ²⁴ this 84 difference originates from a higher refractive index of IO and 85 with it a larger difference of optical path lengths between waves

propagating in the nanorods and in free space. Figure 1c depicts 86 the real and imaginary components of the refractive index, 87 denoted as $n'(\omega)$ and $n''(\omega)$, for both IO and ITO obtained 88 from ellipsometric measurements on respective epitaxial thin 89 films sputtered on YSZ substrates; these films share the same 90 single-crystalline quality as the nanorod counterparts (see 91 Supporting Information, Section 2). IO and ITO have 92 comparably low $n''(\omega)$ in most of the visible range, except 93 that the absorption onset of IO is at ~400 nm, slightly redder 94 than ITO at ~370 nm. An overall weaker transmission intensity 95 of IO-NRA compared to the ITO counterpart is likely 96 attributed to a less ideal uniformity of the former. A larger 97

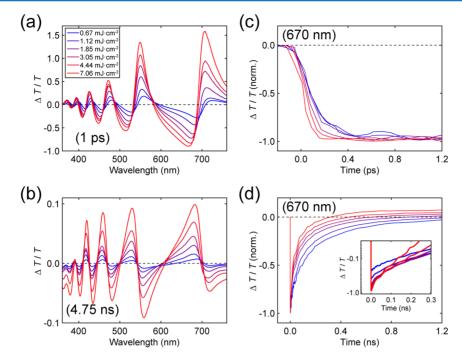


Figure 3. Fluence dependent transient responses. (a and b) Fluence-dependent $\Delta T/T$ spectra at 1 ps and 4.75 ns delay time, respectively. (c and d) Fluence-dependent, normalized $\Delta T/T$ kinetics (at 670 nm) up to 1.2 ps and 1.2 ns, respectively. Inset of (d) shows actual values of $\Delta T/T$ in log scale for the first 0.3 ns. Legend in (a) applies to all panels.

98 $n'(\omega)$ of IO arises owing to (1) The high density of conduction 99 electrons (denoted as n) in ITO yields to a plasma frequency (ω_p) close to 2 eV, which, according to the Drude relative permittivity, $\varepsilon(\omega) = \varepsilon_{\infty} - \omega_{\rm p}^2/(\omega^2 + i\gamma_{\rm p}\omega)$, leads to a reduction 102 of $\varepsilon'(\omega)$ particularly in the near-infrared region. Here γ_p is the damping factor and $\varepsilon'(\omega)$ is the real part of the relative permittivity. (2) A smaller effective bandgap of IO due to the absence of Burstein-Moss effect²⁶ moves the onset of interband optical transition closer to the visible range, which yields a larger $\varepsilon'(\omega)$ especially near the UV. The absence of localized surface plasmon resonance (LSPR) up to 8 μ m (the 108 YSZ substrate becomes opaque at wavelengths redder than 7 μ m) in the infrared transmission spectrum shown in Figure 1d suggests that n of the as-grown IO-NRA arising from native oxygen vacancies²⁷ is less than 5×10^{19} cm⁻³ (see Supporting 112 Information, Section 3), which is at least 1 order of magnitude 113 lower compared to ITO.

We performed pump-probe experiments on the IO-NRA. 116 The sample was excited by 267 nm, 35 fs pulses and probed by 117 broadband white light pulses (from 360 to 760 nm) under normal incidence. The 267 nm photons with energy (4.65 eV) larger than the effective bandgap of IO (3.5-3.7 eV)^{28,29} can promote electrons from the valence band (VB) to the conduction band (CB), thereby transiently photodoping the 121 material. Here the effective bandgap of IO equals $E_{\rm g}$ + μ_0 , where $E_{\rm g}$ is the energy difference between the CB minimum (CBM) and the VB maximum (VBM) and μ_0 is the static 125 electron chemical potential. The difference between the pump photon energy and effective bandgap indicates that photo-127 excited electrons initially occupy states well above the electron chemical potential (denoted as μ); the hot electrons and holes 129 relax to lowest unoccupied states in their respective bands 130 through carrier-phonon coupling, and then recombine. The 131 sequence of optical excitation, hot carrier relaxation, and 132 interband recombination are illustrated in Figure 2a. Figure

2b—e presents the transient spectral maps of $\Delta T/T$ for delay 133 time windows up to 1 ps, 250 ps, 0.5 ns, and 5 ns, respectively. 134 Transient response during the first 1 ps (Figure 2b) reveals that 135 $\Delta T/T$ spectrally alternates between positive and negative values 136 from 360 to 760 nm; here each zero-crossing-wavelength from 137 a negative $\Delta T/T$ region to a redder and positive $\Delta T/T$ region 138 matches a static transmission dip. This characteristic spectral 139 line-shape is caused by a transient blueshift of transmission; 140 note that this is distinctively different from the dynamic redshift 141 of transmission observed for ITO-NRAs under intraband 142 optical excitation. 24 While the spectral redshift in ITO-NRA 143 was due to an increase of $n'(\omega)$, here the spectral blueshift in 144 IO-NRA is assigned to a decrease of $n'(\omega)$, which corresponds 145 to negative optical nonlinearity.

Figure 2b shows an increase of $\Delta T/T$ intensity accompanied 147 by a slight blueshift of the zero-crossing-wavelengths during the 148 first 250 fs. This subps blueshift of $\Delta T/T$ after the impulsive 149 pump excitation is associated with hot carrier relaxation, 150 following which the $\Delta T/T$ intensity stays nearly constant for 151 the first 1 ps. Figure 2c and d show a decay rate of $\Delta T/T$ in the 152 few-tens to few-hundred ps range, which we attribute to the 153 interband recombination of thermalized, excess electron, and 154 hole populations. The oscillation of $\Delta T/T$ signals in Figure 2c 155 is indicative of coherent acoustic phonons; the fact that the 156 coherent phonons started at early ps delay time supports the 157 interpretation that the subps blueshift of $\Delta T/T$ arises from hot 158 carrier relaxation, as the cooling of hot carriers leads to an 159 impulsive lattice heating and can initiate the acoustic phonon 160 modes.^{31,32} We can hence approximately treat the photoexcited 161 electrons and holes after 0.25 ps presented from Figure 2b-e as 162 thermalized (Fermi–Dirac like) and in quasi-equilibrium with 163 the lattice. Figure 2e shows that after electrons and holes 164 recombine (by ~ 1 ns), the $\Delta T/T$ signals undergo a switch of 165 sign, which arises because the transient response without excess 166 carriers is dominated by a thermo-optical effect due to a lattice 167

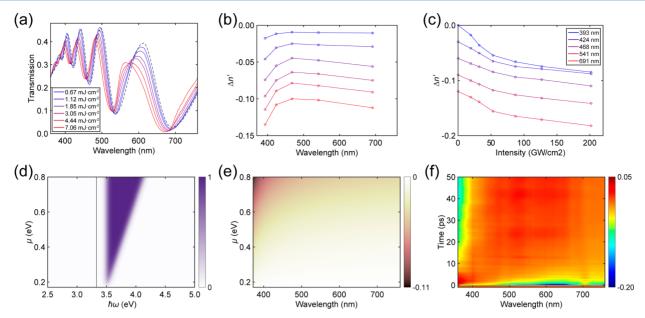


Figure 4. Quantification of the negative optical nonlinearity. (a) Fluence-dependent transmission spectra at 1 ps delay time. (b) Fluence-dependent $\Delta n'(\omega)$ at 1 ps delay time; each curve starting from 1.12 mJ·cm⁻² is shifted in increments of -0.01 for clarity. Legend in (a) also applies to (b). (c) Intensity-dependent $\Delta n'(\omega)$ at 1 ps delay time for wavelengths of the static transmission dips; each curve starting from 424 nm is shifted in increments of -0.03 for clarity. (d) Change of electron occupation vs $\hbar\omega$ and μ . (e) Calculated $\Delta n'(\omega)$ vs wavelength and μ (referenced to CBM). (f) $\Delta T/T$ transient spectra of 220 nm thick epitaxial IO film under fluence of 6.59 mJ·cm⁻².

168 temperature rise. A decrease of bandgap at high lattice 169 temperature 33 leads to a positive $\Delta n'(\omega)$ and with it a 170 transmission redshift; 24 this is in contrast to the transient 171 blueshift associated with a negative $\Delta n'(\omega)$ owing to excess 172 carriers. Although the thermo-optical effect is expected to play a 173 role immediately following the subps hot carrier relaxation, it is 174 much less significant than the effect of photodoping, which is 175 evident from the 1 order of magnitude larger $\Delta T/T$ amplitude 176 in the ps range compared to that in the ns range. Figure 2e 177 further shows that hot lattice induced $\Delta T/T$ exhibits no 178 distinguishable decay up to 5 ns, suggesting that heat transfer in 179 these large aspect-ratio structures with relatively low thermal 180 conductivity 34 (a few W·m $^{-1}$ ·K $^{-1}$) takes place over μ s time 181 scales. 24

f3

Figure 3a presents the fluence dependent $\Delta T/T$ spectra at 1 ps delay time when photoexcited carriers are thermalized. We find a monotonic increase of $\Delta T/T$ amplitude under an 185 increasing fluence. Remarkable differential suppression (enhancement) of transmission up to -90% (150%) is obtained at the highest fluence of 7.06 mJ·cm⁻². Fluence above 8 mJ·cm⁻² resulted in irreversible loss of $\Delta T/T$ signals within minutes likely due to sample damage. Measurements on additional IO-NRAs show that differential modulation of transmission larger than 1000% can be achieved for particular spectral regions using long IO-NRAs (see Supporting Information, Section 4), which support large numbers of transmission dips and concomitantly large slopes in the transmission curve. The fluence dependent $\Delta T/T$ spectra at 4.75 ns, when hot lattice effects dominate, are presented in Figure 3b; these spectra exhibit opposite sign compared to those appearing in Figure 3a. Negative $\Delta T/T$ amplitude is observed for the spectral range below 390 nm, likely caused by depopulation of shallow trap states³⁵ at elevated lattice temperature, which can lead to 201 below-bandgap absorption.

Figure 3c presents the fluence-dependent $\Delta T/T$ kinetics at 203 670 nm up to 1.2 ps; the subps rise time (hot carrier relaxation)

does not exhibit a strong fluence dependence. However, the 204 subsequent nanosecond $\Delta T/T$ decay shown in Figure 3d due 205 to carrier recombination displays a strong fluence dependence. 206 In a direct-bandgap semiconductor such as IO, carrier 207 recombination rate is generally written as $R = An + Bn^2 + 208$ Cn³, where An, Bn², and Cn³ represent trap-assisted, radiative 209 (band-to-band), and Auger recombination rates, respectively. 36 210 The strong dependence of recombination rate on fluence (and 211 hence on n(0), where n(0) is the excess carrier concentration 212 right after the pump excitation) suggests that higher order 213 processes $(Bn^2 \text{ and } Cn^3 \text{ terms})$ contribute to the carrier 214 recombination in addition to trap-assisted processes. Note that 215 trap-assisted process alone would yield a fixed decay constant 216 (dependent on A but not on n(0)). Time-resolved photo- 217 luminescence spectra shown in Supporting Information, Figure 218 S10, demonstrate both band-to-band emission below 400 nm, 219 and trap-assisted emission from 400 to 650 nm. Consistent 220 with the interpretation of the fluence dependent $\Delta T/T$ decay 221 rates, faster photoluminescence kinetics and stronger band-to- 222 band radiation are obtained under higher excitation fluence. 223 This is in sharp contrast to heavily doped TCOs such as ITO³⁰ 224 or aluminum doped zinc oxide (AZO), 16 where high doping 225 concentration of foreign atoms (on the order of 10%) yields 226 ultrafast trap-assisted recombination in the sub- to single-digit 227 ps regime. The few-hundred-ps recombination rate in IO is 228 however faster than in other direct-bandgap semiconductors 229 such as GaAs³⁷ and CdSe,³⁸ hence both radiative and Auger 230 recombination processes may contribute, given the large value 231 of n(0) reached in our experiments (as estimated when 232 discussing Figure 4e in the second last paragraph before the 233 f4 conclusion).

We note that electron—phonon coupling³⁹ in IO can be 235 assessed by temperature dependence of the initial $\Delta T/T$ 236 blueshift associated with hot carrier relaxation. In Supporting 237 Information, Figure S5, we show the $\Delta T/T$ spectral maps 238 acquired at 150 and 3 K, respectively. At both temperatures the 239

240 subps $\Delta T/T$ blueshift exhibits similar time scales as compared 241 to the room temperature counterpart (Figure 2b). The 242 independence of hot carrier relaxation time on temperature 243 suggests that scattering of electrons by defects (such as ionized 244 impurities associated with oxygen vacancies) rather than by 245 acoustic or optical phonons is the dominant mechanism of 246 electron—phonon coupling in IO nanorods. 40

The static and transient optical responses combined permit 248 the estimation of the nonlinear refractive index change. Figure 249 4a shows the total transmission at 1 ps by adding the 250 differential change of transmission (Figure 3a) and the static 251 transmission (Figure 1b). The spectral shifts of the trans-252 mission dips permit the quantification of fluence and wavelength dependent $\Delta n'(\omega)$ (see Supporting Information, 254 Section 6), which is shown in Figure 4b. We found that (1) 255 $\Delta n'(\omega)$ peaks at the bluest dip wavelength of 393 nm. (2) At 256 high fluences, the relative amplitude of $\Delta n'(\omega)$ at long wavelengths increases. (3) Large $\Delta n'(\omega)$ ranging from -0.05to -0.09 is achieved at the maximal fluence of 7.06 mJ·cm⁻². 259 The optical nonlinearity shown here significantly differs from 260 recent results 15,17,41 on TCOs from three perspectives: (1) 261 $\Delta n'(\omega)$ of IO due to a change of electron doping concentration 262 is negative (pertaining to a negative optical nonlinearity), 263 whereas $\Delta n'(\omega)$ in TCOs arising from a change of electron 264 temperature was positive. (2) $\Delta n'(\omega)$ in TCOs was in the 265 epsilon-near-zero (ENZ) to metallic regime, where materials 266 can become lossy due to free carrier effects. $\Delta n'(\omega)$ shown here 267 is in the transparent regime of IO. (3) The static $n'(\omega)$ of TCOs in the ENZ region is usually smaller than unity. Here the 269 static $n'(\omega)$ ranges from 2 to 2.5, comparable to TiO₂, which was used for dielectric metasurfaces due to its high index and 271 low loss. 42 We also note that metal-to-insulator transitions in 272 correlated electron materials such as VO2 can offer negative $273 \Delta n'(\omega)$ in the visible to infrared range, 43 but in that case a large 274 $n''(\omega)$ of the metallic phase limits their use in nonlinear optical 275 devices where loss is detrimental. Figure 4c shows the 276 dependence of $\Delta n'(\omega)$ on the peak excitation power at 277 different wavelengths. We note that intensity in the GW·cm⁻² 278 regime related to fs pump pulses can be easily reduced to the 279 MW·cm⁻² range by using ps pump pulses, which are still much 280 shorter than the recovery time of the optical nonlinearity of IO. This indicates that the optical nonlinearity discussed here can 282 be accessed by fiber lasers, 44 whereas achieving sub- to single-283 digit ps optical nonlinearity in TCOs requires fs laser/amplifier 284 systems.

The negative optical nonlinearity of IO is attributed to a 285 286 modification of interband optical transitions, which produces a positive change of $n''(\omega)$ at energies above the effective bandgap (in the UV). Photodoping by the interband pump effectively raises μ of the electrons. The effect of photodoping on holes in the VB is however much less significant, because of 291 a much higher density of states for holes owing to the flat valence bands. 45 Dictated by the Kramers-Kronig (KK) relation which links the real and imaginary parts of frequency-dependent susceptibilities, the change of $n''(\omega)$ at above-bandgap energies results in a change of $n'(\omega)$ extended into the below-bandgap, full-visible range. The change of electron occupation is plotted in Figure 4d as a function of $\hbar\omega$ (photon energy) and μ . The carriers are assumed to be at 300 299 K, which is valid because lattice temperature rise (which equals 300 the carrier temperature rise as hot carriers quickly relax to band 301 edges) is at most a couple hundred Kelvin, which has a 302 negligible impact on electron occupation in comparison to the

photodoping effect that moves μ over hundreds of meV (much 303) larger than k_BT at room temperature where k_B is the Boltzmann 304 constant). The change of electron occupation permits the 305 calculation of $\Delta n'(\omega)$, which is color-coded in Figure 4e. 306 Details of the theoretical calculation appear in Supporting 307 Information, Section 7. Due to the large electron concentration 308 generated by photodoping, a nonparabolic band was assumed 309 for the calculation of the change of μ and $n'(\omega)$.⁴⁶ Consistent 310 with $\Delta n'(\omega)$ shown in Figure 4b deduced from experiments, 311 $\Delta n'(\omega)$ displayed in Figure 4e is peaked at shorter wavelengths; 312 this arises from the KK relation which dictates that $\Delta n'(\omega)$ is 313 large around and vanishes away from the energy range where 314 $\Delta n''(\omega)$ occurs. Comparing Figure 4e and b, we estimate that μ 315 is raised by 0.4-0.6 eV (from 0.17 to 0.6-0.8 eV) under the 316 highest fluence of $7.06~{\rm mJ\cdot cm^{-2}}$. An excess electron 317 concentration of $5-7~\times~10^{20}~{\rm cm^{-3}}$ can be estimated under 318 such change of μ (see Supporting Information, Figure S4). 319 From the Drude permittivity, an increase of $\omega_{\rm p}$ due to 320 photodoping is expected to give another contribution to the 321 reduction of $\varepsilon'(\omega)$ and may explain the rise of $\Delta n'(\omega)$ 322 amplitude at long wavelengths under high fluences.

Finally, we comment on the advantage of the periodic 324 nanorod arrays presented in this work. The multiple trans- 325 mission dips supported by the dielectric nanorod array exhibit 326 strong transient optical features, thereby permitting the 327 quantification of $\Delta n'(\omega)$. A transient spectral map produced 328 for a 220 nm thick epitaxial IO film (Figure 4f) does not 329 provide information regarding the change of $n'(\omega)$, primarily 330 due to a featureless transmission spectrum (Figure S10a). A 331 bare YSZ substrate (see Supporting Information, Section 8) 332 exhibits a negative $\Delta T/T$ with a characteristic decay time of 3 333 ps, which can contribute to the negative change of transmission 334 in Figure 4f if the IO film does not fully absorb the pump 335 photons; this adds complexity to the understanding the 336 transient optical response of IO. The substrate response does 337 not impact the interpretation of transient features of the IO- 338 NRAs, as only the spectral shifts of transmission dips are taken 339 into account to deduce the optical nonlinearity.

CONCLUSION

In summary, we demonstrate that large negative optical 342 nonlinearity can be realized by interband optical pumping of 343 a direct bandgap semiconductor, here exemplified by IO-NRA. 344 The prominent spectral features of the dielectric nanorod array 345 allow the separation of carrier cooling, recombination, and hot 346 lattice effects. Although carrier dynamics of various wide- 347 bandgap semiconductors have been studied, 47,48 here we 348 quantify the change of refractive index as a function of pump 349 fluence, and theoretically show that the negative optical 350 nonlinearity derives from a strong modification of above- 351 bandgap optical transitions. Although the demonstrated 352 modulation scheme can be achieved with other direct bandgap 353 semiconductors, the large bandgap of IO leads to negative 354 optical nonlinearity in the full-visible spectral range without 355 increasing the loss. This is to be compared to semiconductors 356 with bandgaps located in the visible range (such as GaAs, InP, 357 which exhibit loss in the visible) or in the deep UV (such as 358 BN, AlN, which cannot offer large index modulation in the 359 visible). The large negative optical nonlinearity in TSOs in 360 conjunction with their versatile electrical properties may find 361 applications in dynamically tunable subwavelength dielectric 362 metasurfaces, 49 and in nonlinear nano-optics and active 363 plasmonics when IO is interfaced with metallic components. 364

365 ASSOCIATED CONTENT

366 S Supporting Information

367 The Supporting Information is available free of charge on the 368 ACS Publications website at DOI: 10.1021/acsphoto-369 nics.7b00278.

Additional information about the fabrication of the 370 nanorod arrays, optical characterization, fitting of the 371 optical constants, transient absorption data, and dis-372 cussion on the theoretical modeling (PDF). 373

374 **AUTHOR INFORMATION**

375 Corresponding Authors

- 376 *E-mail: r-chang@northwestern.edu.
- 377 *E-mail: schaller@anl.gov; schaller@northwestern.edu.
- ORCID
- 379 Peijun Guo: 0000-0001-5732-7061
- 380 Richard D. Schaller: 0000-0001-9696-8830
- 381 Notes
- 382 The authors declare no competing financial interest.

383 **ACKNOWLEDGMENTS**

384 This work was performed, in part, at the Center for Nanoscale 385 Materials, a U.S. Department of Energy, Office of Science, 386 Office of Basic Energy Sciences User Facility under Contract 387 No. DE-AC02-06CH11357. P.G. and R.P.H.C. acknowledge 388 the MRSEC Program (NSF DMR-1121262) at Northwestern 389 University.

REFERENCES 390

- (1) Boyd, R. W. Nonlinear Opt., 3rd ed.; Academic Press, 2008. 391
- (2) MacDonald, K. F.; Samson, Z. L.; Stockman, M. I.; Zheludev, N. 393 I. Ultrafast Active Plasmonics. Nat. Photonics 2009, 3, 55-58.
- (3) Shcherbakov, M. R.; Vabishchevich, P. P.; Shorokhov, A. S.; 395 Chong, K. E.; Choi, D.-Y.; Staude, I.; Miroshnichenko, A. E.; Neshev,
- 396 D. N.; Fedyanin, A. A.; Kivshar, Y. S. Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures.
- 398 Nano Lett. 2015, 15, 6985-6990.
- 399 (4) Cerullo, G.; De Silvestri, S.; Magni, V. Self-Starting Kerr-Lens 400 Mode Locking of a Ti:Sapphire Laser. Opt. Lett. 1994, 19, 1040-1042.
- (5) Leo, F.; Coen, S.; Kockaert, P.; Gorza, S.-P.; Emplit, P.; 402 Haelterman, M. Temporal Cavity Solitons in One-Dimensional Kerr 403 Media as Bits in an All-Optical Buffer. Nat. Photonics 2010, 4, 471-
- 404 476 (6) Lee, J.; Tymchenko, M.; Argyropoulos, C.; Chen, P.-Y.; Lu, F.; 405 406 Demmerle, F.; Boehm, G.; Amann, M.-C.; Alu, A.; Belkin, M. A. Giant 407 Nonlinear Response from Plasmonic Metasurfaces Coupled to
- 408 Intersubband Transitions. Nature 2014, 511, 65-69. (7) Kauranen, M.; Zayats, A. V. Nonlinear Plasmonics. Nat. Photonics 409
- 410 **2012**, *6*, 737–748. (8) Renger, J.; Quidant, R.; van Hulst, N.; Novotny, L. Surface-411 412 Enhanced Nonlinear Four-Wave Mixing. Phys. Rev. Lett. 2010, 104,
- 413 046803. (9) Aouani, H.; Rahmani, M.; Navarro-Cia, M.; Maier, S. A. Third-415 Harmonic-Upconversion Enhancement from a Single Semiconductor 416 Nanoparticle Coupled to a Plasmonic Antenna. Nat. Nanotechnol.
- 417 **2014**, 9, 290–294. (10) O'Brien, K.; Suchowski, H.; Rho, J.; Salandrino, A.; Kante, B.; 418
- 419 Yin, X.; Zhang, X. Predicting Nonlinear Properties of Metamaterials 420 from the Linear Response. Nat. Mater. 2015, 14, 379-383. (11) Utikal, T.; Zentgraf, T.; Paul, T.; Rockstuhl, C.; Lederer, F.;
- 422 Lippitz, M.; Giessen, H. Towards the Origin of the Nonlinear 423 Response in Hybrid Plasmonic Systems. Phys. Rev. Lett. 2011, 106, 424 133901.

- (12) Vallée, F., Ultrafast Non-Equilibrium Electron Dynamics in 425 Metal Nanoparticles. In Non-Equilibrium Dynamics of Semiconductors 426 and Nanostructures; Tsen, K.-T., Ed.; Taylor & Francis Group: Boca 427 Raton, FL, 2005. 428
- (13) Boltasseva, A.; Atwater, H. A. Low-Loss Plasmonic Meta- 429 materials. Science 2011, 331, 290-291. 430
- (14) Naik, G. V.; Liu, J.; Kildishev, A. V.; Shalaev, V. M.; Boltasseva, 431 A. Demonstration of Al:ZnO as a Plasmonic Component for Near- 432 Infrared Metamaterials. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 8834-433
- (15) Alam, M. Z.; De Leon, I.; Boyd, R. W. Large Optical 435 Nonlinearity of Indium Tin Oxide in its Epsilon-Near-Zero Region. 436 Science 2016, 352, 795-797.
- (16) Kinsey, N.; DeVault, C.; Kim, J.; Ferrera, M.; Shalaev, V. M.; 438 Boltasseva, A. Epsilon-Near-Zero Al-doped ZnO for Ultrafast 439 Switching at Telecom Wavelengths. Optica 2015, 2, 616-622.
- (17) Guo, P.; Schaller, R. D.; Ketterson, J. B.; Chang, R. P. H. 441 Ultrafast Switching of Tunable Infrared Plasmons in Indium Tin Oxide 442 Nanorod Arrays with Large Absolute Amplitude. Nat. Photonics 2016, 443 10, 267-273.
- (18) Abb, M.; Wang, Y.; de Groot, C. H.; Muskens, O. L. Hotspot- 445 Mediated Ultrafast Nonlinear Control of Multifrequency Plasmonic 446 Nanoantennas. Nat. Commun. 2014, 5, 4869.
- (19) Capretti, A.; Wang, Y.; Engheta, N.; Dal Negro, L. Comparative 448 Study of Second-Harmonic Generation from Epsilon-Near-Zero 449 Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the 450 Near-Infrared Spectral Range. ACS Photonics 2015, 2, 1584-1591.
- (20) Alù, A.; Silveirinha, M. G.; Salandrino, A.; Engheta, N. Epsilon- 452 Near-Zero Metamaterials and Electromagnetic Sources: Tailoring the 453 Radiation Phase Pattern. Phys. Rev. B: Condens. Matter Mater. Phys. 454 2007, 75, 155410. 455
- (21) Yu, X.; Marks, T. J.; Facchetti, A. Metal Oxides for 456 Optoelectronic Applications. Nat. Mater. 2016, 15, 383-396.
- (22) Oliver, B. Indium Oxide—a Transparent, Wide-Band Gap 458 Semiconductor for (Opto)Electronic Applications. Semicond. Sci. 459 Technol. 2015, 30, 024001.
- (23) Walsh, A.; Da Silva, J. L. F.; Wei, S.-H.; Körber, C.; Klein, A.; 461 Piper, L. F. J.; DeMasi, A.; Smith, K. E.; Panaccione, G.; Torelli, P.; 462 Payne, D. J.; Bourlange, A.; Egdell, R. G. Nature of the Band Gap of 463 In₂O₃ Revealed by First-Principles Calculations and X-ray Spectros- 464 copy. Phys. Rev. Lett. 2008, 100, 167402.
- (24) Guo, P.; Schaller, R. D.; Ocola, L. E.; Diroll, B. T.; Ketterson, J. 466 B.; Chang, R. P. H. Large Optical Nonlinearity of ITO Nanorods for 467 Sub-Picosecond All-Optical Modulation of the Full-Visible Spectrum. 468 Nat. Commun. 2016, 7, 12892.
- (25) Li, S.-Q.; Sakoda, K.; Ketterson, J. B.; Chang, R. P. H. 470 Broadband Resonances in Indium-Tin-Oxide Nanorod Arrays. Appl. 471 Phys. Lett. 2015, 107, 031104. 472
- (26) Hamberg, I.; Granqvist, C. G.; Berggren, K. F.; Sernelius, B. E.; 473 Engström, L. Band-Gap Widening in Heavily Sn-doped In₂O₃. Phys. 474 Rev. B: Condens. Matter Mater. Phys. 1984, 30, 3240-3249.
- (27) Preissler, N.; Bierwagen, O.; Ramu, A. T.; Speck, J. S. Electrical 476 Transport, Electrothermal Transport, and Effective Electron Mass in 477 Single-Crystalline In₂O₃ Films. Phys. Rev. B: Condens. Matter Mater. 478 Phys. 2013, 88, 085305.
- (28) Weiher, R. L.; Ley, R. P. Optical Properties of Indium Oxide. J. 480 Appl. Phys. 1966, 37, 299-302.
- (29) Hamberg, I.; Granqvist, C. G. Evaporated Sn-doped In₂O₃ films: 482 Basic Optical Properties and Applications to Energy-Efficient 483 Windows. J. Appl. Phys. 1986, 60, R123-R160.
- (30) Tice, D. B.; Li, S.-Q.; Tagliazucchi, M.; Buchholz, D. B.; Weiss, 485 E. A.; Chang, R. P. H. Ultrafast Modulation of the Plasma Frequency 486 of Vertically Aligned Indium Tin Oxide Rods. Nano Lett. 2014, 14, 487
- (31) Guo, P.; Schaller, R. D.; Ocola, L. E.; Ketterson, J. B.; Chang, R. 489 P. H. Gigahertz Acoustic Vibrations of Elastically Anisotropic Indium- 490 Tin-Oxide Nanorod Arrays. Nano Lett. 2016, 16, 5639-5646. 491
- (32) Hartland, G. V. Optical Studies of Dynamics in Noble Metal 492 Nanostructures. Chem. Rev. 2011, 111, 3858-3887.

- (33) Wei, Z. P.; Guo, D. L.; Liu, B.; Chen, R.; Wong, L. M.; Yang, W. 495 F.; Wang, S. J.; Sun, H. D.; Wu, T. Ultraviolet Light Emission and
- 496 Excitonic Fine Structures in Ultrathin Single-Crystalline Indium Oxide 497 Nanowires. Appl. Phys. Lett. 2010, 96, 031902.
- (34) Ashida, T.; Miyamura, A.; Oka, N.; Sato, Y.; Yagi, T.; Taketoshi,
- 499 N.; Baba, T.; Shigesato, Y. Thermal Transport Properties of
- 500 Polycrystalline Tin-Doped Indium Oxide Films. J. Appl. Phys. 2009, 501 105, 073709.
- (35) Liang, C. H.; Meng, G. W.; Lei, Y.; Phillipp, F.; Zhang, L. D. 502
- 503 Catalytic Growth of Semiconducting In₂O₃ Nanofibers. Adv. Mater. 504 **2001**, 13, 1330-1333.
- (36) Coldren, L. A.; Corzine, S. W.; Mašanović, M. L. Diode Lasers 506 and Photonic Integrated Circuits; John Wiley & Sons: Hoboken, NJ, 507 2012
- (37) Boland, J. L.; Casadei, A.; Tütüncüoglu, G.; Matteini, F.; Davies, 508
- C. L.; Jabeen, F.; Joyce, H. J.; Herz, L. M.; Fontcuberta i Morral, A.;
- 510 Johnston, M. B. Increased Photoconductivity Lifetime in GaAs 511 Nanowires by Controlled n-Type and p-Type Doping. ACS Nano
- 512 **2016**, 10, 4219-4227.
- (38) Nair, G.; Bawendi, M. G. Carrier Multiplication Yields of CdSe
- 514 and CdTe Nanocrystals by Transient Photoluminescence Spectrosco-
- py. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 081304.
- (39) Wright, A. D.; Verdi, C.; Milot, R. L.; Eperon, G. E.; Pérez-516 517 Osorio, M. A.; Snaith, H. J.; Giustino, F.; Johnston, M. B.; Herz, L. M.
- Electron-Phonon Coupling in Hybrid Lead Halide Perovskites. Nat.
- 519 Commun. 2016, 7, 11755.
- (40) Rudin, S.; Reinecke, T. L.; Segall, B. Temperature-Dependent 520
- 521 Exciton Linewidths in Semiconductors. Phys. Rev. B: Condens. Matter
- 522 Mater. Phys. 1990, 42, 11218-11231.
- (41) Caspani, L.; Kaipurath, R. P. M.; Clerici, M.; Ferrera, M.; Roger,
- 524 T.; Kim, J.; Kinsey, N.; Pietrzyk, M.; Di Falco, A.; Shalaev, V. M.;
- 525 Boltasseva, A.; Faccio, D. Enhanced Nonlinear Refractive Index in ε -
- Near-Zero Materials. Phys. Rev. Lett. 2016, 116, 233901.
- (42) Khorasaninejad, M.; Chen, W. T.; Devlin, R. C.; Oh, J.; Zhu, A. 52.7
- 528 Y.; Capasso, F. Metalenses at Visible Wavelengths: Diffraction-Limited
- 529 Focusing and Subwavelength Resolution Imaging. Science 2016, 352,
- 530 1190-1194.
- (43) Briggs, R. M.; Pryce, I. M.; Atwater, H. A. Compact Silicon 531
- 532 Photonic Waveguide Modulator based on the Vanadium Dioxide
- 533 Metal-Insulator Phase Transition. Opt. Express 2010, 18, 11192-534 11201.
- (44) Muskens, O. L.; Bergamini, L.; Wang, Y.; Gaskell, J. M.; Zabala, 535
- 536 N.; de Groot, C. H.; Sheel, D. W.; Aizpurua, J. Antenna-Assisted
- 537 Picosecond Control of Nanoscale Phase Transition in Vanadium
- 538 Dioxide. Light: Sci. Appl. 2016, 5, e16173.
- (45) Mryasov, O. N.; Freeman, A. J. Electronic Band Structure of 539
- 540 Indium Tin Oxide and Criteria for Transparent Conducting Behavior.
- 541 Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 64, 233111.
- (46) Liu, X.; Park, J.; Kang, J.-H.; Yuan, H.; Cui, Y.; Hwang, H. Y.;
- 543 Brongersma, M. L. Quantification and Impact of Nonparabolicity of
- 544 the Conduction Band of Indium Tin Oxide on its Plasmonic
- 545 Properties. Appl. Phys. Lett. 2014, 105, 181117.
- (47) Johnson, J. C.; Knutsen, K. P.; Yan, H.; Law, M.; Zhang, Y.;
- 547 Yang, P.; Saykally, R. J. Ultrafast Carrier Dynamics in Single ZnO
- Nanowire and Nanoribbon Lasers. Nano Lett. 2004, 4, 197-204.
- (48) Tian, L.; di Mario, L.; Zannier, V.; Catone, D.; Colonna, S.;
- 550 O'Keeffe, P.; Turchini, S.; Zema, N.; Rubini, S.; Martelli, F. Ultrafast
- 551 carrier dynamics, band-gap renormalization, and optical properties of
- 552 ZnSe nanowires. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94,
- (49) Huang, Y.-W.; Lee, H. W. H.; Sokhoyan, R.; Pala, R. A.;
- 555 Thyagarajan, K.; Han, S.; Tsai, D. P.; Atwater, H. A. Gate-Tunable
- 556 Conducting Oxide Metasurfaces. Nano Lett. 2016, 16, 5319-5325.