DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor

Abstract

Measured highly elevated gains of proton–boron (HB11) fusion (Picciottoet al., Phys. Rev. X4, 031030 (2014)) confirmed the exceptional avalanche reaction process (Lalousiset al., Laser Part. Beams 32, 409 (2014); Horaet al., Laser Part. Beams33, 607 (2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh accelerationabove$$10^{20}~\text{cm}~\text{s}^{-2}$$ for plasma blocks was theoretically and numerically predicted since 1978 (Hora,Physics of Laser Driven Plasmas(Wiley, 1981), pp. 178 and 179) and measured (Sauerbrey, Phys. Plasmas3, 4712 (1996)) in exact agreement (Horaet al., Phys. Plasmas14, 072701 (2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell’s stress tensor by the dielectric properties of plasma leading to the nonlinear (ponderomotive) force $$f_{\text{NL}}$$ resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. Finally, this is supported also by other experiments with very high HB11 reactions under different conditions (Labauneet al., Nature Commun.4, 2506 (2013)).

Authors:
 [1];  [2];  [3];  [4];  [5];  [2];  [2];  [6];  [7];  [8];  [9];  [10];  [11]
  1. Univ. of New South Wales, Sydney, NSW (Australia). Dept. of Theoretical Physics
  2. Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic). Inst. of Physics, ELI-Beamline Project
  3. Polytechnic Univ. of Madrid, Madrid (Spain). Inst. of Nuclear Fusion; Soreq Research Center, Yavne (Israel)
  4. Soreq Research Center, Yavne (Israel)
  5. Inst. of Electronic Structure and Lasers (FORTH), Heraklion (Greece)
  6. Fondazione Bruno Kessler, Trento (Italy). Micro-Nano Facility
  7. Univ. of Illinois, Urbana, IL (United States). Dept. of Nuclear Plasma & Radiological Engineering
  8. Technical Univ. Crete, Chania (Greece). Lab. of Matter Structure and Laser Physics
  9. Polytechnic Univ. of Madrid, Madrid (Spain). Inst. of Nuclear Fusion
  10. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  11. UJK Management GmbH, Poing (Germany)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1395299
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
High Power Laser Science and Engineering
Additional Journal Information:
Journal Volume: 4; Journal ID: ISSN 2095-4719
Publisher:
Cambridge University Press
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; boron fusion energy; dielectric nonlinear force explosion; economic reactor; environmentally clean energy; picosecond-non-thermal plasma block ignition

Citation Formats

Hora, H., Korn, G., Eliezer, S., Nissim, N., Lalousis, P., Giuffrida, L., Margarone, D., Picciotto, A., Miley, G. H., Moustaizis, S., Martinez-Val, J. -M., Barty, C. P. J., and Kirchhoff, G. J. Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor. United States: N. p., 2016. Web. doi:10.1017/hpl.2016.29.
Hora, H., Korn, G., Eliezer, S., Nissim, N., Lalousis, P., Giuffrida, L., Margarone, D., Picciotto, A., Miley, G. H., Moustaizis, S., Martinez-Val, J. -M., Barty, C. P. J., & Kirchhoff, G. J. Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor. United States. https://doi.org/10.1017/hpl.2016.29
Hora, H., Korn, G., Eliezer, S., Nissim, N., Lalousis, P., Giuffrida, L., Margarone, D., Picciotto, A., Miley, G. H., Moustaizis, S., Martinez-Val, J. -M., Barty, C. P. J., and Kirchhoff, G. J. Tue . "Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor". United States. https://doi.org/10.1017/hpl.2016.29. https://www.osti.gov/servlets/purl/1395299.
@article{osti_1395299,
title = {Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor},
author = {Hora, H. and Korn, G. and Eliezer, S. and Nissim, N. and Lalousis, P. and Giuffrida, L. and Margarone, D. and Picciotto, A. and Miley, G. H. and Moustaizis, S. and Martinez-Val, J. -M. and Barty, C. P. J. and Kirchhoff, G. J.},
abstractNote = {Measured highly elevated gains of proton–boron (HB11) fusion (Picciottoet al., Phys. Rev. X4, 031030 (2014)) confirmed the exceptional avalanche reaction process (Lalousiset al., Laser Part. Beams 32, 409 (2014); Horaet al., Laser Part. Beams33, 607 (2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh accelerationabove$10^{20}~\text{cm}~\text{s}^{-2}$ for plasma blocks was theoretically and numerically predicted since 1978 (Hora,Physics of Laser Driven Plasmas(Wiley, 1981), pp. 178 and 179) and measured (Sauerbrey, Phys. Plasmas3, 4712 (1996)) in exact agreement (Horaet al., Phys. Plasmas14, 072701 (2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell’s stress tensor by the dielectric properties of plasma leading to the nonlinear (ponderomotive) force $f_{\text{NL}}$ resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. Finally, this is supported also by other experiments with very high HB11 reactions under different conditions (Labauneet al., Nature Commun.4, 2506 (2013)).},
doi = {10.1017/hpl.2016.29},
journal = {High Power Laser Science and Engineering},
number = ,
volume = 4,
place = {United States},
year = {Tue Oct 11 00:00:00 EDT 2016},
month = {Tue Oct 11 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments
journal, October 1999


Laser-optical path to nuclear energy without radioactivity: Fusion of hydrogen–boron by nonlinear force driven plasma blocks
journal, October 2009


Analysis of the Inverted Double Layers Produced by Nonlinear Forces in a Laser-Produced Plasma
journal, October 1984


Investigations of ion streams emitted from plasma produced with a high-power picosecond laser
journal, April 1999


Fusion energy without radioactivity: laser ignition of solid hydrogen–boron (11) fuel
journal, January 2010

  • Hora, Heinrich; Miley, George H.; Ghoranneviss, M.
  • Energy & Environmental Science, Vol. 3, Issue 4
  • DOI: 10.1039/b904609g

Depressed photoemission from Görlich cathodes at high laser light intensities
journal, November 1995

  • Boreham, B. W.; Newman, D. S.; Höpfl, R.
  • Journal of Applied Physics, Vol. 78, Issue 9
  • DOI: 10.1063/1.359655

Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects
journal, March 2009


Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser
journal, January 2013

  • Fujioka, Shinsuke; Zhang, Zhe; Ishihara, Kazuhiro
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01170

An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments
journal, November 2004


Density dependence of the spectral dielectric function across a Fano resonance
journal, February 1998


Resonance effect for strong increase of fusion gains at thermal compression for volume ignition of Hydrogen Boron-11
journal, March 2011


Fast ignition by laser driven particle beams of very high intensity
journal, July 2007

  • Hora, H.; Badziak, J.; Read, M. N.
  • Physics of Plasmas, Vol. 14, Issue 7
  • DOI: 10.1063/1.2748389

Acceleration in femtosecond laser‐produced plasmas
journal, December 1996


Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor
journal, July 2008

  • Hora, H.; Malekynia, B.; Ghoranneviss, M.
  • Applied Physics Letters, Vol. 93, Issue 1
  • DOI: 10.1063/1.2955839

Power flow control and power flow studies for systems with FACTS devices
journal, January 1998

  • Gotham, D. J.; Heydt, G. T.
  • IEEE Transactions on Power Systems, Vol. 13, Issue 1
  • DOI: 10.1109/59.651614

Shock mechanisms by ultrahigh laser accelerated plasma blocks in solid density targets for fusion
journal, May 2013


Compression of amplified chirped optical pulses
journal, December 1985


Thermonuclear Reaction Waves at High Densities
journal, January 1972


Ultrahigh‐Intensity Lasers: Physics of the Extreme on a Tabletop
journal, January 1998

  • Mourou, Gérard A.; Barry, Christopher P. J.; Perry, Michael D.
  • Physics Today, Vol. 51, Issue 1
  • DOI: 10.1063/1.882131

Laser-initiated primary and secondary nuclear reactions in Boron-Nitride
journal, February 2016

  • Labaune, C.; Baccou, C.; Yahia, V.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep21202

Experiments on the transmutation of elements by protons
journal, July 1933

  • Oliphant, Marcus Laurence Elwin; Rutherford, Ernest
  • Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 141, Issue 843, p. 259-281
  • DOI: 10.1098/rspa.1933.0117

The new possibility of the fusion p + 11 B chain reaction being induced by intense laser pulses
journal, July 2015


The Nexawatt: A Strategy for Exawatt Peak Power Lasers Based on NIF and NIF-like Beam Lines
journal, May 2016


Neutron production from picosecond laser irradiation of deuterated targets at intensities of
journal, February 1998


Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets
journal, May 2011

  • Gaillard, S. A.; Kluge, T.; Flippo, K. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3575624

Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses
journal, July 2015


Optimized boron fusion with magnetic trapping by laser driven plasma block initiation at nonlinear forced driven ultrahigh acceleration
journal, June 2014


Fiber ICAN laser with exawatt-picosecond pulses for fusion without nuclear radiation problems
journal, November 2013


Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma
journal, October 2013

  • Labaune, C.; Baccou, C.; Depierreux, S.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3506

The thermonuclear fusion rate coefficient for p- 11 B reactions
journal, April 2000


Effects of ps and ns laser pulses for giant ion source
journal, June 2002


Nuclear Fusion Reactions in Fronts Propagating in Solid DT
book, January 1974


Untersuchungen zum Diamantproblem
journal, February 1943

  • Günther, Paul L.; Gesslle, Paul; Rebentisch, Wolfgang
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 250, Issue 3-4
  • DOI: 10.1002/zaac.19432500314

Electrons and Holes in Semiconductors
journal, December 1952

  • Shockley, William; Field, E. M.
  • Physics Today, Vol. 5, Issue 12
  • DOI: 10.1063/1.3067420

Works referencing / citing this record:

On the enhancement of p- 11 B fusion reaction rate in laser-driven plasma by α → p collisional energy transfer
journal, February 2018

  • Belloni, Fabio; Margarone, Daniele; Picciotto, Antonino
  • Physics of Plasmas, Vol. 25, Issue 2
  • DOI: 10.1063/1.5007923