DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis

Abstract

We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same time a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.

Authors:
ORCiD logo [1];  [2];  [3];  [4]
  1. Barcelona Supercomputing Center (BSC), Barcelona (Spain)
  2. Institut de Biologie et de Technologie de Saclay, Gif-sur-Yvette Cedex (France)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Univ. Grenoble Alpes, Grenoble (France); CEA, Grenoble (France)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
European Commission, Community Research and Development Information Service (CORDIS), EXTended Model of Organic Semiconductors (ExtMOS); Energy Oriented Centre of Excellence (EoCoE); USDOE Office of Science (SC), Basic Energy Sciences (BES); Argonne National Laboratory, Argonne Leadership Computing Facility; MaX Centre of Excellence
OSTI Identifier:
1400406
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Theory and Computation
Additional Journal Information:
Journal Volume: 13; Journal Issue: 9; Journal ID: ISSN 1549-9618
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Mohr, Stephan, Masella, Michel, Ratcliff, Laura E., and Genovese, Luigi. Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis. United States: N. p., 2017. Web. doi:10.1021/acs.jctc.7b00291.
Mohr, Stephan, Masella, Michel, Ratcliff, Laura E., & Genovese, Luigi. Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis. United States. https://doi.org/10.1021/acs.jctc.7b00291
Mohr, Stephan, Masella, Michel, Ratcliff, Laura E., and Genovese, Luigi. Fri . "Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis". United States. https://doi.org/10.1021/acs.jctc.7b00291. https://www.osti.gov/servlets/purl/1400406.
@article{osti_1400406,
title = {Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis},
author = {Mohr, Stephan and Masella, Michel and Ratcliff, Laura E. and Genovese, Luigi},
abstractNote = {We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same time a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.},
doi = {10.1021/acs.jctc.7b00291},
journal = {Journal of Chemical Theory and Computation},
number = 9,
volume = 13,
place = {United States},
year = {Fri Jul 21 00:00:00 EDT 2017},
month = {Fri Jul 21 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The total molecular dipole moment for liquid water
journal, September 2002

  • Gubskaya, Anna V.; Kusalik, Peter G.
  • The Journal of Chemical Physics, Vol. 117, Issue 11
  • DOI: 10.1063/1.1501122

Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches
journal, January 1996

  • Bakowies, Dirk; Thiel, Walter
  • The Journal of Physical Chemistry, Vol. 100, Issue 25
  • DOI: 10.1021/jp9536514

An approach to computing electrostatic charges for molecules
journal, April 1984

  • Singh, U. Chandra; Kollman, Peter A.
  • Journal of Computational Chemistry, Vol. 5, Issue 2
  • DOI: 10.1002/jcc.540050204

QM/MM: What Have We Learned, Where Are We, and Where Do We Go from Here?
journal, May 2007


Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis
journal, April 1990

  • Breneman, Curt M.; Wiberg, Kenneth B.
  • Journal of Computational Chemistry, Vol. 11, Issue 3
  • DOI: 10.1002/jcc.540110311

Higher order multipole moments for molecular dynamics simulations
journal, March 2009


A regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical–molecular-mechanical calculations
journal, October 2005

  • Biswas, P. K.; Gogonea, V.
  • The Journal of Chemical Physics, Vol. 123, Issue 16
  • DOI: 10.1063/1.2064907

Inhomogeneous Electron Gas
journal, November 1964


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Challenges in large scale quantum mechanical calculations: Challenges in large scale quantum mechanical calculations
journal, November 2016

  • Ratcliff, Laura E.; Mohr, Stephan; Huhs, Georg
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 7, Issue 1
  • DOI: 10.1002/wcms.1290

Fragmentation Methods: A Route to Accurate Calculations on Large Systems
journal, August 2011

  • Gordon, Mark S.; Fedorov, Dmitri G.; Pruitt, Spencer R.
  • Chemical Reviews, Vol. 112, Issue 1
  • DOI: 10.1021/cr200093j

Energy-Based Molecular Fragmentation Methods
journal, April 2015

  • Collins, Michael A.; Bettens, Ryan P. A.
  • Chemical Reviews, Vol. 115, Issue 12
  • DOI: 10.1021/cr500455b

Comparison of atomic charges derived via different procedures
journal, December 1993

  • Wiberg, Kenneth B.; Rablen, Paul R.
  • Journal of Computational Chemistry, Vol. 14, Issue 12
  • DOI: 10.1002/jcc.540141213

Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis
journal, January 2003

  • Fonseca Guerra, C�lia; Handgraaf, Jan-Willem; Baerends, Evert Jan
  • Journal of Computational Chemistry, Vol. 25, Issue 2
  • DOI: 10.1002/jcc.10351

Reducing the scaling of the fragment molecular orbital method using the multipole method
journal, August 2012


Extending the Power of Quantum Chemistry to Large Systems with the Fragment Molecular Orbital Method
journal, August 2007

  • Fedorov, Dmitri G.; Kitaura, Kazuo
  • The Journal of Physical Chemistry A, Vol. 111, Issue 30
  • DOI: 10.1021/jp0716740

Toward a Molecular Orbital Derived Empirical Potential for Liquid Simulations
journal, January 1997

  • Gao, Jiali
  • The Journal of Physical Chemistry B, Vol. 101, Issue 4
  • DOI: 10.1021/jp962833a

A molecular-orbital derived polarization potential for liquid water
journal, August 1998

  • Gao, Jiali
  • The Journal of Chemical Physics, Vol. 109, Issue 6
  • DOI: 10.1063/1.476802

Hydrogen fluoride phase behavior and molecular structure: A QM/MM potential model approach
journal, October 2003

  • Wierzchowski, Scott J.; Kofke, David A.; Gao, Jiali
  • The Journal of Chemical Physics, Vol. 119, Issue 14
  • DOI: 10.1063/1.1607919

Design of a Next Generation Force Field:  The X-POL Potential
journal, August 2007

  • Xie, Wangshen; Gao, Jiali
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 6
  • DOI: 10.1021/ct700167b

The variational explicit polarization potential and analytical first derivative of energy: Towards a next generation force field
journal, June 2008

  • Xie, Wangshen; Song, Lingchun; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 128, Issue 23
  • DOI: 10.1063/1.2936122

Incorporation of a QM/MM Buffer Zone in the Variational Double Self-Consistent Field Method
journal, November 2008

  • Xie, Wangshen; Song, Lingchun; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 45
  • DOI: 10.1021/jp804512f

Linear-Scaling Time-Dependent Density Functional Theory Based on the Idea of “From Fragments to Molecule”
journal, September 2011

  • Wu, Fangqin; Liu, Wenjian; Zhang, Yong
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 11
  • DOI: 10.1021/ct200225v

Photoexcitation of Light-Harvesting C–P–C 60 Triads: A FLMO-TD-DFT Study
journal, May 2014

  • Liu, Junzi; Zhang, Yong; Liu, Wenjian
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 6
  • DOI: 10.1021/ct500066t

Localization of Molecular Orbitals: From Fragments to Molecule
journal, July 2014

  • Li, Zhendong; Li, Hongyang; Suo, Bingbing
  • Accounts of Chemical Research, Vol. 47, Issue 9
  • DOI: 10.1021/ar500082t

Localization of open-shell molecular orbitals via least change from fragments to molecule
journal, March 2017

  • Li, Hongyang; Liu, Wenjian; Suo, Bingbing
  • The Journal of Chemical Physics, Vol. 146, Issue 10
  • DOI: 10.1063/1.4977929

Introducing ONETEP : Linear-scaling density functional simulations on parallel computers
journal, February 2005

  • Skylaris, Chris-Kriton; Haynes, Peter D.; Mostofi, Arash A.
  • The Journal of Chemical Physics, Vol. 122, Issue 8
  • DOI: 10.1063/1.1839852

Recent progress with large-scaleab initio calculations: the CONQUEST code
journal, April 2006

  • Bowler, D. R.; Choudhury, R.; Gillan, M. J.
  • physica status solidi (b), Vol. 243, Issue 5
  • DOI: 10.1002/pssb.200541386

Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I
journal, October 1955

  • Mulliken, R. S.
  • The Journal of Chemical Physics, Vol. 23, Issue 10
  • DOI: 10.1063/1.1740588

Natural population analysis
journal, July 1985

  • Reed, Alan E.; Weinstock, Robert B.; Weinhold, Frank
  • The Journal of Chemical Physics, Vol. 83, Issue 2
  • DOI: 10.1063/1.449486

Comparison of Two Atomic Charge Definitions, as Applied to the Hydrogen Fluoride Molecule
journal, November 1971

  • Politzer, Peter; Mulliken, Robert S.
  • The Journal of Chemical Physics, Vol. 55, Issue 10
  • DOI: 10.1063/1.1675638

On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals
journal, March 1950

  • Löwdin, Per‐Olov
  • The Journal of Chemical Physics, Vol. 18, Issue 3
  • DOI: 10.1063/1.1747632

A method for population and bonding analyses in calculations with extended basis sets
journal, March 1997

  • Liu, Wenjian; Li, Lemin
  • Theoretica Chimica Acta, Vol. 95, Issue 3-4
  • DOI: 10.1007/BF02341693

Daubechies wavelets for linear scaling density functional theory
journal, May 2014

  • Mohr, Stephan; Ratcliff, Laura E.; Boulanger, Paul
  • The Journal of Chemical Physics, Vol. 140, Issue 20
  • DOI: 10.1063/1.4871876

Accurate and efficient linear scaling DFT calculations with universal applicability
journal, January 2015

  • Mohr, Stephan; Ratcliff, Laura E.; Genovese, Luigi
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 47
  • DOI: 10.1039/C5CP00437C

ONETEP: linear-scaling density-functional theory with local orbitals and plane waves
journal, September 2006

  • Haynes, Peter D.; Skylaris, Chris-Kriton; Mostofi, Arash A.
  • physica status solidi (b), Vol. 243, Issue 11
  • DOI: 10.1002/pssb.200541457

RETRACTED ARTICLE: ONETEP: linear-scaling density-functional theory with plane-waves
journal, June 2007


Recent progress in linear-scaling density functional calculations with plane waves and pseudopotentials: the ONETEP code
journal, January 2008

  • Skylaris, Chris-Kriton; Haynes, Peter D.; Mostofi, Arash A.
  • Journal of Physics: Condensed Matter, Vol. 20, Issue 6
  • DOI: 10.1088/0953-8984/20/6/064209

Practical methods for ab initio calculations on thousands of atoms
journal, January 2000


Calculations for millions of atoms with density functional theory: linear scaling shows its potential
journal, February 2010


Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
journal, April 2005

  • VandeVondele, Joost; Krack, Matthias; Mohamed, Fawzi
  • Computer Physics Communications, Vol. 167, Issue 2
  • DOI: 10.1016/j.cpc.2004.12.014

The SIESTA method for ab initio order- N materials simulation
journal, March 2002

  • Soler, José M.; Artacho, Emilio; Gale, Julian D.
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 11
  • DOI: 10.1088/0953-8984/14/11/302

The SIESTA method; developments and applicability
journal, January 2008


Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
journal, August 1998


Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations
journal, March 2013

  • Willand, Alex; Kvashnin, Yaroslav O.; Genovese, Luigi
  • The Journal of Chemical Physics, Vol. 138, Issue 10
  • DOI: 10.1063/1.4793260

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Daubechies wavelets as a basis set for density functional pseudopotential calculations
journal, July 2008

  • Genovese, Luigi; Neelov, Alexey; Goedecker, Stefan
  • The Journal of Chemical Physics, Vol. 129, Issue 1
  • DOI: 10.1063/1.2949547

Atomic orbital basis sets: Atomic orbital basis sets
journal, October 2012

  • Jensen, Frank
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 3, Issue 3
  • DOI: 10.1002/wcms.1123

The Amber biomolecular simulation programs
journal, January 2005

  • Case, David A.; Cheatham, Thomas E.; Darden, Tom
  • Journal of Computational Chemistry, Vol. 26, Issue 16
  • DOI: 10.1002/jcc.20290

Comparison of multiple Amber force fields and development of improved protein backbone parameters
journal, November 2006

  • Hornak, Viktor; Abel, Robert; Okur, Asim
  • Proteins: Structure, Function, and Bioinformatics, Vol. 65, Issue 3
  • DOI: 10.1002/prot.21123

Distributed multipole analysis, or how to describe a molecular charge distribution
journal, October 1981


Cumulative atomic multipole representation of the molecular charge distribution and its basis set dependence
journal, June 1983


Representation of the molecular electrostatic potential by atomic multipole and bond dipole models
journal, October 1988


Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties
journal, September 1992

  • Sokalski, W. A.; Shibata, M.; Rein, R.
  • Journal of Computational Chemistry, Vol. 13, Issue 7
  • DOI: 10.1002/jcc.540130713

Transferable atom equivalent multicentered multipole expansion method
journal, February 2003

  • Whitehead, C. E.; Breneman, C. M.; Sukumar, N.
  • Journal of Computational Chemistry, Vol. 24, Issue 4
  • DOI: 10.1002/jcc.10240

Beyond the Isotropic Atom Model in Crystal Structure Prediction of Rigid Molecules:  Atomic Multipoles versus Point Charges
journal, May 2005

  • Day, Graeme M.; Motherwell, W. D. Sam; Jones, William
  • Crystal Growth & Design, Vol. 5, Issue 3
  • DOI: 10.1021/cg049651n

Higher order multipole moments for molecular dynamics simulations
journal, March 2009


Deriving Static Atomic Multipoles from the Electrostatic Potential
journal, December 2013

  • Kramer, Christian; Bereau, Tristan; Spinn, Alexander
  • Journal of Chemical Information and Modeling, Vol. 53, Issue 12
  • DOI: 10.1021/ci400548w

Translation of real solid spherical harmonics
journal, October 2012

  • Rico, Jaime Fernández; López, Rafael; Ema, Ignacio
  • International Journal of Quantum Chemistry, Vol. 113, Issue 10
  • DOI: 10.1002/qua.24356