DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance

Abstract

Li7La3Zr2O12 (LLZO) is a promising solid-state electrolyte that could enable solid-state-batteries (SSB) employing metallic Li anodes. For a SSB to be viable, the stability and charge transfer kinetics at the Li–LLZO interface should foster facile plating and stripping of Li. Contrary to these goals, recent studies have reported high Li–LLZO interfacial resistance which was attributed to a contamination layer that forms upon exposure of LLZO to air. This study clarifies the mechanisms and consequences associated with air exposure of LLZO; additionally, strategies to minimize these effects are described. First-principles calculations reveal that LLZO readily reacts with humid air; the most favorable reaction pathway involves protonation of LLZO and formation of Li2CO3. X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the surface and subsurface chemistry of LLZO as a function of relative humidity and exposure time. Additionally, electrochemical impedance spectroscopy was used to measure the Li–LLZO interfacial resistance as a function of surface contamination. These data indicate that air exposure-induced contamination impacts the interfacial resistance significantly, when exposure time exceeds 24 h. The results of this study provide valuable insight into the sensitivity of LLZO to air and how the effects of airmore » contamination can be reversed.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [1];  [2];  [2];  [2];  [2]; ORCiD logo [1];  [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1394429
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 5; Journal Issue: 26; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Sharafi, Asma, Yu, Seungho, Naguib, Michael, Lee, Marcus, Ma, Cheng, Meyer, Harry M., Nanda, Jagjit, Chi, Maiofang, Siegel, Donald J., and Sakamoto, Jeff. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. United States: N. p., 2017. Web. doi:10.1039/C7TA03162A.
Sharafi, Asma, Yu, Seungho, Naguib, Michael, Lee, Marcus, Ma, Cheng, Meyer, Harry M., Nanda, Jagjit, Chi, Maiofang, Siegel, Donald J., & Sakamoto, Jeff. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. United States. https://doi.org/10.1039/C7TA03162A
Sharafi, Asma, Yu, Seungho, Naguib, Michael, Lee, Marcus, Ma, Cheng, Meyer, Harry M., Nanda, Jagjit, Chi, Maiofang, Siegel, Donald J., and Sakamoto, Jeff. Thu . "Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance". United States. https://doi.org/10.1039/C7TA03162A. https://www.osti.gov/servlets/purl/1394429.
@article{osti_1394429,
title = {Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance},
author = {Sharafi, Asma and Yu, Seungho and Naguib, Michael and Lee, Marcus and Ma, Cheng and Meyer, Harry M. and Nanda, Jagjit and Chi, Maiofang and Siegel, Donald J. and Sakamoto, Jeff},
abstractNote = {Li7La3Zr2O12 (LLZO) is a promising solid-state electrolyte that could enable solid-state-batteries (SSB) employing metallic Li anodes. For a SSB to be viable, the stability and charge transfer kinetics at the Li–LLZO interface should foster facile plating and stripping of Li. Contrary to these goals, recent studies have reported high Li–LLZO interfacial resistance which was attributed to a contamination layer that forms upon exposure of LLZO to air. This study clarifies the mechanisms and consequences associated with air exposure of LLZO; additionally, strategies to minimize these effects are described. First-principles calculations reveal that LLZO readily reacts with humid air; the most favorable reaction pathway involves protonation of LLZO and formation of Li2CO3. X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the surface and subsurface chemistry of LLZO as a function of relative humidity and exposure time. Additionally, electrochemical impedance spectroscopy was used to measure the Li–LLZO interfacial resistance as a function of surface contamination. These data indicate that air exposure-induced contamination impacts the interfacial resistance significantly, when exposure time exceeds 24 h. The results of this study provide valuable insight into the sensitivity of LLZO to air and how the effects of air contamination can be reversed.},
doi = {10.1039/C7TA03162A},
journal = {Journal of Materials Chemistry. A},
number = 26,
volume = 5,
place = {United States},
year = {Thu Jun 15 00:00:00 EDT 2017},
month = {Thu Jun 15 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 289 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The rechargeable revolution: A better battery
journal, March 2014


Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Electrochemical Window of the Li-Ion Solid Electrolyte Li 7 La 3 Zr 2 O 12
journal, January 2017


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes
journal, January 2001

  • Zhang, Shengshui; Ding, Michael S.; Xu, Kang
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 12
  • DOI: 10.1149/1.1414946

Aging Mechanisms of LiFePO[sub 4] Batteries Deduced by Electrochemical and Structural Analyses
journal, January 2010

  • Liu, Ping; Wang, John; Hicks-Garner, Jocelyn
  • Journal of The Electrochemical Society, Vol. 157, Issue 4
  • DOI: 10.1149/1.3294790

Main aging mechanisms in Li ion batteries
journal, August 2005


Electrochemical impedance study on the low temperature of Li-ion batteries
journal, March 2004


The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
journal, January 2014

  • Cheng, Lei; Crumlin, Ethan J.; Chen, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 34
  • DOI: 10.1039/C4CP02921F

Synthesis of garnet-type Li7−xLa3Zr2O12−1/2x and its stability in aqueous solutions
journal, February 2011


Instability of Lithium Garnets against Moisture. Structural Characterization and Dynamics of Li 7- x H x La 3 Sn 2 O 12 and Li 5- x H x La 3 Nb 2 O 12
journal, August 2012

  • Galven, Cyrille; Dittmer, Jens; Suard, Emmanuelle
  • Chemistry of Materials, Vol. 24, Issue 17
  • DOI: 10.1021/cm300964k

Low temperature cubic garnet-type CO2-doped Li7La3Zr2O12
journal, February 2013


Ionic Conductivity and Air Stability of Al-Doped Li 7 La 3 Zr 2 O 12 Sintered in Alumina and Pt Crucibles
journal, February 2016

  • Xia, Wenhao; Xu, Biyi; Duan, Huanan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 8
  • DOI: 10.1021/acsami.5b12186

Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery
journal, October 2013


First Total H + /Li + Ion Exchange in Garnet-Type Li 5 La 3 Nb 2 O 12 Using Organic Acids and Studies on the Effect of Li Stuffing
journal, January 2012

  • Truong, Lina; Thangadurai, Venkataraman
  • Inorganic Chemistry, Vol. 51, Issue 3
  • DOI: 10.1021/ic202491m

Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration
journal, January 2013

  • Larraz, G.; Orera, A.; Sanjuán, M. L.
  • Journal of Materials Chemistry A, Vol. 1, Issue 37
  • DOI: 10.1039/c3ta11996c

Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, August 2015

  • Cheng, Lei; Wu, Cheng Hao; Jarry, Angelique
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 32
  • DOI: 10.1021/acsami.5b02528

Effect of Li+/H+ exchange in water treated Ta-doped Li7La3Zr2O12
journal, September 2016


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Elastic Properties of the Solid Electrolyte Li 7 La 3 Zr 2 O 12 (LLZO)
journal, December 2015


Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li + /H + Exchange in Aqueous Solutions
journal, October 2014

  • Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu
  • Angewandte Chemie, Vol. 127, Issue 1
  • DOI: 10.1002/ange.201408124

NMR study of Li distribution in Li 7−x H x La 3 Zr 2 O 12 garnets
journal, January 2015

  • Larraz, G.; Orera, A.; Sanz, J.
  • Journal of Materials Chemistry A, Vol. 3, Issue 10
  • DOI: 10.1039/C4TA04570J

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

The Compressibility of Media under Extreme Pressures
journal, September 1944

  • Murnaghan, F. D.
  • Proceedings of the National Academy of Sciences, Vol. 30, Issue 9
  • DOI: 10.1073/pnas.30.9.244

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C 1 to C 4 . Part 1. Properties of Condensed Phases
journal, January 1985

  • Wilhoit, Randolph C.; Chao, Jing; Hall, Kenneth R.
  • Journal of Physical and Chemical Reference Data, Vol. 14, Issue 1
  • DOI: 10.1063/1.555747

Reaction mechanisms of Li0.30La0.57TiO3 powder with ambient air: H+/Li+ exchange with water and Li2CO3 formation
journal, January 2010

  • Boulant, Anthony; Bardeau, Jean Francois; Jouanneaux, Alain
  • Dalton Transactions, Vol. 39, Issue 16
  • DOI: 10.1039/b924684c

Tetragonal vs. cubic phase stability in Al – free Ta doped Li 7 La 3 Zr 2 O 12 (LLZO)
journal, January 2014

  • Thompson, Travis; Wolfenstine, Jeff; Allen, Jan L.
  • J. Mater. Chem. A, Vol. 2, Issue 33
  • DOI: 10.1039/C4TA02099E

Structure and Stoichiometry in Supervalent Doped Li 7 La 3 Zr 2 O 12
journal, May 2015


Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12
journal, January 2013


Lithium K-edge XANES spectra for lithium compounds
journal, January 2002

  • Tsuji, Junichi; Nakamatsu, Hirohide; Mukoyama, Takeshi
  • X-Ray Spectrometry, Vol. 31, Issue 4
  • DOI: 10.1002/xrs.577

Electroceramics: Characterization by Impedance Spectroscopy
journal, March 1990

  • Irvine, John T. S.; Sinclair, Derek C.; West, Anthony R.
  • Advanced Materials, Vol. 2, Issue 3
  • DOI: 10.1002/adma.19900020304

A Tale of Two Sites: On Defining the Carrier Concentration in Garnet-Based Ionic Conductors for Advanced Li Batteries
journal, March 2015

  • Thompson, Travis; Sharafi, Asma; Johannes, Michelle D.
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201500096

Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density
journal, January 2016


Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte
journal, March 2012


Electrochemical Stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against Metallic Lithium
journal, May 2016


Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li + /H + Exchange in Aqueous Solutions
journal, October 2014

  • Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201408124

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12.
journal, December 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • ChemInform, Vol. 38, Issue 50
  • DOI: 10.1002/chin.200750009

Reducing Dzyaloshinskii-Moriya interaction and field-free spin-orbit torque switching in synthetic antiferromagnets
journal, May 2021


Electronic structure of AlFeN films exhibiting crystallographic orientation change from c- to a-axis with Fe concentrations and annealing effect
journal, February 2020


Works referencing / citing this record:

The Ab Initio Calculations on the Areal Specific Resistance of Li‐Metal/Li 7 La 3 Zr 2 O 12 Interphase
journal, April 2019


Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal
journal, January 2019

  • Zhu, Yisi; Connell, Justin G.; Tepavcevic, Sanja
  • Advanced Energy Materials, Vol. 9, Issue 12
  • DOI: 10.1002/aenm.201803440

In situ X-ray photoelectron spectroscopy investigation of the solid electrolyte interphase in a Li/Li6.4Ga0.2La3Zr2O12/LiFePO4 all-solid-state battery
journal, June 2019

  • Liu, Zhen; Li, Guozhu; Borodin, Andriy
  • Journal of Solid State Electrochemistry, Vol. 23, Issue 7
  • DOI: 10.1007/s10008-019-04296-4

Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries
journal, May 2018


Fundamentals of inorganic solid-state electrolytes for batteries
journal, August 2019

  • Famprikis, Theodosios; Canepa, Pieremanuele; Dawson, James A.
  • Nature Materials, Vol. 18, Issue 12
  • DOI: 10.1038/s41563-019-0431-3

Understanding interface stability in solid-state batteries
journal, December 2019


On the interfacial charge transfer between solid and liquid Li + electrolytes
journal, January 2017

  • Schleutker, Marco; Bahner, Jochen; Tsai, Chih-Long
  • Phys. Chem. Chem. Phys., Vol. 19, Issue 39
  • DOI: 10.1039/c7cp05213h

Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes
journal, January 2018

  • Pesci, Federico M.; Brugge, Rowena H.; Hekselman, A. K. Ola
  • Journal of Materials Chemistry A, Vol. 6, Issue 40
  • DOI: 10.1039/c8ta08366e

Atomic layer deposition and first principles modeling of glassy Li 3 BO 3 –Li 2 CO 3 electrolytes for solid-state Li metal batteries
journal, January 2018

  • Kazyak, Eric; Chen, Kuan-Hung; Davis, Andrew L.
  • Journal of Materials Chemistry A, Vol. 6, Issue 40
  • DOI: 10.1039/c8ta08761j

Local Li-ion conductivity changes within Al stabilized Li 7 La 3 Zr 2 O 12 and their relationship to three-dimensional variations of the bulk composition
journal, January 2019

  • Smetaczek, Stefan; Wachter-Welzl, Andreas; Wagner, Reinhard
  • Journal of Materials Chemistry A, Vol. 7, Issue 12
  • DOI: 10.1039/c9ta00356h

The conduction process of grain and grain boundary in the semiconductive zirconium oxynitride thin film
journal, July 2019

  • Lin, Zude; Zhan, Guanghui; Li, Xiuyan
  • Semiconductor Science and Technology, Vol. 34, Issue 8
  • DOI: 10.1088/1361-6641/ab2c0e

Electrochemical Stability of Garnet-Type Li 7 La 2.75 Ca 0.25 Zr 1.75 Nb 0.25 O 12  with and without Atomic Layer Deposited-Al 2 O 3  under CO 2 and Humidity
journal, January 2019

  • Hofstetter, Kyle; Samson, Alfred Junio; Dai, Jiaqi
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0201910jes