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Highlights:

e Various data collection and modeling scenarios to predict PV power were evaluated.
¢ Inverse models of PV power output solely based on climatic data are very accurate.

e Inclusion of incidence angle modifier improves PV power model prediction accuracy.
e  Wind velocity found to be statistically insignificant in PV power forecast models.

e PV power models are accurate even if only solar horizontal radiation is measured.
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Abstract

This research was undertaken to evaluate different inverse models for predicting power output of
solar photovoltaic (PV) systems under different practical scenarios. In particular, we have investigated
whether PV power output prediction accuracy can be improved if module/cell temperature was measured
in addition to climatic variables, and also the extent to which prediction accuracy degrades if solar
irradiation is not measured on the plane of array but only on a horizontal surface. We have also
investigated the significance of different independent or regressor variables, such as wind velocity and
incident angle modifier in predicting PV power output and cell temperature. The inverse regression model
forms have been evaluated both in terms of their goodness-of-fit, and their accuracy and robustness in
terms of their predictive performance. Given the accuracy of the measurements, expected CV-RMSE of
hourly power output prediction over the year varies between 3.2% and 8.6% when only climatic data are
used. Depending on what type of measured climatic and PV performance data is available, different
scenarios have been identified and the corresponding appropriate modeling pathways have been proposed.
The corresponding models are to be implemented on a controller platform for optimum operational

planning of microgrids and integrated energy systems.
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Nomenclature

A PV panels surface area, m? T, Ambient dry-bulb temperature, °C
CV-RMSE Coefficient of Variation of Root Mean Square Teenr PV module/cell temperature, °C
Error ™Y Typical Meteorological Year (TMY databases
I Total horizontal irradiance, W/m? are collections of the selected meteorological
Ly Diffuse irradiance on horizontal surface, W/m? data provided for many locations across the
Iy Total irradiance on tilted plane or POA world by NREL)
irradiance, W/m? 18] Overall thermal heat loss coefficient, W/m?2°C
K, Incidence angle modifier Viwind Wind velocity, m/s
MAE Mean Absolute Error, W ,B Temperature degradation coefficient
MBE Mean Biased Error, W .
. . 0; Solar incidence angle on POA, degrees
NMBE Normalized Mean Bias Error . /
. Nelec Electrical efficiency of PV module
NREL National Renewable Energy Laboratory Ovtical effici 4 1 solar incid
NOCT Nominal Operating Cell Temperature, “C M ptical elliciency at normat solar incidence
POA Plane Of Array )
PV Photovoltaic Subscripts
Pojec Solar PV power output (either DC or AC), W DC direct current
RMSE Root Mean Square Error, W or °C m measured
R? Coefficient of determination P predicted

rated at rated condition

1. Introduction

Sustainable development and planning of microgrids and integrated energy systems requires optimum
management of various resources [1,2]; in this regard, forecasting power output of non-dispatchable
resources, such as solar photovoltaic (PV) systems, wind, etc. is crucial. On the other hand, given the
stochasticity in solar PV power generation due to randomness and variations in solar irradiation and other
climatic factors, providing reliable electricity, especially in case of a high solar grid penetration, is a
challenge which requires precise PV performance modeling and forecasting. Accurate forecasting of PV
power output allows building managers to plan the operation and optimum control of their various energy
systems most effectively, and also allows grid operators to manage solar power efficiently by economic
dispatch and to ensure grid stability [3].

1.1. Background

PV power prediction modeling methods can be classified into two general approaches: (i)
deterministic methods which use physics-based models and require detailed design and rated performance
information regarding the PV system; and (ii) data-driven approaches which require PV power output
measurements [4]. The latter category includes statistical models, linear or time series models, and
artificial intelligence techniques [5].

In the last few years, researchers have focused on developing models to forecast power generation of
solar PV systems at different scales and over different forecasting horizons. Predictive performance of the
proposed models varies depending upon the methodology and accuracy of the input data. Zhang et al.
proposed a methodology for identifying the baseline and target values regarding accuracy of the solar PV
power forecasting models [6]. Other relevant studies include: Picault et al. who evaluated forecasting
models for crystalline silicon PV systems subject to mismatch losses [7]; Chen et al. who developed an
on-line 24-hr ahead PV power forecasting model using artificial neural network [8]; Jimenez et al. who
developed a power prediction model for grid connected PV plants comprised of weather and power




forecasting modules [9]; Su et al. who used Gaussian equations to model grid-connected PV system
outputs and performance efficiency [10]; Almeida et al. who used quantile regression forests to develop a
nonparametric model to forecast AC power output of PV plants [11]; Chu et al. who created a real-time
reforecasting method based on artificial neural network optimization which applied to the intra-hour PV
power prediction models [12]; Nobre et al. who proposed a hybrid method for converting solar irradiation
into PV power in a tropical and densely-built environment taking into consideration the effects of PV
module temperature, shading effects, system degradation over time, and variation in incident irradiation
caused by air pollution [13]; Rana at al. who developed a very short-term (5 to 60 minutes ahead) PV
power forecasting model using neural network techniques [14]; and Baharin et al. who created artificial
neural network models to predict PV system power generation in three typical weather conditions in
tropical climates, i.e. clear, cloudy, and overcast sky [15]. Short-horizon solar power forecasting can also
help building and industrial unit planners better integrate solar heat to energize their systems using a
cleaner and cheaper energy [16,17].

1.2. Research Objectives

The objective of this research is to identify the most effective data collection and model building
scenario to support reasonably accurate prediction of solar PV power output given the uncertainties
associated with field measurements. This broad goal is broken into more specific research objectives
which are prioritized based on their importance. Different forms of inverse models were evaluated, using
year-long measured data, in order to determine the most accurate ones. This analysis is also meant to
provide range of errors that would be expected in power prediction depending on what type of data is
being collected.

Primary research questions are as follows:

e To what extent does accuracy of the PV power prediction model improve if separate individual month
models are constructed compared to fitting the data over the whole year data?

e Which of the model forms proposed in the literature to predict PV module power using climatic data
performs the best? And how significant is it to include wind velocity as a regressor in the model?

e Which of the cell temperature prediction model forms has the least error? How accurate are the
regression models compared to physics based models? Whether inclusion of the incidence angle
modifier term will improve prediction accuracy?

e How much error is likely to be introduced to the power prediction as a function of cell temperature
and POA irradiation if predicted cell temperatures are used instead of measured values?

e In identifying PV power prediction models, is there any benefit in predicting cell temperature and
then deducing PV power output, instead of directly deducing it from climatic data?

e How much error is likely to be introduced in power prediction when only total horizontal radiation is
measured and both diffuse and POA irradiation have to be predicted?

Proper answers to these questions will help energy system planners and operators to better define
their data collection strategies so as to obtain most accurate power predictions.

2. Methodology and Modeling

In general, there are two scenarios associated with collection of required data and modeling of solar PV
performance (Figure 1):



(i) Predicting PV module power output (P,,.) using measured cell/module temperature (7.;) and climatic
data: irradiation on POA (/7), ambient temperature (7,), and wind velocity (V).

(i1) Predicting PV module power (P...), only using climatic data, i.e. solar irradiation on a horizontal
surface (/) or on tilted surface (I7), T,, and v,

Figure 1.
2.1. PV Power Prediction Models

2.1.1. Inverse models for module power prediction using climatic data

A black-box model needs monitored data to determine model coefficients appropriate for the specific
PV system. In this case, module or array power output is directly correlated with the environmental
parameters (Myers and Emery, [18]).

P

elec

=AL.(a'"+b' T +c' 1, +d'v,,,) (1

where A is the collector area. This equation can be re-expressed in a form suitable for regression
as:

P

elec

=al, +bl, T +cl’+dI.v,,, 2)

where a, b, ¢, and d are regression coefficients which include the effect of PV system surface area 4. Though
this model form includes the effects of wind, its statistical significance needs to be evaluated under the
various operating conditions experienced by the PV systems over the year.

A more physical model (grey-box) of the power generated in terms of the climatic variables and the PV
system characteristics is the one suggested by Gordon and Reddy, [19]:

})elec,DC = A'[T'Kq 'nrated (al - a2 'T;z - a3[T) (3)

where K,] is the incidence angle modifier, discussed later in the paper. The parameters have some physical

interpretation and characterize PV cell properties i.e. overall thermal heat loss coefficient, temperature
degradation coefficient, and optical efficiency at normal solar incidence, as:

al = 1+ ﬂ'Z}ell,mted » 4y = ﬁ and a; = ﬁ(ﬂn - nn,mted) / U(Vwind)

and U(v,,;,¢) is equal to a+b.v,;,; where the coefficients should be determined from in-situ measurements
and are dependent on the deployment type of the solar panel. Neglecting the effects of wind, this equation
can be re-expressed as an inverse model:

P

elec

=al; K, +b1. K, T, +c.(IT.K,7)2 (4)

This equation can be considered to be akin to the Myers and Emery model (eq. 2) except that it accounts
for the solar incidence angle by including the incidence angle modifier, K , » calculated as:

K,=1+b(1/cos6 —1) (5)

where the coefficient b can be assumed to be equal to -0.10 for single glazed collectors.



2.1.2. Inverse models for module power prediction using cell temperature

The power output can be predicted based on detailed physical models. However, a more convenient
model for field applications is based on module cell temperature and the incident irradiation. The most
widely used model is the one originally proposed by Evans [20]:
nelec,DC = nelec,mted,DC[l + 18(71’611 - 7—;ell,rate‘a! )] (6)

Copper et al. [21] modified the Evans model (eq. 6) and presented it in terms of power output. This
model, referred here as the modified Evans model, can be re-expressed as an inverse model:

Pelec,DC = a'lT + b(Tcell - T;ell,rated )[T (7)

2.2. Cell Temperature Models

A variety of approaches have been proposed for predicting solar PV module/cell temperature. The
cell or module temperature is often not measured in field installations. Even if it is, there is some
indeterminacy depending on where such point measurements are taken on the panel surface. Faiman
experimentally found about a 2°C root mean square error (RMSE) in cell temperature difference at
different points of a PV module [22].

2.2.1. Grey-box and physics-based cell temperature models

The grey box modeling approach retains some of the physics-based interactions while allowing
regression-based adjustments to the module form and associated model coefficients when measured data
is available. This approach is perhaps the most widely used and most suitable for modeling actual PV
systems and installations. Several papers (Gordon and Reddy [19], Evans [20], Copper et al. [21], Faiman
[22], Koehl et al. [23], Mekhilef et al. [24], Schwingshackl et al. [25], and Kaldellis et al. [26]) have
described this general approach and evaluated them against in-situ installations.

The physics-based models make use of many of the parameters provided in the specification sheets.
Relevant papers are those by King et al. [27], De Soto et al. [28], Lo Brano et al., [29,30], Dolara et al.
[31], and Razon [32]. Detailed PV system simulation software programs, such as PVsyst [33] or SAM
[34], have modules which are based on this approach. This level of detail is not well suited for field
application since model calibration at various stages is required which is somewhat tedious and requires
user experience.

2.2.2. Empirical cell temperature models

A more empirical model to determine cell temperature, 7., is to use a thermal energy balance on the
module or array:

IT'7711K7] = IT'nelec + U '(Tcell_ T;t) (8)

where U is the overall thermal heat loss coefficient of the module in W/m?2.°C. It has been pointed out by
some experimental studies that wind velocity representative of the value impacting module heat loss is not
a well-defined variable and using actual values may not yield more accurate models (PVSyst, [33]). A few
studies present detailed heat transfer equations to model the heat loss coefficient involving forced and
natural convection effects as well as radiation heat loss (for example, Kaplani and Kaplanis, [35]), but these
are not suitable for field models.

Several simplified approaches to predict cell temperature have been proposed based on the
observation that the difference between cell and ambient air temperatures vary linearly with solar
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irradiation. One such formulation is that by Kurtz et al. [36] which was adopted from the King et al.
model [27]:

T

cell

= Ta + IT . exp(a + b‘vwind ) (9)

where a =-3.473 and b=-0.0594

A simpler black-box model was also found to capture the measured electric output of 22 PV systems
of six different cell types monitored in the Phoenix area (Mani et al., [37]):

T

cell

=a+bl, +cT, +dv,,, (10)

Perhaps the most popular forward-model to predict 7., is based on the NOCT value [38]. The NOCT
is a measured performance value of the actual solar PV module under stipulated climatic conditions (solar
irradiation of 800 W/m? and ambient temperature of 20 "C) and whose numerical value is provided by the
manufacturer as part of the specification sheet. The actual cell temperature model is assumed to be
independent of wind velocity and framed as:

NOCT -20° C

T 2
800 W/m

cell = a (

)x 1y (11

The regression model will then assume the following form:
Ty —T,=al; (12)

Note that this is a simplified version of eq. 10 with coefficients c=1, a=0, and d=0.

3. Data Analysis and Results

3.1. Datasets and data channels

Yearlong monitored data sets for five U.S. locations, collected and maintained by National
Renewable Energy Laboratory (NREL), and University of Oregon were used for this analysis to
develop/analyze regression models for solar PV cell temperature and PV power output prediction. The
NREL database includes measured solar PV performance data for flat-plate PV modules along with
meteorological data on solar irradiance in three locations: Cocoa, FL (from 2011/01 to 2012/03), Eugene,
OR (from 2012/12 to 2014/01), and Golden, CO (from 2012/08 to 2013/09). These publicly available
datasets are intended to facilitate the validation of existing models, as well as developing new ones for
predicting the performance of PV modules. In addition to NREL database, solar PV performance data for
two different locations, i.e. Portland, OR and Bend, OR (from 2004 to 2016) were obtained from Solar
Radiation Monitoring Laboratory (SRML) of the University of Oregon. Note that these PV systems are
rather small in capacity, and though not reflective of actual large PV systems, nevertheless, serve to
evaluate/validate the modeling equations.

3.2. Analysis results

After cleaning the datasets of erroneous data points and missing values, each of the datasets was
divided into two sets, namely model training, including 70% of the entire dataset, and the remainder 30%
served as the testing datasets. The cleaning process includes removing the data points for which the solar
irradiation or power outputs from the panels were out of acceptable range, i.e. above the capacity of the



system or negative values. Splitting the dataset to training and testing was done using a random number
generator in order not to introduce seasonal biases. This was followed by a check using statistical
measures of dispersion (mean and standard deviation) on the two data sets to reconfirm randomness. This
enabled a proper evaluation of the predictive accuracy of identified regression models from the training
datasets.

3.2.1. Individual months vs whole year models for PV power predictions

We have investigated the predictive accuracy of regression models identified from whole-year data
when applied to different individual months and compared the results with that of models developed
using individual month data. Portland dataset (SRML) was chosen to perform this analysis and the
months of March, July and December were selected to represent moderate, warm and cold seasons. Table
1 summarizes performance of the power models built over whole year data versus those fitted over
individual months.

Table 1.

Since the average solar radiation, and accordingly the power outputs are drastically different during
different months, the best criterion to evaluate prediction performance of the models would be the CV-
RMSE. It was found that the month of July has the lowest CV-RMSE and the highest values are
associated with December. This could be due to the uncertainty and/or fluctuations introduced in the data
as a result of partially cloudy sky in December. We can conclude that more uncertainty would be
expected during seasons with variable weather conditions while model predictions tend to be more
accurate during clear-sky seasons.

We noted that models identified from different months can be both better or poorer than that
identified from whole-year data. Therefore, we can conclude that whole-year models are adequate for
practical implementations. Whole-year models were identified and analyzed in the rest of this study.

3.2.2. PV power models with climatic data measurements

In order to evaluate existing models for PV power prediction using climatic data while investigating
whether wind velocity is a significant regressor, we have developed regression models based on year-long
data from all five locations using two different regression model forms, i.e. egs. 2 and 4. The wind
velocity variable is not measured in the NREL datasets, therefore eq. 2 was used without including this
variable. Goodness-of-fit of the identified models are reported in Table 2 for both model fitting and
testing. Neglecting the effects of wind would result in both models having the same form. However, the
Gordon and Reddy model includes the incidence angle modifier (K,) and this seems to improve prediction
accuracy (range from 0.5 to 1.6% points in CV-RMSE) in all five locations as compared to the Myers and
Emery model (eq. 2). Since the size of the investigated PV systems are different, CV-RMSE (normalized
RMSE against the mean of the measurements) would be a better index for comparing the results across
various systems and locations.

Table 2 also summarizes the performance of the power output model predictions over the testing
datasets. Mean Biased Errors (MBE) are also reported along with other criteria (MAE, MBE, and RMSE
are in Watts). It can be seen that models prediction errors are in the acceptable range for all five
locations. It was also found that MBE values are uniformly negligible for all of the studied locations (all



being less than 0.6% of the mean) which validates the predictive ability of the identified regression
models.

Table 2.

Whether the inclusion of the wind velocity variable would improve model accuracy was also
investigated. Since wind velocity data is not available for NREL datasets, this analysis could only be done
for Bend and Portland (using SRML data). Results of the analysis (assembled in Table 3) suggests that
inclusion of wind effects does not increase model prediction accuracy which is consistent with findings
from previous studies in the literature (such as [5,6,13]). The issue is that it is difficult to measure the wind
velocity representative of the actual wind velocity over all the solar PV panels. Measurements taken at a
local weather station or even at a central location on site may not realistically reflect actual wind velocity
over the PV arrays. Also, there is a time lag between wind velocity variations and changes in the cell
temperature which affects the power outputs. These reasons can explain why the wind velocity is not a
significant factor in the PV power prediction models.

Table 3.

3.2.3. PV cell temperature models

As mentioned earlier, an alternative approach to predict solar PV power output is based on using PV
cell (or module) temperature along with climatic data. If cell temperature is not measured, it ought to be
estimated from relevant models. Kurtz and NOCT models (eq. 9 and eq. 12 respectively) would
essentially have the same form when applied to NREL datasets in the absence of wind data. In addition to
black-box models, physics-based models can be adopted wherever the required data is available. In this
regard, NOCT model performance was also evaluated for the SRML data since NOCT values of the
panels were available. Model fitting and model validation results are summarized in Table 4.

The Mani black-box regression model (eq. 10) was found to be the most accurate among the various
models evaluated. Parameters included in all models are the same and differences in predictions
accuracies are due to differences in model forms; for example, in the absence of wind measurements
(NREL datasets), Kurtz model is a zero-intercept model which relates the cell and ambient temperature
differences to POA irradiations, while the Mani model includes the intercept term and also considers
ambient and cell temperature as separate parameters which leads to a more flexible model; such model
can capture variations in the data more effectively. The goodness-of-fit results for model training and
model testing are in good agreement. This signifies that the identified models are robust, otherwise testing
data fits would have been poorer. It was also found that the Kurtz model is more likely to result in biased
predictions (about 7.5% of the mean) which can be due to the inclusion of the wind velocity variable.
MBEs were found to be less than 3.2% of the mean wherever wind effects are not included.

Table 4.

Effects of including the incidence angle modifier on cell temperature predictions were investigated
for the Mani model (which was earlier found to be the most accurate model). The results are assembled in
Table 5. Generally speaking, including the incidence angle modifier correction term in the model for
predicting 7., seem to result in small improvements (ranging from 0.2 to 0.5% points in CV-RMSE). It
can be concluded that, compared to power models, cell temperature models are less sensitive to incidence
angle modifier. The time lag between changes in the incident irradiation and the cell temperature response



can justify this finding and also explain why cell temperature models tend to be less accurate than power
prediction models.

Table 5.

3.2.4. Effect of using measured vs modeled cell temperature on PV power models

If solar cell temperature is not measured, one could predict cell temperature, denoted by 7., which
could then be used to predict PV module power output. We are interested in determining the extent to
which the accuracy of these predictions would degrade if predicted cell temperatures are used instead of
measured ones. In order to perform this analysis, results of the most accurate regression model for
predicting cell temperature, i.e. the Mani model form, was used to compare predicted power values
against actual at-site measured ones. Likewise, measured cell temperatures, denoted by 7. ., were used
to predict power outputs. The Evans model form was used in this analysis, and the effect of incidence
angle modifier was also investigated. Results of model fitting and model validation are assembled in
Table 6. We note that there is little or no improvement in predicting PV power from either 7., or Tty .

Figure 2 is the scatter plot of predicted versus measured cell temperatures for two selected datasets,
namely Cocoa and Bend. The differences are larger in the middle of the cell temperature range than the
ends for Bend, while the discrepancies are larger at the higher end for Cocoa. The reason could be that the
relatively few cell temperature sensors usually deployed may not be adequately capturing the average
module temperatures under different operating conditions over the year.

Figure 2.
Table 6.

Results of this analysis suggest that predicted cell temperatures can be used in power prediction
models without compromising the accuracy of the power prediction. In other words, the uncertainty
associated with cell temperature prediction from the regression model seems to be of the same range as
that from cell temperature measurements. Model validation errors are also consistent with fitted models
errors.

3.2.5. Comparing PV power models identified from climatic data with those using cell temperature

Another pathway to PV power prediction would involve predicting cell temperatures from climatic
data and then using these predictions to calculate the power output of the solar panels (rather than directly
predicting PV power output from weather data). Hence, the power model prediction results have been
compared for two possible scenarios:

i) using climatic data directly to predict power outputs (using the Gordon and Reddy model, eq. 4
with incidence angle modifier),

i1) using climatic data, first estimate the cell temperature and use that value to predict PV power
outputs (using Evans model form, eq. 7).

Results of our analysis comparing the Gordon and Reddy model (eq. 4) and the two different model
forms of the modified Evans model are shown graphically in Figure 3. We note that calculating the power
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outputs directly from climatic data would result in more accurate predictions(1-2% CV points) than using
cell temperatures, either measured or predicted. Therefore, it can be concluded that (i) the Gordon and
Reddy model approach is more accurate than the Evans model, and that (ii) using measured cell
temperatures would not provide more accurate power predictions compared to those obtained directly
from climatic data (unless in the future, a measurement strategy of determining more representative cell
temperature can be developed).

Figure 3.

3.2.6. Uncertainty in PV power models using global horizontal radiation only

An important practical consideration in our research is that solar irradiation on the POA and/or the
cell temperature may not be measured for the PV system. Copper et al. [21] investigated this issue with
three PV systems in Australia. They found that when onsite measurements were available, NMBE values
of PV power predictions were about 3.2% and CV-RMSE < 6%, which increases substantially (NMBE
<13%) when such onsite measurements of tilted radiation and cell temperatures were not available.

In this section, we have analyzed the PV power output predictions when only global horizontal
radiation and ambient temperature measurements are available and the POA irradiation values have to be
estimated; this requires assessment of diffuse and beam portion of solar irradiation. The NREL datasets
from Golden, CO, Eugene, OR, and Cocoa, FL were used to perform this evaluation. Following steps
(also depicted in Figure 4) were taken to build the regression models required for predicting the solar PV
power output:

1) The year-long dataset was divided into training and testing datasets based on variations in total
horizontal irradiance throughout the year.

ii) TMY3 data on diffuse radiation, global horizontal radiation, and extraterrestrial radiation were
used to built a regression model for calculating diffuse radiation values for both training and testing
datasets

iii) The obtained values for diffuse radiation were used to evaluate the POA irradiance for both
training and testing datasets using the Hay, Davies, Klucher and Reindl (HDKR) transposition
model [39].

iv) Having POA irradiance, ambient temperature, incident angle modifier, and power for the training
dataset, the Gordon and Reddy model (eq. 4) can be trained.

v) PV power outputs were predicted for the testing dataset using the obtained model.

Figure 4.

Due to unavailability of TMY3 files for Cocoa and Golden, TMY3 data from nearby locations were
used. Results of this analysis are summarized in Table 7 for PV power output prediction for the testing
dataset. We observed that the CV-RMSE values were almost doubled compared to the case when POA
measurements were available at-site. We found that although the diffuse radiation predictions using the
TMY3 data are relatively uncertain (CV-RMSE values of around 0.4), such error are unlikely to propagate
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to the POA predictions. Note that the CV-RMSE values were found to be slightly lower than those
associated with PV power output predictions.

Table 7.

4. Conclusions

The most accurate predictions of field PV module power require measurements of solar irradiation on
the plane of array (POA) as well as ambient air temperature. However, in practice, POA irradiation may
not be available, and this quantity would need to be estimated from horizontal solar irradiation. We have
investigated various pathways for predicting solar PV power output in order to identify the most accurate
model forms, and also to provide insight on range of errors that should be expected. These broad goals
were broken down into more specific research objectives for which the important conclusions and
summary of results relevant to solar PV power prediction are stated below.

(a) PV power prediction models identified from different months can be both better or poorer
compared with one model identified from whole-year data. Therefore, one simple annual model, as
against 12 individual monthly models, are adequate due to convenience and simplification it offers
for practical implementations.

(b) Among the various models investigated to predict PV module power output using climatic data,
the Gordon and Reddy model form (eq. 4) was found to have the best predictive accuracy.

(c) During model prediction on testing datasets, residual error statistics confirm that both power
prediction models, i.e. Gordon and Reddy model, and Myers and Emery model are unbiased
(normalized MBE is less than 0.3% for all investigated location).

(d) Including the effects of wind did not increase the accuracy of power prediction models. This was
attributed to the fact that wind velocity readings taken from a distant station do not accurately
represent wind conditions across the installed PV module array.

(e) Calculating the power output directly from climatic data would result in more accurate predictions
than using a two-step process where one would first predict cell temperatures from climatic
variables and then predict power output. Expected CV-RMSE values of power output predictions
vary between 3.2% and 8.6% when climatic data is used (using the Gordon and Reddy model) and
ranges from 4.1% to 9.7% when cell temperature and POA irradiance was used (using the Evans
model). Therefore, the Gordon and Reddy model form would be considered as the most accurate
power prediction model among all investigated models.

(f) In the absence of diffuse and POA irradiation, the expected CV-RMSE of solar PV power
prediction was found to be around 7.5%. Recall that the CV-RMSE of power prediction using the
POA irradiation measured data for the same location was 5.3%; this implies that /;;and POA
irradiation prediction errors have been propagated to the power prediction results.

(g) Inclusion of the incidence angle modifier term was found to improve power and cell temperature
prediction accuracy by 0.5 — 1.5% and 0.2 — 0.4% respectively in terms of CV-RMSE values.

(h) Measuring cell temperatures would not make the power prediction models more accurate
compared to those based on climatic data, unless more representative cell temperature
measurements are available. The issue is that the spatial (and even temporal) changes in cell
temperature distribution across the module may be impossible to capture with one (or even a few)
temperature sensor placed on the module.

11



Acknowledgements

The authors acknowledge the Buildings Technologies Office of the U.S. Department of Energy's
Office of Energy Efficiency and Renewable Energy [under Contract DE-AC05-76RL01830 thru Pacific
Northwest National Laboratory] for supporting this research and development effort. The authors thank
Mr. Joseph Hagerman, Technology Development Managers for his guidance and strong support of this
work. We acknowledge George Hernandez from PNNL for his technical guidance. We also thank Dr.
Frank Vignola from the Solar Radiation Monitoring Laboratory at University of Oregon and Dr. Andy
Walkers from NREL for supplying us with much of the monitored solar and PV module power data used
in our analysis.

References

[1] Moslehi S, Reddy TA. Sustainability Index of Community Eenergy Systems for Benchmarking and Multi-
criteria Decision Analysis. Am. Soc. Mech. Eng., vol. 6B, American Society of Mechanical Engineers;
2016.

[2] Moslehi S, Arababadi R. Sustainability Assessment of Complex Energy Systems Using Life Cycle
Approach-Case Study: Arizona State University Tempe Campus. Procedia Eng., vol. 145, Elsevier Ltd;
2016, p. 1096-103.

[3] Arababadi, R., Parrish K. Reducing the Need for Electrical Storage by Coupling Solar PVs and Precooling
in Three Residential Building Types in the Phoenix Climate. ASHRAE Trans Press 2017.

[4] Pierro M, Bucci F, Felice M De, Maggioni E, Perotto A, Spada F, et al. Deterministic and Stochastic
Approaches for Day-Ahead Solar Power Forecasting. J Sol Energy Eng 2017;139:1-12.
doi:10.1115/1.4034823.

[5] Raza MQ, Nadarajah M, Ekanayake C. On recent advances in PV output power forecast. Sol Energy
2016;136:125-44. doi:10.1016/j.solener.2016.06.073.

[6] Zhang J, Hodge B, Lu S, Hamann HF, Lehman B, Simmons J, et al. Baseline and target values for regional
and point PV power forecasts : Toward improved solar forecasting. Sol Energy 2015;122:804-19.
doi:10.1016/j.solener.2015.09.047.

[7] Picault D, Raison B, Bacha S, Casa J De, Aguilera J. Forecasting photovoltaic array power production
subject to mismatch losses. Sol Energy 2010;84:1301-9. doi:10.1016/j.solener.2010.04.009.

[8] Chen C, Duan S, Cai T, Liu B. Online 24-h solar power forecasting based on weather type classification
using artificial neural network. Sol Energy 2011;85:2856—70. doi:10.1016/j.solener.2011.08.027.

[9] Fernandez-jimenez LA, Muifloz-jimenez A, Falces A, Garcia-garrido E, Lara-santillan PM, Zorzano-alba E,
et al. Short-term power forecasting system for photovoltaic plants. Renew Energy 2012;44:311-7.
doi:10.1016/j.renene.2012.01.108.

[10] SuY,ChanL, ShuL, Tsui K. Real-time prediction models for output power and efficiency of grid-
connected solar photovoltaic systems. Appl Energy 2012;93:319-26. doi:10.1016/j.apenergy.2011.12.052.

[11]  Narvarte L, Almeida MP, Perpin O. PV power forecast using a nonparametric PV model 2015;115:354-68.
doi:10.1016/j.solener.2015.03.006.

[12]  ChuY, Urquhart B, Gohari SMI, Pedro HTC, Kleissl J, Coimbra CFM. ScienceDirect Short-term
reforecasting of power output from a 48 MWe solar PV plant. Sol Energy 2015;112:68-77.
doi:10.1016/j.solener.2014.11.017.

[13]  Nobre M, Severiano CA, Karthik S, Kubis M, Zhao L, Martins FR, et al. PV power conversion and short-
term forecasting in a tropical , densely-built environment in Singapore Andr e 2016;94:496-509.

12



[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

(27]
(28]

[29]

[30]

[31]

[32]

doi:10.1016/j.renene.2016.03.075.

Rana M, Koprinska I, Agelidis VG. Univariate and multivariate methods for very short-term solar
photovoltaic power forecasting. Energy Convers Manag 2016;121:380-90.
doi:10.1016/j.enconman.2016.05.025.

Baharin KA, Rahman HA. Short-term forecasting of solar photovoltaic output power for tropical climate
using ground-based measurement data 2016;53701. doi:10.1063/1.4962412.

Moslehi S, Maerefat M, Arababadi R. Applicability of Radiant Heating-Cooling Ceiling Panels in
Residential Buildings in Different Climates of Iran. Procedia Eng., vol. 145, Elsevier Ltd; 2016, p. 18-25.

Baniassadi A, Momen M, Amidpour M. A new method for optimization of Solar Heat Integration and solar
fraction targeting in low temperature process industries. Energy 2015;90:1674-81.
doi:10.1016/j.energy.2015.06.128.

Myers DR, Emery K, Renewable N, Blvd C, Co G. Terrestrial Solar Spectral Modeling Tools and
Applications for Photovoltaic Devices 1976:1683—6.

Gordon JM, Reddy TA, Solar A, Unit C. Generalized Capacity Factors for Grid-intertie Solar Photovoltaic
Systems 1988;23:127-37.

Evans DL. Simplified Method for Predicting Photovoltaic Array Output 1981;27:555-60.

Copper JK, Sproul AB, Jarnason S. Photovoltaic ( PV ) performance modelling in the absence of onsite
measured plane of array irradiance ( POA ) and module temperature. Renew Energy 2016;86:760-9.
doi:10.1016/j.renene.2015.09.005.

Faiman D. Assessing the Outdoor Operating Temperature of Photovoltaic Modules 2008:307—15.
doi:10.1002/pip.

Koehl M, Heck M, Wiesmeier S, Wirth J. Modeling of the nominal operating cell temperature based on
outdoor weathering. Sol Energy Mater Sol Cells 2011;95:1638—46. doi:10.1016/j.solmat.2011.01.020.

Mekhilef S, Saidur R, Kamalisarvestani M. Effect of dust , humidity and air velocity on efficiency of
photovoltaic cells. Renew Sustain Energy Rev 2012;16:2920-5. doi:10.1016/j.rser.2012.02.012.

Schwingshackl C, Petitta M, Wagner JE, Belluardo G, Moser D. Wind effect on PV module temperature :
Analysis of different techniques for an accurate estimation. Energy Procedia 2013;40:77-86.
doi:10.1016/j.egypro.2013.08.010.

Kaldellis JK, Kapsali M, Kavadias KA. Temperature and wind speed impact on the ef fi ciency of PV
installations . Experience obtained from outdoor measurements in Greece. Renew Energy 2014;66:612-24.
doi:10.1016/j.renene.2013.12.041.

King DL, Boyson WE, Kratochvill JA. Photovoltaic Array Performance Model 2004.

Soto W De, Klein SA, Beckman WA. Improvement and validation of a model for photovoltaic array
performance 2006;80:78-88. doi:10.1016/j.solener.2005.06.010.

Lo Brano V, Orioli A, Ciulla G, Gangi A Di. An improved five-parameter model for photovoltaic modules.
Sol Energy Mater Sol Cells 2010;94:1358-70. doi:10.1016/j.s0lmat.2010.04.003.

Lo Brano V, Orioli A, Ciulla G. On the experimental validation of an improved five-parameter model for
silicon photovoltaic modules. Sol Energy Mater Sol Cells 2012;105:27-39.
doi:10.1016/j.s0lmat.2012.05.028.

Dolara A, Leva S, Manzolini G. Comparison of different physical models for PV power output prediction.
Sol Energy 2015;119:83-99. doi:10.1016/j.solener.2015.06.017.

A R. Dynamic Model of a Three Layer Photovoltaic Panel and the Optimal Use of Spill-Over Light in a
Concentrator Photovoltaic System. Ben Guirion University of the Negev, Sede Boger campus, Israel., 2009.

13



(33]

[34]

[35]

[36]

[37]

[38]

[39]

PVsyst Contextual Help: User’s Guide 2012.
Solar Advisor Model (SAM). Golden, Colorado: 2016.

Kaplani E, Kaplanis S. Thermal modelling and experimental assessment of the dependence of PV module
temperature on wind velocity and direction , module orientation and inclination. Sol Energy 2014;107:443—
60. doi:10.1016/j.solener.2014.05.037.

Kurtz S, Miller D, Kempe M, Bosco N, Wohlgemuth J. Evaluation of High-Temperature Exposure of
Photovoltaic Modules Preprint 2009.

Tamizhmani G, Ji L, Tang Y, Petacci L, Osterwald C. Photovoltaic Module Thermal / Wind Performance::
Long -Term Monitoring and Model Development For Energy Rating 2003:936-9.

Myers DR, Emery K, Gueymard C. Revising and Validating Spectral Irradiance Reference Standards for
Photovoltaic Performance Evaluation. J Sol Energy Eng 2004;126:567—74. doi:10.1115/1.1638784.

Dulffie, J.A., Beckman WA. Solar Engineering of Thermal Processes. 3rd ed. New York: John Wiley &
Sons; 2006.

Table 1— Goodness-of-fit statistics of PV power models identified from whole year vs monthly data, Gordon and
Reddy model- eq. 4 (MAE and RMSE values are in Watts)

models constructed from whole- models constructed from

Criteria year data and used to predict ... individual month data
Annual  Mar. Jul. Dec. Mar. Jul. Dec.
MAE 12.9 8.4 19.1 7.9 11.6 16.3 9.8
RMSE 21.1 16.6 28.3 16.2 19.43 25.8 15.9
CV-RMSE 0.079  0.078 0.075  0.128 0.091 0.069 0.125
Table 2 — Results of the PV Power output models for both the training datasets (internal prediction) and testing

datasets (validation). MAE and RMSE are in Watts

Internal Prediction Model Validation
Location Go;dt;r:l and . Myers alllld ((}iolrzd(()il:l Ml)éers and
: - eddy mery without and Reddy mery
Database (time step) Criteria (eq. 4) wind (eq. 2) (eq. 4) (eq. 2)
MAE 13 1.6 1.3 1.7
Cocoa MBE - - 0.0 -0.1
(5-min) RMSE 1.8 2.1 1.7 2.2
CV-RMSE 0.032 0.040 0.032 0.040
MAE 1.3 1.6 1.3 1.6
Eugene MBE - - 0.1 0.0
NREL (5-min) RMSE 2.0 23 1.9 22
CV-RMSE 0.046 0.053 0.044 0.052
MAE 1.7 2.0 1.7 2.0
Golden MBE - - 0.0 -0.2
(15-min) RMSE 23 2.6 2.3 2.6
CV-RMSE 0.048 0.054 0.048 0.054
MAE 74.5 83.3 74.9 83.8
Bend MBE - - -7.5 9.3
(5-min) RMSE 125.7 136.6 127.7 138.3
CV-RMSE 0.086 0.093 0.087 0.094
SRML MAE 12.9 16.6 12.3 15.6
Portland MBE - - -0.6 -0.2
(1-hr) RMSE 21.1 25.5 19.6 23.5
CV-RMSE 0.079 0.095 0.073 0.088
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Table 3 — Model goodness-of-fit results of considering wind effects in power output prediction models (eq. 2).
MAE, MBE and RMSE are in Watts

. I Myers and Myers and Emery

Database Location Criteria Emery without wind effects
MAE 83.3 83.4
Bend RMSE 136.6 136.6
CV-RMSE 0.093 0.093
SRML MAE 16.7 16.6
Portland RMSE 25.5 25.5
CV-RMSE 0.095 0.095

Table 4 — Results of models for cell temperature models (MAE, MBE and RMSE values are in "C)

Model Training Model Testing
Data base Location Criteria Kurtz Mani NOCT Kurtz model Mani NOCT
model form  model model Form NOCT form model model Form
(eq.9) (eq. 10) (eq.12) (eq.11) (eq.9) (eq. 10) (eq. 12)
MAE 2.3 2.0 2.3 - 2.2 2.0 2.2
Cocoa MBE - - - - 0.5 0.0 0.5
RMSE 3.2 2.8 32 - 32 2.8 32
CV-RMSE 0.087 0.077 0.087 - 0.087 0.077 0.087
MAE 2.1 1.9 2.1 - 2.1 1.9 2.1
MBE - - - - 0.7 0.0 0.7
NREL  Eugene  prisE 2.9 27 29 ; 2.9 2.6 2.9
CV-RMSE 0.113 0.103 0.113 - 0.112 0.103 0.112
MAE 2.8 2.7 2.8 - 2.7 2.6 2.7
Golden MBE - - - - -0.4 -0.1 -0.4
RMSE 3.6 3.6 3.6 - 3.61 3.5 3.6
CV-RMSE 0.111 0.110 0.111 - 0.110 0.108 0.110
MAE 52 4.2 4.6 4.6 53 4.2 4.7
Bend MBE - - - - 2.8 0.1 -0.4
RMSE 6.7 5.4 5.7 5.7 6.8 5.4 5.7
SRML CV-RMSE 0.203 0.170 0.182 0.182 0.203 0.168 0.179
MAE 2.8 1.5 1.8 1.8 2.8 1.6 1.9
Portland MBE - - - - 2.1 0.0 -0.4
RMSE 3.5 2.0 23 23 3.5 2.0 2.3
CV-RMSE 0.114 0.066 0.078 0.078 0.115 0.068 0.077

Table 5 — Results of the Mani black-box model (eq. 10) with and without the inclusion of incidence angle modifier
K, effects (MAE and RMSE are in °C)

Database Location Criteria (bl:;ll?-nblox) I::I(;r;lvg?tlsc}g
Cocoa MAE 2.0 2.0
(5-min) RMSE 2.8 2.8
CV-RMSE 0.077 0.075
Eugene MAE 1.9 1.9
NREL (5-min) RMSE 2.7 2.6
CV-RMSE 0.103 0.101
MAE 2.7 2.5
gglifl‘:l , RMSE 3.6 34
CV-RMSE 0.110 0.105
MAE 4.2 4.1
gﬂn} RMSE 54 5.2
SRML CV-RMSE 0.170 0.165
Portland MAE 1.5 1.6
(1-hr) RMSE 2.0 2.1
CV-RMSE 0.066 0.068
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Table 6 — Power prediction model results using measured and predicted cell temperature (MAE, and RMSE values

are reported in °C)

Model Training Model Testing
Database Location Criteria Evans Model Evans Model Evans Model Evans Model
based on 7o based on 7.y, based on Ty based on 7.,
MAE 1.7 1.6 1.7 1.6
Cocoa MBE - - -0.2 -0.1
RMSE 2.2 2.1 2.2 2.2
CV-RMSE 0.041 0.040 0.041 0.040
MAE 1.6 1.6 1.6 1.6
MBE - - -0.2 -0.1
NREL Eugene  phisE 24 23 23 23
CV-RMSE 0.055 0.054 0.054 0.053
MAE 2.0 2.0 2.0 2.0
MBE - - -0.1 -0.1
Golden  pMSE 2.6 2.6 2.7 2.6
CV-RMSE 0.055 0.054 0.055 0.054
MAE 78.3 81.4 78.1 81.1
Bend MBE - - -22.9 -22.6
RMSE 142.2 144.1 143.6 145.6
CV-RMSE 0.097 0.098 0.097 0.099
SRML MAE 16.0 16.0 15.2 15.2
MBE - - -1.3 -1.6
Portland b isE 26.3 26.5 243 245
CV-RMSE 0.098 0.099 0.091 0.092

Table 7- PV power prediction results for two scenarios: when only global horizontal irradiance (/) is measured and

when IT measurements are available

TMY3 data Only / is measured I is measured
Location Location MAE RMSE CV-RMSE MAE RMSE CV-RMSE
Cocoa, FL Melbourne, FL. 2.1 34 0.057 1.3 1.7 0.032
Eugene, OR Eugene, OR 2.5 4.4 0.094 1.3 1.9 0.044
Golden, CO Denver, CO 2.8 4.0 0.075 1.7 2.3 0.048

Climatic Data
([ » ]; » ‘%x’r’nd)

Power Output 1.,

Figure 1- Schematic of data collection and modeling scenarios (2-column fitting image)
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Figure 2- Measured versus predicted cell temperatures using Mani model (with X, effects) for (a) Bend and (b)
Cocoa during model training (single column fitting image)
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Figure 3— Comparison prediction of PV power output in different scenarios (2-column fitting image)
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Figure 4- PV power output prediction flowchart in the absence of POA and diffuse radiation measurements (2-column

fitting image)
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