DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ferroelectricity in Pb1+δZrO3 Thin Films

Abstract

© 2017 American Chemical Society. Antiferroelectric PbZrO 3 is being considered for a wide range of applications where the competition between centrosymmetric and noncentrosymmetric phases is important to the response. Here, we focus on the epitaxial growth of PbZrO 3 thin films and understanding the chemistry-structure coupling in Pb 1+δ ZrO 3 (δ = 0, 0.1, 0.2). High-quality, single-phase Pb 1+δ ZrO 3 films are synthesized via pulsed-laser deposition. Although no significant lattice parameter change is observed in X-ray studies, electrical characterization reveals that while the PbZrO 3 and Pb 1.1 ZrO 3 heterostructures remain intrinsically antiferroelectric, the Pb 1.2 ZrO 3 heterostructures exhibit a hysteresis loop indicative of ferroelectric response. Further X-ray scattering studies reveal strong quarter-order diffraction peaks in PbZrO 3 and Pb 1.1 ZrO 3 heterostructures indicative of antiferroelectricity, while no such peaks are observed for Pb 1.2 ZrO 3 heterostructures. Density functional theory calculations suggest the large cation nonstoichiometry is accommodated by incorporation of antisite Pb Zr defects, which drive the Pb 1.2 ZrO 3 heterostructures to a ferroelectric phase with R3c symmetry. In the end, stabilization of metastable phases in materials via chemical nonstoichiometry and defect engineering enables a novel route to manipulate the energymore » of the ground state of materials and the corresponding material properties.« less

Authors:
 [1];  [2];  [1];  [1];  [3];  [1];  [1];  [1]; ORCiD logo [1];  [4];  [5];  [6]; ORCiD logo [7]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry, Materials Sciences Division
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source; Univ. of Science and Technology, Hefei (China). National Sychrotron Radiation Lab., CAS Key Lab. of Materials for Energy Conversion
  4. Univ. of California, Berkeley, CA (United States). Dept. of Electrical Engineering
  5. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source
  6. Kavli Energy NanoSciences Inst., Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry, Materials Sciences Division
  7. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Army Research Office (ARO)
OSTI Identifier:
1394834
Alternate Identifier(s):
OSTI ID: 1436637
Grant/Contract Number:  
AC02-06CH11357; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 15; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; PbZrO3; antiferroelectric/ferroelectric; cation stoichiometry; crystal symmetry; defect engineering

Citation Formats

Gao, Ran, Reyes-Lillo, Sebastian E., Xu, Ruijuan, Dasgupta, Arvind, Dong, Yongqi, Dedon, Liv R., Kim, Jieun, Saremi, Sahar, Chen, Zuhuang, Serrao, Claudy R., Zhou, Hua, Neaton, Jeffrey B., and Martin, Lane W. Ferroelectricity in Pb1+δZrO3 Thin Films. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.7b02506.
Gao, Ran, Reyes-Lillo, Sebastian E., Xu, Ruijuan, Dasgupta, Arvind, Dong, Yongqi, Dedon, Liv R., Kim, Jieun, Saremi, Sahar, Chen, Zuhuang, Serrao, Claudy R., Zhou, Hua, Neaton, Jeffrey B., & Martin, Lane W. Ferroelectricity in Pb1+δZrO3 Thin Films. United States. https://doi.org/10.1021/acs.chemmater.7b02506
Gao, Ran, Reyes-Lillo, Sebastian E., Xu, Ruijuan, Dasgupta, Arvind, Dong, Yongqi, Dedon, Liv R., Kim, Jieun, Saremi, Sahar, Chen, Zuhuang, Serrao, Claudy R., Zhou, Hua, Neaton, Jeffrey B., and Martin, Lane W. Sun . "Ferroelectricity in Pb1+δZrO3 Thin Films". United States. https://doi.org/10.1021/acs.chemmater.7b02506. https://www.osti.gov/servlets/purl/1394834.
@article{osti_1394834,
title = {Ferroelectricity in Pb1+δZrO3 Thin Films},
author = {Gao, Ran and Reyes-Lillo, Sebastian E. and Xu, Ruijuan and Dasgupta, Arvind and Dong, Yongqi and Dedon, Liv R. and Kim, Jieun and Saremi, Sahar and Chen, Zuhuang and Serrao, Claudy R. and Zhou, Hua and Neaton, Jeffrey B. and Martin, Lane W.},
abstractNote = {© 2017 American Chemical Society. Antiferroelectric PbZrO 3 is being considered for a wide range of applications where the competition between centrosymmetric and noncentrosymmetric phases is important to the response. Here, we focus on the epitaxial growth of PbZrO 3 thin films and understanding the chemistry-structure coupling in Pb 1+δ ZrO 3 (δ = 0, 0.1, 0.2). High-quality, single-phase Pb 1+δ ZrO 3 films are synthesized via pulsed-laser deposition. Although no significant lattice parameter change is observed in X-ray studies, electrical characterization reveals that while the PbZrO 3 and Pb 1.1 ZrO 3 heterostructures remain intrinsically antiferroelectric, the Pb 1.2 ZrO 3 heterostructures exhibit a hysteresis loop indicative of ferroelectric response. Further X-ray scattering studies reveal strong quarter-order diffraction peaks in PbZrO 3 and Pb 1.1 ZrO 3 heterostructures indicative of antiferroelectricity, while no such peaks are observed for Pb 1.2 ZrO 3 heterostructures. Density functional theory calculations suggest the large cation nonstoichiometry is accommodated by incorporation of antisite Pb Zr defects, which drive the Pb 1.2 ZrO 3 heterostructures to a ferroelectric phase with R3c symmetry. In the end, stabilization of metastable phases in materials via chemical nonstoichiometry and defect engineering enables a novel route to manipulate the energy of the ground state of materials and the corresponding material properties.},
doi = {10.1021/acs.chemmater.7b02506},
journal = {Chemistry of Materials},
number = 15,
volume = 29,
place = {United States},
year = {Sun Jul 16 00:00:00 EDT 2017},
month = {Sun Jul 16 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Energy storage in ceramic dielectrics
journal, March 1972

  • Burn, I.; Smyth, D. M.
  • Journal of Materials Science, Vol. 7, Issue 3
  • DOI: 10.1007/BF00555636

Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3
journal, March 2006


Electrocaloric effect in antiferroelectric PbZrO 3 thin films
journal, October 2008

  • Parui, Jayanta; Krupanidhi, S. B.
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 2, Issue 5
  • DOI: 10.1002/pssr.200802128

Transducers Using Forced Transitions Between Ferroelectric and Antiferroelectric States
journal, October 1966


Electrostrictive effect in perovskites and its transducer applications
journal, March 1981

  • Uchino, Kenji; Nomura, Shoichiro; Cross, Leslie E.
  • Journal of Materials Science, Vol. 16, Issue 3
  • DOI: 10.1007/BF02402772

A brief review on the model antiferroelectric PbZrO 3 perovskite-like material
journal, February 2011


Dielectric Properties of Lead Zirconate
journal, November 1951


Polar phonons and central mode in antiferroelectric PbZrO 3 ceramics
journal, March 2001


Structure and energetics of antiferroelectric PbZrO 3
journal, November 1995


The origin of antiferroelectricity in PbZrO3
journal, July 2013

  • Tagantsev, A. K.; Vaideeswaran, K.; Vakhrushev, S. B.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3229

Lattice instabilities, anharmonicity and phase transitions in PbZrO 3 from first principles
journal, April 1997


Improved Energy Storage Performance and Fatigue Endurance of Sr-Doped PbZrO 3 Antiferroelectric Thin Films
journal, May 2009


Ferroelectricity and Antiferroelectricity in Ceramic PbZr O 3 Containing Ba or Sr
journal, April 1952


Pressure dependence of instabilities in perovskite PbZrO3
journal, February 2000


Finite-temperature properties of antiferroelectric PbZrO 3 from atomistic simulations
journal, April 2015


Characteristics of constrained ferroelectricity in PbZrO3∕BaZrO3 superlattice films
journal, February 2005

  • Hung, Cheng-Lung; Chueh, Yu-Lun; Wu, Tai-Bor
  • Journal of Applied Physics, Vol. 97, Issue 3
  • DOI: 10.1063/1.1846133

Superlattices of PbZrO 3 and PbTiO 3 prepared by multi‐ion‐beam sputtering
journal, January 1996

  • Kanno, I.; Hayashi, S.; Takayama, R.
  • Applied Physics Letters, Vol. 68, Issue 3
  • DOI: 10.1063/1.116705

Critical Thickness for Antiferroelectricity in PbZrO 3
journal, August 2015


Review of crystal and domain structures in the PbZr x Ti 1 x O 3 solid solution
journal, September 2005


Enhancement of energy storage in epitaxial PbZrO3 antiferroelectric films using strain engineering
journal, September 2014

  • Ge, Jun; Remiens, Denis; Dong, Xianlin
  • Applied Physics Letters, Vol. 105, Issue 11
  • DOI: 10.1063/1.4896156

The influence of hydrostatic pressure on phase transitions in PbZrO 3 with Pb and O vacancies
journal, April 1984


Antiferroelectricity and ferroelectricity in epitaxially strained PbZrO 3 from first principles
journal, November 2013


Epitaxial strain stabilization of a ferroelectric phase in PbZrO 3 thin films
journal, August 2011


Thickness-driven antiferroelectric-to-ferroelectric phase transition of thin PbZrO3 layers in epitaxial PbZrO3∕Pb(Zr0.8Ti0.2)O3 multilayers
journal, September 2007

  • Boldyreva, Ksenia; Pintilie, Lucian; Lotnyk, Andriy
  • Applied Physics Letters, Vol. 91, Issue 12
  • DOI: 10.1063/1.2789401

Effect of Growth Induced (Non)Stoichiometry on the Structure, Dielectric Response, and Thermal Conductivity of SrTiO 3 Thin Films
journal, December 2011

  • Breckenfeld, E.; Wilson, R.; Karthik, J.
  • Chemistry of Materials, Vol. 24, Issue 2
  • DOI: 10.1021/cm203042q

Tuning thermal conductivity in homoepitaxial SrTiO 3 films via defects
journal, August 2015

  • Brooks, Charles M.; Wilson, Richard B.; Schäfer, Anna
  • Applied Physics Letters, Vol. 107, Issue 5
  • DOI: 10.1063/1.4927200

Ferroelectricity in nonstoichiometric SrTiO3 films studied by ultraviolet Raman spectroscopy
journal, October 2010

  • Tenne, D. A.; Farrar, A. K.; Brooks, C. M.
  • Applied Physics Letters, Vol. 97, Issue 14
  • DOI: 10.1063/1.3499273

Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics
journal, September 2001


Influence of nonstoichiometry on ferroelectric phase transition in BaTiO3
journal, March 2007

  • Lee, Soonil; Liu, Zi-Kui; Kim, Myong-Ho
  • Journal of Applied Physics, Vol. 101, Issue 5
  • DOI: 10.1063/1.2710280

Nonstoichiometry, Structure, and Properties of BiFeO 3 Films
journal, August 2016


Ferroelectricity in Strain-Free SrTiO 3 Thin Films
journal, May 2010


Enhancement of Ferroelectric Curie Temperature in BaTiO 3 Films via Strain-Induced Defect Dipole Alignment
journal, August 2014

  • Damodaran, Anoop R.; Breckenfeld, Eric; Chen, Zuhuang
  • Advanced Materials, Vol. 26, Issue 36
  • DOI: 10.1002/adma.201400254

First-principles Study of Antisite Defects in Orthorhombic PbZrO 3
journal, June 2014

  • Chotsawat, Maneerat; Sarasamak, Kanoknan; Thanomngam, Pitiporn
  • Integrated Ferroelectrics, Vol. 156, Issue 1
  • DOI: 10.1080/10584587.2014.906291

Ab initio study of Pb antisite defects in PbZrO 3 and Pb ( Zr , Ti ) O 3
journal, November 2008


Lead Excess in Pb(Zr,Ti)O 3 Thin Films Deposited by Reactive Sputtering at Low Temperatures
journal, July 2005


Sputtered lead scandium tantalate thin films: Pb4+ in B sites in the perovskite structure
journal, December 1997

  • Whatmore, R. W.; Huang, Z.; Todd, M.
  • Journal of Applied Physics, Vol. 82, Issue 11
  • DOI: 10.1063/1.366432

Atomic layer deposition of PbZrO3 thin films
journal, April 2007


Observation of polar vortices in oxide superlattices
journal, January 2016

  • Yadav, A. K.; Nelson, C. T.; Hsu, S. L.
  • Nature, Vol. 530, Issue 7589
  • DOI: 10.1038/nature16463

Analysis of Sputter Process on a New ZrTi+PbO Target System and Its Application to Low-Temperature Deposition of Ferroelectric P b ( Z r , T i ) O 3 Films
journal, March 1996

  • Zhang, WeiXiao; Sasaki, Kimihiro; Hata, Tomonobu
  • Japanese Journal of Applied Physics, Vol. 35, Issue Part 1, No. 3
  • DOI: 10.1143/JJAP.35.1868

Epitaxial Ferroelectric Heterostructures Fabricated by Selective Area Epitaxy of SrRuO3 Using an MgO Mask
journal, February 2012

  • Karthik, J.; Damodaran, Anoop R.; Martin, Lane W.
  • Advanced Materials, Vol. 24, Issue 12
  • DOI: 10.1002/adma.201104697

Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
journal, April 2008


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Theory of polarization of crystalline solids
journal, January 1993


Re-Examination of the Antiferroelectric Structure of PbZrO 3
journal, November 1997

  • Fujishita, Hideshi; Katano, Susumu
  • Journal of the Physical Society of Japan, Vol. 66, Issue 11
  • DOI: 10.1143/JPSJ.66.3484

Crystal structure of perovskite PbZrO 3 re-investigated by high resolution powder neutron diffraction
journal, September 1998


Coexistence of ferroelectricity and antiferroelectricity in epitaxial PbZrO3 films with different orientations
journal, January 2008

  • Pintilie, Lucian; Boldyreva, Ksenia; Alexe, Marin
  • Journal of Applied Physics, Vol. 103, Issue 2
  • DOI: 10.1063/1.2831023

Electron Microscopic Studies on Domain Structure of PbZrO 3
journal, February 1982

  • Tanaka, Michiyoshi; Saito, Ryuichi; Tsuzuki, Kaoru
  • Japanese Journal of Applied Physics, Vol. 21, Issue Part 1, No. 2
  • DOI: 10.1143/JJAP.21.291

Ferroelectrics go bananas
journal, December 2007


Recent progress in relaxor ferroelectrics with perovskite structure
journal, January 2006


Rhombohedral superlattice structure and relaxor ferroelectric behavior of (Pb0.70Ba0.30)ZrO3 ceramics
journal, February 1999

  • Pokharel, Bhadra P.; Ranjan, Rajeev; Pandey, Dhananjai
  • Applied Physics Letters, Vol. 74, Issue 5
  • DOI: 10.1063/1.123113

Lead-free antiferroelectric: xCaZrO 3 -(1 − x)NaNbO 3 system (0 ≤ x ≤ 0.10)
journal, January 2015

  • Shimizu, Hiroyuki; Guo, Hanzheng; Reyes-Lillo, Sebastian E.
  • Dalton Transactions, Vol. 44, Issue 23
  • DOI: 10.1039/C4DT03919J

Diffuse Scattering from Lead-Containing Ferroelectric Perovskite Oxides
journal, January 2013


Three-dimensional mapping of diffuse scattering in Pb ( Zn 1 3 Nb 2 3 ) O 3 x Pb Ti O 3
journal, November 2004


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Self-interaction correction to density-functional approximations for many-electron systems
journal, May 1981


Works referencing / citing this record:

Nonstoichiometry, structure, and properties of Ba 1−x TiO y thin films
journal, January 2018

  • Dasgupta, Arvind; Saremi, Sahar; Ruijuan, Xu
  • Journal of Materials Chemistry C, Vol. 6, Issue 40
  • DOI: 10.1039/c8tc02725k