DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MetILs3: A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids

Abstract

A systematic approach is presented for increasing the concentration of redox‐active species in electrolytes for nonaqueous redox flow batteries (RFBs). Starting with an ionic liquid consisting of a metal coordination cation (MetIL), ferrocene‐containing ligands and iodide anions are substituted incrementally into the structure. While chemical structures can be drawn for molecules with 10 m redox‐active electrons (RAE), practical limitations such as melting point and phase stability constrain the structures to 4.2 m RAE, a 2.3× improvement over the original MetIL. Dubbed “MetILs 3 ,” these ionic liquids possess redox activity in the cation core, ligands, and anions. Throughout all compositions, infrared spectroscopy shows the ethanolamine‐based ligands primarily coordinate to the Fe 2+ core via hydroxyl groups. Calorimetry conveys a profound change in thermophysical properties, not only in melting temperature but also in suppression of a cold crystallization only observed in the original MetIL. Square wave voltammetry reveals redox processes characteristic of each molecular location. Testing a laboratory‐scale RFB demonstrates Coulombic efficiencies >95% and increased voltage efficiencies due to more facile redox kinetics, effectively increasing capacity 4×. Application of this strategy to other chemistries, optimizing melting point and conductivity, can yield >10 m RAE, making nonaqueous RFB a viable technology formore » grid scale storage.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Electricity (OE)
OSTI Identifier:
1398783
Alternate Identifier(s):
OSTI ID: 1378388
Report Number(s):
SAND-2017-10038J
Journal ID: ISSN 2366-7486; 657059
Grant/Contract Number:  
AC04-94AL85000; NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Sustainable Systems
Additional Journal Information:
Journal Volume: 1; Journal Issue: 9; Journal ID: ISSN 2366-7486
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; electrochemistry; flow batteries; grid scale storage; ionic liquids; redox

Citation Formats

Small, Leo J., Pratt, Harry D., Staiger, Chad L., and Anderson, Travis M. MetILs3: A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids. United States: N. p., 2017. Web. doi:10.1002/adsu.201700066.
Small, Leo J., Pratt, Harry D., Staiger, Chad L., & Anderson, Travis M. MetILs3: A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids. United States. https://doi.org/10.1002/adsu.201700066
Small, Leo J., Pratt, Harry D., Staiger, Chad L., and Anderson, Travis M. Wed . "MetILs3: A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids". United States. https://doi.org/10.1002/adsu.201700066. https://www.osti.gov/servlets/purl/1398783.
@article{osti_1398783,
title = {MetILs3: A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids},
author = {Small, Leo J. and Pratt, Harry D. and Staiger, Chad L. and Anderson, Travis M.},
abstractNote = {A systematic approach is presented for increasing the concentration of redox‐active species in electrolytes for nonaqueous redox flow batteries (RFBs). Starting with an ionic liquid consisting of a metal coordination cation (MetIL), ferrocene‐containing ligands and iodide anions are substituted incrementally into the structure. While chemical structures can be drawn for molecules with 10 m redox‐active electrons (RAE), practical limitations such as melting point and phase stability constrain the structures to 4.2 m RAE, a 2.3× improvement over the original MetIL. Dubbed “MetILs 3 ,” these ionic liquids possess redox activity in the cation core, ligands, and anions. Throughout all compositions, infrared spectroscopy shows the ethanolamine‐based ligands primarily coordinate to the Fe 2+ core via hydroxyl groups. Calorimetry conveys a profound change in thermophysical properties, not only in melting temperature but also in suppression of a cold crystallization only observed in the original MetIL. Square wave voltammetry reveals redox processes characteristic of each molecular location. Testing a laboratory‐scale RFB demonstrates Coulombic efficiencies >95% and increased voltage efficiencies due to more facile redox kinetics, effectively increasing capacity 4×. Application of this strategy to other chemistries, optimizing melting point and conductivity, can yield >10 m RAE, making nonaqueous RFB a viable technology for grid scale storage.},
doi = {10.1002/adsu.201700066},
journal = {Advanced Sustainable Systems},
number = 9,
volume = 1,
place = {United States},
year = {Wed Jul 26 00:00:00 EDT 2017},
month = {Wed Jul 26 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries
journal, November 2016

  • Sevov, Christo S.; Fisher, Sydney L.; Thompson, Levi T.
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b07638

Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion
journal, January 2016

  • Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.
  • Dalton Transactions, Vol. 45, Issue 24
  • DOI: 10.1039/C6DT00422A

Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species
journal, October 2004

  • Tokuda, Hiroyuki; Hayamizu, Kikuko; Ishii, Kunikazu
  • The Journal of Physical Chemistry B, Vol. 108, Issue 42
  • DOI: 10.1021/jp047480r

High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries
journal, January 2016

  • Milshtein, Jarrod D.; Kaur, Aman Preet; Casselman, Matthew D.
  • Energy & Environmental Science, Vol. 9, Issue 11
  • DOI: 10.1039/C6EE02027E

Synthesis of an ionic liquid with an iron coordination cation
journal, January 2010

  • Anderson, Travis M.; Ingersoll, David; Rose, Alyssa J.
  • Dalton Transactions, Vol. 39, Issue 37
  • DOI: 10.1039/c0dt00523a

Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids
journal, December 2008

  • O’Mahony, Aoife M.; Silvester, Debbie S.; Aldous, Leigh
  • Journal of Chemical & Engineering Data, Vol. 53, Issue 12
  • DOI: 10.1021/je800678e

Ferrocene and Cobaltocene Derivatives for Non-Aqueous Redox Flow Batteries
journal, November 2014


The lightest organic radical cation for charge storage in redox flow batteries
journal, August 2016

  • Huang, Jinhua; Pan, Baofei; Duan, Wentao
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep32102

High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane
journal, November 2015


Square Wave Voltammetry
journal, January 1985

  • Osteryoung, Janet G.; Osteryoung, Robert A.
  • Analytical Chemistry, Vol. 57, Issue 1
  • DOI: 10.1021/ac00279a789

Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

Chloride supporting electrolytes for all-vanadium redox flow batteries
journal, January 2011

  • Kim, Soowhan; Vijayakumar, M.; Wang, Wei
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 40
  • DOI: 10.1039/c1cp22638j

Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds
journal, September 2015

  • Cosimbescu, Lelia; Wei, Xiaoliang; Vijayakumar, M.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14117

Redox Flow Batteries: An Engineering Perspective
journal, June 2014

  • Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.
  • Proceedings of the IEEE, Vol. 102, Issue 6
  • DOI: 10.1109/JPROC.2014.2320317

Towards an all-copper redox flow battery based on a copper-containing ionic liquid
journal, January 2016

  • Schaltin, Stijn; Li, Yun; Brooks, Neil R.
  • Chemical Communications, Vol. 52, Issue 2
  • DOI: 10.1039/C5CC06774J

Electrolyte Development for Non-Aqueous Redox Flow Batteries Using a High-Throughput Screening Platform
journal, January 2014

  • Su, Liang; Ferrandon, Magali; Kowalski, Jeffrey A.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0811412jes

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

A tetradentate Ni(II) complex cation as a single redox couple for non-aqueous flow batteries
journal, June 2015


Diels Alder Polyphenylene Anion Exchange Membrane for Nonaqueous Redox Flow Batteries
journal, October 2015

  • Small, Leo J.; Pratt, Harry D.; Fujimoto, Cy H.
  • Journal of The Electrochemical Society, Vol. 163, Issue 1
  • DOI: 10.1149/2.0141601jes

Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery
journal, January 2012

  • Wang, Wei; Xu, Wu; Cosimbescu, Lelia
  • Chemical Communications, Vol. 48, Issue 53, p. 6669-6671
  • DOI: 10.1039/c2cc32466k

Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries
journal, January 2015

  • Suttil, J. A.; Kucharyson, J. F.; Escalante-Garcia, I. L.
  • Journal of Materials Chemistry A, Vol. 3, Issue 15
  • DOI: 10.1039/C4TA06622G

Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries
journal, October 2015

  • Sevov, Christo S.; Brooner, Rachel E. M.; Chénard, Etienne
  • Journal of the American Chemical Society, Vol. 137, Issue 45
  • DOI: 10.1021/jacs.5b09572

Communication—Iron Ionic Liquid Electrolytes for Redox Flow Battery Applications
journal, January 2016

  • Miller, M. A.; Wainright, J. S.; Savinell, R. F.
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0061605jes

A High-Energy-Density Multiple Redox Semi-Solid-Liquid Flow Battery
journal, January 2016


Cyclopropenium Salts as Cyclable, High-Potential Catholytes in Nonaqueous Media
journal, November 2016

  • Sevov, Christo S.; Samaroo, Sharmila K.; Sanford, Melanie S.
  • Advanced Energy Materials, Vol. 7, Issue 5
  • DOI: 10.1002/aenm.201602027

Synthesis and characterization of ionic liquids containing copper, manganese, or zinc coordination cations
journal, January 2011

  • Pratt III, Harry D.; Rose, Alyssa J.; Staiger, Chad L.
  • Dalton Transactions, Vol. 40, Issue 43
  • DOI: 10.1039/c1dt10973a

Thermophysical Properties of Imidazolium-Based Ionic Liquids
journal, July 2004

  • Fredlake, Christopher P.; Crosthwaite, Jacob M.; Hert, Daniel G.
  • Journal of Chemical & Engineering Data, Vol. 49, Issue 4
  • DOI: 10.1021/je034261a

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

A High-Current, Stable Nonaqueous Organic Redox Flow Battery
journal, September 2016


A Highly Soluble Organic Catholyte for Non-Aqueous Redox Flow Batteries
journal, April 2015

  • Kaur, Aman Preet; Holubowitch, Nicolas E.; Ergun, Selin
  • Energy Technology, Vol. 3, Issue 5, p. 476-480
  • DOI: 10.1002/ente.201500020

Through-Plane Conductivities of Membranes for Nonaqueous Redox Flow Batteries
journal, January 2015

  • Hudak, Nicholas S.; Small, Leo J.; Pratt, Harry D.
  • Journal of The Electrochemical Society, Vol. 162, Issue 10
  • DOI: 10.1149/2.0901510jes

Redox Ionic Liquid Phases:  Ferrocenated Imidazoliums
journal, August 2006

  • Balasubramanian, Ramjee; Wang, Wei; Murray, Royce W.
  • Journal of the American Chemical Society, Vol. 128, Issue 31
  • DOI: 10.1021/ja0625327

Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery
journal, April 2015

  • Wei, Xiaoliang; Xu, Wu; Huang, Jinhua
  • Angewandte Chemie International Edition, Vol. 54, Issue 30
  • DOI: 10.1002/anie.201501443

Voltammetric Characterization of the Ferrocene|Ferrocenium and Cobaltocenium|Cobaltocene Redox Couples in RTILs
journal, February 2008

  • Rogers, Emma I.; Silvester, Debbie S.; Poole, Darren L.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 7
  • DOI: 10.1021/jp710134e

Square wave voltammetry
journal, January 1985

  • Osteryoung, Janet G.; Osteryoung, Robert A.
  • Analytical Chemistry, Vol. 57, Issue 1
  • DOI: 10.1021/ac00279a004

Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery
journal, April 2015


Works referencing / citing this record:

Effects of chain length on the size, stability, and electronic structure of redox-active organic–inorganic hybrid polyoxometalate micelles
journal, January 2019

  • Amin, Sharad; Cameron, Jamie M.; Watts, Julie A.
  • Molecular Systems Design & Engineering, Vol. 4, Issue 5
  • DOI: 10.1039/c9me00060g

Synthesis, Crystal Structures, and Thermal Properties of Protic Metal-Containing Ionic Liquids, Diethanolammonium Halometallates: (HOCH2CH2)2NH2FeCl4 and ((HOCH2CH2)2NH2)2CoCl4
journal, April 2020

  • Zakharov, M. A.; Filatova, Yu. V.; Bykov, M. A.
  • Russian Journal of Coordination Chemistry, Vol. 46, Issue 4
  • DOI: 10.1134/s1070328420040077

Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries
journal, January 2019

  • Small, Leo J.; Pratt, Harry D.; Anderson, Travis M.
  • Journal of The Electrochemical Society, Vol. 166, Issue 12
  • DOI: 10.1149/2.0681912jes