DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X = Sb, Bi) Zintl compounds

Abstract

In this paper, we report a theoretical investigation of the electronic structure and transport properties of eleven Zintl compounds including nine 122 phases (AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi)) and two 212 phases (Ba2ZnX2 (X = Sb, Bi)). The electronic structures and electrical transport properties are studied using ab initio calculations and semi-classical Boltzmann theory within the constant relaxation time approximation. All the compounds are semiconducting. We find that the n-type 122 phases with the CaAl2Si2 structure type show better performance than p-type materials due to the multi-valley degeneracy with anisotropic carrier pockets at and near the conduction band minimum. The pocket anisotropy is beneficial in achieving high conductivity and Seebeck coefficient simultaneously. This mechanism yields substantial improvement in the power factor. Finally, the general performance of 212 phases is inferior to that of the 122 phases, with the Ba2ZnSb2 compound showing better performance.

Authors:
 [1]; ORCiD logo [1]
  1. Univ. of Missouri, Columbia, MO (United States). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Univ. of Missouri, Columbia, MO (United States); Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1399476
Grant/Contract Number:  
SC0001299
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 5; Journal Issue: 18; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Sun, Jifeng, and Singh, David J. Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X = Sb, Bi) Zintl compounds. United States: N. p., 2017. Web. doi:10.1039/c6ta11234j.
Sun, Jifeng, & Singh, David J. Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X = Sb, Bi) Zintl compounds. United States. https://doi.org/10.1039/c6ta11234j
Sun, Jifeng, and Singh, David J. Mon . "Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X = Sb, Bi) Zintl compounds". United States. https://doi.org/10.1039/c6ta11234j. https://www.osti.gov/servlets/purl/1399476.
@article{osti_1399476,
title = {Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X = Sb, Bi) Zintl compounds},
author = {Sun, Jifeng and Singh, David J.},
abstractNote = {In this paper, we report a theoretical investigation of the electronic structure and transport properties of eleven Zintl compounds including nine 122 phases (AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi)) and two 212 phases (Ba2ZnX2 (X = Sb, Bi)). The electronic structures and electrical transport properties are studied using ab initio calculations and semi-classical Boltzmann theory within the constant relaxation time approximation. All the compounds are semiconducting. We find that the n-type 122 phases with the CaAl2Si2 structure type show better performance than p-type materials due to the multi-valley degeneracy with anisotropic carrier pockets at and near the conduction band minimum. The pocket anisotropy is beneficial in achieving high conductivity and Seebeck coefficient simultaneously. This mechanism yields substantial improvement in the power factor. Finally, the general performance of 212 phases is inferior to that of the 122 phases, with the Ba2ZnSb2 compound showing better performance.},
doi = {10.1039/c6ta11234j},
journal = {Journal of Materials Chemistry. A},
number = 18,
volume = 5,
place = {United States},
year = {Mon Apr 03 00:00:00 EDT 2017},
month = {Mon Apr 03 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 70 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Efficient Band Gap Prediction for Solids
journal, November 2010


Structure and Properties of Single Crystalline CaMg 2 Bi 2 , EuMg 2 Bi 2 , and YbMg 2 Bi 2
journal, November 2011

  • May, Andrew F.; McGuire, Michael A.; Singh, David J.
  • Inorganic Chemistry, Vol. 50, Issue 21
  • DOI: 10.1021/ic2016808

Isolated 1 [ZnPn 2 ] 4− Chains in the Zintl Phases Ba 2 ZnPn 2 (Pn = As, Sb, Bi)—Synthesis, Structure, and Bonding
journal, June 2010

  • Saparov, Bayrammurad; Bobev, Svilen
  • Inorganic Chemistry, Vol. 49, Issue 11
  • DOI: 10.1021/ic100296x

Merits and limits of the modified Becke-Johnson exchange potential
journal, May 2011


Thermoelectric properties of n -type SrTiO 3
journal, October 2016

  • Sun, Jifeng; Singh, David J.
  • APL Materials, Vol. 4, Issue 10
  • DOI: 10.1063/1.4952610

Electronic and transport properties of zintl phase Ae Mg 2 Pn 2 , Ae  = Ca,Sr,Ba, Pn  = As,Sb,Bi in relation to Mg 3 Sb 2
journal, October 2013

  • Singh, David J.; Parker, David
  • Journal of Applied Physics, Vol. 114, Issue 14
  • DOI: 10.1063/1.4824465

Transport properties of cubic crystalline Ge 2 Sb 2 Te 5 : A potential low-temperature thermoelectric material
journal, March 2015

  • Sun, Jifeng; Mukhopadhyay, Saikat; Subedi, Alaska
  • Applied Physics Letters, Vol. 106, Issue 12
  • DOI: 10.1063/1.4916558

Higher thermoelectric performance of Zintl phases (Eu 0.5 Yb 0.5 ) 1−x Ca x Mg 2 Bi 2 by band engineering and strain fluctuation
journal, July 2016

  • Shuai, Jing; Geng, Huiyuan; Lan, Yucheng
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 29
  • DOI: 10.1073/pnas.1608794113

New Directions for Low-Dimensional Thermoelectric Materials
journal, April 2007

  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.
  • Advanced Materials, Vol. 19, Issue 8, p. 1043-1053
  • DOI: 10.1002/adma.200600527

Perspective: n-type oxide thermoelectrics via visual search strategies
journal, February 2016

  • Xing, Guangzong; Sun, Jifeng; Ong, Khuong P.
  • APL Materials, Vol. 4, Issue 5
  • DOI: 10.1063/1.4941711

Automated Search for New Thermoelectric Materials: The Case of LiZnSb
journal, September 2006

  • Madsen, Georg K. H.
  • Journal of the American Chemical Society, Vol. 128, Issue 37
  • DOI: 10.1021/ja062526a

Convergence of electronic bands for high performance bulk thermoelectrics
journal, May 2011

  • Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron
  • Nature, Vol. 473, Issue 7345, p. 66-69
  • DOI: 10.1038/nature09996

High Three-Dimensional Thermoelectric Performance from Low-Dimensional Bands
journal, April 2013


Thermoelectric Materials for Space and Automotive Power Generation
journal, March 2006


Observation of Anderson Localization in an Electron Gas
journal, May 1969


Properties of single crystalline A Zn 2 Sb 2 ( A  = Ca,Eu,Yb)
journal, February 2012

  • May, Andrew F.; McGuire, Michael A.; Ma, Jie
  • Journal of Applied Physics, Vol. 111, Issue 3
  • DOI: 10.1063/1.3681817

Improved Thermoelectric Performance in Yb 14 Mn 1− x Zn x Sb 11 by the Reduction of Spin-Disorder Scattering
journal, May 2008

  • Brown, Shawna R.; Toberer, Eric S.; Ikeda, Teruyuki
  • Chemistry of Materials, Vol. 20, Issue 10
  • DOI: 10.1021/cm703616q

Thermoelectric Cooling and Power Generation
journal, July 1999


The Structure of α-Zn 4 Sb 3 :  Ordering of the Phonon-Glass Thermoelectric Material β-Zn 4 Sb 3
journal, December 2004

  • Nylén, Johanna; Andersson, Magnus; Lidin, Sven
  • Journal of the American Chemical Society, Vol. 126, Issue 50
  • DOI: 10.1021/ja044980p

BoltzTraP. A code for calculating band-structure dependent quantities
journal, July 2006


A new type of thermoelectric material, EuZn2Sb2
journal, October 2008

  • Zhang, Hui; Zhao, Jing-Tai; Grin, Yu.
  • The Journal of Chemical Physics, Vol. 129, Issue 16
  • DOI: 10.1063/1.3001608

Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential
journal, June 2009


Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1-xZn2Sb2
journal, November 2005

  • Gascoin, F.; Ottensmann, S.; Stark, D.
  • Advanced Functional Materials, Vol. 15, Issue 11
  • DOI: 10.1002/adfm.200500043

Thermoelectric transport properties of CaMg 2 Bi 2 , EuMg 2 Bi 2 , and YbMg 2 Bi 2
journal, January 2012


Electronic structure calculations with the Tran-Blaha modified Becke-Johnson density functional
journal, November 2010


Valence band study of thermoelectric Zintl-phase SrZn 2 Sb 2 and YbZn 2 Sb 2 : X-ray photoelectron spectroscopy and density functional theory
journal, May 2010


Enhanced Thermoelectric Figure of Merit of Zintl Phase YbCd2-xMnxSb2 by Chemical Substitution
journal, August 2011

  • Guo, Kai; Cao, Qi-Gao; Feng, Xian-Juan
  • European Journal of Inorganic Chemistry, Vol. 2011, Issue 26
  • DOI: 10.1002/ejic.201100282

Effect of quantum-well structures on the thermoelectric figure of merit
journal, May 1993


Enhanced thermoelectric properties of BaZn 2 Sb 2 via a synergistic optimization strategy using co-doped Na and Sr
journal, January 2016

  • Yan, Ruijuan; Lv, Wanyu; Wang, Ke
  • Journal of Materials Chemistry A, Vol. 4, Issue 31
  • DOI: 10.1039/C6TA03012B

Benefits of Carrier-Pocket Anisotropy to Thermoelectric Performance: The Case of p -Type AgBiSe 2
journal, June 2015


Thermoelectric properties of AgGaTe 2 and related chalcopyrite structure materials
journal, March 2012


Thermoelectric properties of YbxEu1−xCd2Sb2
journal, November 2010

  • Zhang, H.; Fang, L.; Tang, M. -B.
  • The Journal of Chemical Physics, Vol. 133, Issue 19
  • DOI: 10.1063/1.3501370

Materials for thermoelectric energy conversion
journal, April 1988


Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu)
journal, January 2010

  • Toberer, Eric S.; May, Andrew F.; Melot, Brent C.
  • Dalton Trans., Vol. 39, Issue 4
  • DOI: 10.1039/B914172C

A Rational Approach to Solid State Synthesis—The Zintl Concept
journal, May 1990


Isotropic Conduction Network and Defect Chemistry in Mg 3+ δ Sb 2 -Based Layered Zintl Compounds with High Thermoelectric Performance
journal, September 2016

  • Tamaki, Hiromasa; Sato, Hiroki K.; Kanno, Tsutomu
  • Advanced Materials, Vol. 28, Issue 46
  • DOI: 10.1002/adma.201603955

Defect-Controlled Electronic Properties in A Zn 2 Sb 2 Zintl Phases
journal, February 2014

  • Pomrehn, Gregory S.; Zevalkink, Alex; Zeier, Wolfgang G.
  • Angewandte Chemie International Edition, Vol. 53, Issue 13
  • DOI: 10.1002/anie.201311125

Electronic and thermoelectric properties of Cu Co O 2 : Density functional calculations
journal, August 2007


Thermoelectric properties of Bi-based Zintl compounds Ca 1−x Yb x Mg 2 Bi 2
journal, January 2016

  • Shuai, Jing; Liu, Zihang; Kim, Hee Seok
  • Journal of Materials Chemistry A, Vol. 4, Issue 11
  • DOI: 10.1039/C6TA00507A

High-temperature thermoelectric performance of heavily doped PbSe
journal, July 2010


Synthesis and high thermoelectric efficiency of Zintl phase YbCd2−xZnxSb2
journal, March 2009

  • Wang, Xiao-Jun; Tang, Mei-Bo; Chen, Hao-Hong
  • Applied Physics Letters, Vol. 94, Issue 9
  • DOI: 10.1063/1.3040321

Band gaps from the Tran-Blaha modified Becke-Johnson approach: A systematic investigation
journal, April 2013

  • Jiang, Hong
  • The Journal of Chemical Physics, Vol. 138, Issue 13
  • DOI: 10.1063/1.4798706

Bulk nanostructured thermoelectric materials: current research and future prospects
journal, January 2009

  • Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.
  • Energy & Environmental Science, Vol. 2, Issue 5
  • DOI: 10.1039/b822664b

Recent Developments in Semiconductor Thermoelectric Physics and Materials
journal, August 2011


On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective
journal, February 2016


Importance of non-parabolic band effects in the thermoelectric properties of semiconductors
journal, November 2013

  • Chen, Xin; Parker, David; Singh, David J.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03168

Large Seebeck effect in electron-doped FeAs 2 driven by a quasi-one-dimensional pudding-mold-type band
journal, August 2013


Electronic structure calculations of solids using the WIEN2k package for material sciences
journal, August 2002


Defect-Controlled Electronic Properties in A Zn 2 Sb 2 Zintl Phases
journal, February 2014

  • Pomrehn, Gregory S.; Zevalkink, Alex; Zeier, Wolfgang G.
  • Angewandte Chemie, Vol. 126, Issue 13
  • DOI: 10.1002/ange.201311125

Automated Search for New Thermoelectric Materials: The Case of LiZnSb.
journal, December 2006


New Directions for Low-Dimensional Thermoelectric Materials
journal, June 2007

  • Dresselhaus, Mildred S.; Chen, Gang; Tang, Ming Y.
  • ChemInform, Vol. 38, Issue 26
  • DOI: 10.1002/chin.200726202

Properties of single crystalline AZn2Sb2 (A=Ca,Eu,Yb)
text, January 2012


Works referencing / citing this record:

Achieving band convergence by tuning the bonding ionicity in n‐type Mg 3 Sb 2
journal, March 2019

  • Sun, Xin; Li, Xin; Yang, Jiong
  • Journal of Computational Chemistry, Vol. 40, Issue 18
  • DOI: 10.1002/jcc.25822

Advances in Thermoelectric Mg 3 Sb 2 and Its Derivatives
journal, July 2018


Enhanced thermoelectric performance of p-type Mg3Sb2 by lithium doping and its tunability in an anionic framework
journal, August 2018


Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment
journal, July 2019

  • Zhang, Jiawei; Song, Lirong; Iversen, Bo Brummerstedt
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0215-y

An ab initio investigation on the electronic structure, defect energetics, and magnesium kinetics in Mg 3 Bi 2
journal, January 2018

  • Lee, Jeongjae; Monserrat, Bartomeu; Seymour, Ieuan D.
  • Journal of Materials Chemistry A, Vol. 6, Issue 35
  • DOI: 10.1039/c7ta11181a

Linking thermoelectric generation in polycrystalline semiconductors to grain boundary effects sets a platform for novel Seebeck effect-based sensors
journal, January 2018

  • Hossein-Babaei, Faramarz; Masoumi, Saeed; Noori, Amirreza
  • Journal of Materials Chemistry A, Vol. 6, Issue 22
  • DOI: 10.1039/c8ta02732c

Band engineering and crystal field screening in thermoelectric Mg 3 Sb 2
journal, January 2019

  • Tan, Xiaojian; Liu, Guo-Qiang; Hu, Haoyang
  • Journal of Materials Chemistry A, Vol. 7, Issue 15
  • DOI: 10.1039/c9ta00288j

Thermoelectric properties of p-type cubic and rhombohedral GeTe
journal, May 2018

  • Xing, Guangzong; Sun, Jifeng; Li, Yuwei
  • Journal of Applied Physics, Vol. 123, Issue 19
  • DOI: 10.1063/1.5025070