DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reactions of Th+ + H2, D2, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations

Abstract

Kinetic energy dependent reactions of Th+ with H2, D2, and HD were studied using a guided ion beam tandem mass spectrometer. Formation of ThH+ and ThD+ is endothermic in all cases with similar thresholds. Branching ratio results for the reaction with HD indicate that Th+ reacts via a statistical mechanism, similar to Hf+. The kinetic energy dependent cross sections for formation of ThH+ and ThD+ were evaluated to determine a 0 K bond dissociation energy (BDE) of D0(Th+–H) = 2.45 ± 0.07 eV. This value is in good agreement with a previous result obtained from analysis of the Th+ + CH4 reaction. D0(Th+–H) is observed to be larger than its transition metal congeners, TiH+, ZrH+, and HfH+, believed to be a result of lanthanide contraction. The reactions with H2 were also explored using quantum chemical calculations that include a semiempirical estimation and explicit calculation of spin–orbit contributions. These calculations agree nicely and indicate that ThH+ most likely has a 3Δ1 ground level with a low-lying 1Σ+ excited state. As a result, theory also provides the reaction potential energy surfaces and BDEs that are in reasonable agreement with experiment.

Authors:
 [1];  [1];  [2]
  1. Univ. of Utah, Salt Lake City, UT (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1393033
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 120; Journal Issue: 8; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Cox, Richard M., Armentrout, P. B., and de Jong, Wibe A. Reactions of Th+ + H2, D2, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations. United States: N. p., 2015. Web. doi:10.1021/acs.jpcb.5b08008.
Cox, Richard M., Armentrout, P. B., & de Jong, Wibe A. Reactions of Th+ + H2, D2, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations. United States. https://doi.org/10.1021/acs.jpcb.5b08008
Cox, Richard M., Armentrout, P. B., and de Jong, Wibe A. Mon . "Reactions of Th+ + H2, D2, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations". United States. https://doi.org/10.1021/acs.jpcb.5b08008. https://www.osti.gov/servlets/purl/1393033.
@article{osti_1393033,
title = {Reactions of Th+ + H2, D2, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations},
author = {Cox, Richard M. and Armentrout, P. B. and de Jong, Wibe A.},
abstractNote = {Kinetic energy dependent reactions of Th+ with H2, D2, and HD were studied using a guided ion beam tandem mass spectrometer. Formation of ThH+ and ThD+ is endothermic in all cases with similar thresholds. Branching ratio results for the reaction with HD indicate that Th+ reacts via a statistical mechanism, similar to Hf+. The kinetic energy dependent cross sections for formation of ThH+ and ThD+ were evaluated to determine a 0 K bond dissociation energy (BDE) of D0(Th+–H) = 2.45 ± 0.07 eV. This value is in good agreement with a previous result obtained from analysis of the Th+ + CH4 reaction. D0(Th+–H) is observed to be larger than its transition metal congeners, TiH+, ZrH+, and HfH+, believed to be a result of lanthanide contraction. The reactions with H2 were also explored using quantum chemical calculations that include a semiempirical estimation and explicit calculation of spin–orbit contributions. These calculations agree nicely and indicate that ThH+ most likely has a 3Δ1 ground level with a low-lying 1Σ+ excited state. As a result, theory also provides the reaction potential energy surfaces and BDEs that are in reasonable agreement with experiment.},
doi = {10.1021/acs.jpcb.5b08008},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 8,
volume = 120,
place = {United States},
year = {Mon Sep 28 00:00:00 EDT 2015},
month = {Mon Sep 28 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reactions of U+ and UO+ with O2, CO, CO2, COS, CS2 and D2O
journal, August 1980


Collision-induced dissociation of UO+ and UO+2
journal, August 1980


A Comparative Study of Oxo-Ligand Effects in the Gas-Phase Chemistry of Atomic Lanthanide and Actinide Cations
journal, July 1997

  • Cornehl, Hans H.; Wesendrup, Ralf; Diefenbach, Martin
  • Chemistry - A European Journal, Vol. 3, Issue 7
  • DOI: 10.1002/chem.19970030716

Gas-Phase Chemistry of Bare and Oxo-Ligated Protactinium Ions:  A Contribution to a Systematic Understanding of Actinide Chemistry
journal, November 2002

  • Gibson, John K.; Haire, Richard G.
  • Inorganic Chemistry, Vol. 41, Issue 22
  • DOI: 10.1021/ic025683t

Gas-Phase Oxidation Reactions of Neptunium and Plutonium Ions Investigated via Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
journal, August 2002

  • Santos, Marta; Marçalo, Joaquim; Pires de Matos, António
  • The Journal of Physical Chemistry A, Vol. 106, Issue 31
  • DOI: 10.1021/jp025733f

Role of Atomic Electronics in f-Element Bond Formation:  Bond Energies of Lanthanide and Actinide Oxide Molecules
journal, October 2003

  • Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 39
  • DOI: 10.1021/jp035003n

FTICR/MS studies of gas-phase actinide ion reactions: fundamental chemical and physical properties of atomic and molecular actinide ions and neutrals
journal, May 2007


Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium
journal, November 2009

  • Marçalo, Joaquim; Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 45
  • DOI: 10.1021/jp904862a

Endothermic reactions of uranium ions with N 2 , D 2 , and CD 4
journal, May 1977

  • Armentrout, P. B.; Hodges, R. V.; Beauchamp, J. L.
  • The Journal of Chemical Physics, Vol. 66, Issue 10
  • DOI: 10.1063/1.433678

Gas phase actinide ion chemistry: Activation of alkanes and alkenes by thorium cations
journal, December 1996

  • Marçalo, Joaquim; Leal, João Paulo; de Matos, Antonió Pires
  • International Journal of Mass Spectrometry and Ion Processes, Vol. 157-158
  • DOI: 10.1016/S0168-1176(96)04401-1

Gas-Phase Transuranium Organometallic Chemistry:  Reactions of Np + , Pu + , NpO + , and PuO + with Alkenes
journal, March 1998

  • Gibson, John K.
  • Journal of the American Chemical Society, Vol. 120, Issue 11
  • DOI: 10.1021/ja973182e

Berkelium and californium organometallic ions
journal, January 2001


Gas-Phase Reactions of Hydrocarbons with An + and AnO + (An = Th, Pa, U, Np, Pu, Am, Cm):  The Active Role of 5f Electrons in Organoprotactinium Chemistry
journal, July 2007

  • Gibson, John K.; Haire, Richard G.; Marçalo, Joaquim
  • Organometallics, Vol. 26, Issue 16
  • DOI: 10.1021/om700329h

Gas-Phase Reactions of the Bare Th 2+ and U 2+ Ions with Small Alkanes, CH 4 , C 2 H 6 , and C 3 H 8 : Experimental and Theoretical Study of Elementary Organoactinide Chemistry
journal, February 2011

  • Di Santo, Emanuela; Santos, Marta; Michelini, Maria C.
  • Journal of the American Chemical Society, Vol. 133, Issue 6
  • DOI: 10.1021/ja109621n

Gas-phase reactions of doubly charged actinide cations with alkanes and alkenes—probing the chemical activity of 5f electrons from Th to Cm
journal, January 2011

  • Marçalo, Joaquim; Santos, Marta; Gibson, John K.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 41
  • DOI: 10.1039/c1cp21399g

Methane C−H Bond Activation by Neutral Lanthanide and Thorium Atoms in the Gas Phase:  A Theoretical Prediction
journal, July 2006

  • de Almeida, K. J.; Cesar, A.
  • Organometallics, Vol. 25, Issue 14
  • DOI: 10.1021/om060112k

Mechanistic Aspects of the Reaction of Th + and Th 2+ with Water in the Gas Phase
journal, March 2008

  • Mazzone, Gloria; Michelini, Maria del Carmen; Russo, Nino
  • Inorganic Chemistry, Vol. 47, Issue 6
  • DOI: 10.1021/ic701789n

Methane C−H Bond Activation by Gas-Phase Th + and U + : Reaction Mechanisms and Bonding Analysis
journal, July 2009

  • Di Santo, Emanuela; Michelini, Maria del Carmen; Russo, Nino
  • Organometallics, Vol. 28, Issue 13
  • DOI: 10.1021/om900156f

Activation of Ethane C−H and C−C Bonds by Gas Phase Th + and U + : A Theoretical Study
journal, December 2009

  • Di Santo, E.; Michelini, M. C.; Russo, N.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 52
  • DOI: 10.1021/jp9048154

Dehydrogenation of Methane by Gas-Phase Th, Th + , and Th 2+ : Theoretical Insights into Actinide Chemistry
journal, September 2010

  • de Almeida, K. J.; Duarte, H. A.
  • Organometallics, Vol. 29, Issue 17
  • DOI: 10.1021/om100156r

Ab Initio Molecular Dynamics Study of the Reaction between Th + and H 2 O
journal, August 2010

  • Zhou, Jia; Schlegel, H. Bernhard
  • The Journal of Physical Chemistry A, Vol. 114, Issue 33
  • DOI: 10.1021/jp912098w

Ionization Energies for the Actinide Mono- and Dioxides Series, from Th to Cm: Theory versus Experiment
journal, May 2010

  • Infante, Ivan; Kovacs, Attila; Macchia, Giovanni La
  • The Journal of Physical Chemistry A, Vol. 114, Issue 19
  • DOI: 10.1021/jp1016328

Computed Vibrational Frequencies of Actinide Oxides AnO 0/+/2+ and AnO 2 0/+/2+ (An = Th, Pa, U, Np, Pu, Am, Cm)
journal, June 2011

  • Kovács, Attila; Konings, Rudy J. M.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 24
  • DOI: 10.1021/jp202538k

How accurate are electronic structure methods for actinoid chemistry?
journal, March 2011

  • Averkiev, Boris B.; Mantina, Manjeera; Valero, Rosendo
  • Theoretical Chemistry Accounts, Vol. 129, Issue 3-5
  • DOI: 10.1007/s00214-011-0913-0

Actinide sulfides in the gas phase: experimental and theoretical studies of the thermochemistry of AnS (An = Ac, Th, Pa, U, Np, Pu, Am and Cm)
journal, January 2011

  • Pereira, Cláudia C. L.; Marsden, Colin J.; Marçalo, Joaquim
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 28
  • DOI: 10.1039/c1cp20996e

Activation of CH 4 by Th + as Studied by Guided Ion Beam Mass Spectrometry and Quantum Chemistry
journal, March 2015


Spectroscopy and Structure of the Simplest Actinide Bonds
journal, October 2014

  • Heaven, Michael C.; Barker, Beau J.; Antonov, Ivan O.
  • The Journal of Physical Chemistry A, Vol. 118, Issue 46
  • DOI: 10.1021/jp507283n

Effect of kinetic and electronic energy on the reaction of vanadium(1+) (V+) with molecular hydrogen, hydrogen deuteride, and molecular deuterium
journal, December 1985

  • Elkind, J. L.; Armentrout, P. B.
  • The Journal of Physical Chemistry, Vol. 89, Issue 26
  • DOI: 10.1021/j100272a012

Effect of kinetic and electronic energy on the reactions of Mn + with H 2 , HD, and D 2
journal, May 1986

  • Elkind, J. L.; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 84, Issue 9
  • DOI: 10.1063/1.449975

Effect of kinetic and electronic energy on the reactions of cobalt, nickel, and copper ions with hydrogen, hydrogen deuteride, and deuterium
journal, November 1986

  • Elkind, J. L.; Armentrout, P. B.
  • The Journal of Physical Chemistry, Vol. 90, Issue 24
  • DOI: 10.1021/j100282a031

Transition-metal hydride bond energies: first and second row
journal, April 1986

  • Elkind, J. L.; Armentrout, P. B.
  • Inorganic Chemistry, Vol. 25, Issue 8
  • DOI: 10.1021/ic00228a004

Effect of kinetic and electronic energy on the reactions of Cr + with H 2 , HD, and D 2
journal, February 1987

  • Elkind, J. L.; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 86, Issue 4
  • DOI: 10.1063/1.452138

Effect of kinetic and electronic energy on the reactions of Ti+ with H2, HD, and D2
journal, May 1988

  • Elkind, J. L.; Armentrout, P. B.
  • International Journal of Mass Spectrometry and Ion Processes, Vol. 83, Issue 3
  • DOI: 10.1016/0168-1176(88)80032-6

Periodic trends in chemical reactivity: reactions of scandium(1+), yttrium(1+), lanthanum(1+), and lutetium(1+) with hydrogen, deuterium and hydrogen-d1
journal, April 1989

  • Elkind, J. L.; Sunderlin, L. S.; Armentrout, P. B.
  • The Journal of Physical Chemistry, Vol. 93, Issue 8
  • DOI: 10.1021/j100345a054

Reactions of Ru+, Rh+, Pd+, and Ag+ with H2, HD, and D2
journal, June 1995

  • Chen, Yu-Min; Elkind, J. L.; Armentrout, P. B.
  • The Journal of Physical Chemistry, Vol. 99, Issue 26
  • DOI: 10.1021/j100026a004

Reactions of Y + , Zr + , Nb + , and Mo + with H 2 , HD, and D 2
journal, January 1996

  • Sievers, Michael R.; Chen, Yu-Min; Elkind, J. L.
  • The Journal of Physical Chemistry, Vol. 100, Issue 1
  • DOI: 10.1021/jp952231b

Reactions of Pt+ with H2, D2, and HD: Effect of lanthanide contraction on reactivity and thermochemistry
journal, April 2002

  • Zhang, Xiao-Guang; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 116, Issue 13
  • DOI: 10.1063/1.1456028

Reactions of Ta+ and W+ with H2, D2, and HD: Effect of lanthanide contraction and spin–orbit interactions on reactivity and thermochemistry
journal, April 2002

  • Zhang, Xiao-Guang; Rue, Chad; Shin, Sae-Young
  • The Journal of Chemical Physics, Vol. 116, Issue 13
  • DOI: 10.1063/1.1456029

Guided ion beam and theoretical study of the reactions of Hf+ with H2, D2, and HD
journal, September 2010

  • Hinton, Christopher S.; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 133, Issue 12
  • DOI: 10.1063/1.3482663

Guided ion beam and theoretical study of the reactions of Os + with H 2 , D 2 , and HD
journal, December 2011

  • Hinton, Christopher S.; Citir, Murat; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 135, Issue 23
  • DOI: 10.1063/1.3669425

Guided ion beam and theoretical study of the reactions of Au + with H 2 , D 2 , and HD
journal, January 2011

  • Li, Fengxia; Hinton, Christopher S.; Citir, Murat
  • The Journal of Chemical Physics, Vol. 134, Issue 2
  • DOI: 10.1063/1.3514899

Production of YbH + by chemical reaction of Yb + in excited states with H 2 gas
journal, January 1997


Periodic trends in chemical reactivity. Reactions of scandium(+), yttrium(+), lanthanum(+), and lutetium(+) with methane and ethane
journal, May 1989

  • Sunderlin, L. S.; Armentrout, P. B.
  • Journal of the American Chemical Society, Vol. 111, Issue 11
  • DOI: 10.1021/ja00193a015

Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity
journal, November 2008

  • Marçalo, Joaquim; Santos, Marta; Matos, António Pires de
  • The Journal of Physical Chemistry A, Vol. 112, Issue 49
  • DOI: 10.1021/jp808077b

Collision‐induced dissociation of Fe + n ( n =2–10) with Xe: Ionic and neutral iron binding energies
journal, May 1989

  • Loh, S. K.; Hales, David A.; Lian, Li
  • The Journal of Chemical Physics, Vol. 90, Issue 10
  • DOI: 10.1063/1.456452

Reactions of N+4 with rare gases from thermal to 10eV center-of-mass energy: collision-induced dissociation, charge transfer and ligand exchange
journal, June 1991

  • Schultz, Richard H.; Armentrout, P. B.
  • International Journal of Mass Spectrometry and Ion Processes, Vol. 107, Issue 1
  • DOI: 10.1016/0168-1176(91)85072-T

Integral cross sections for ion—molecule reactions. I. The guided beam technique
journal, June 1974


Scintillation Type Mass Spectrometer Ion Detector
journal, March 1960

  • Daly, N. R.
  • Review of Scientific Instruments, Vol. 31, Issue 3
  • DOI: 10.1063/1.1716953

Translational energy dependence of Ar + +XY→ArX + +Y (XY=H 2 ,D 2 ,HD) from thermal to 30 eV c.m.
journal, July 1985

  • Ervin, Kent M.; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 83, Issue 1
  • DOI: 10.1063/1.449799

Doppler Broadening in Beam Experiments
journal, September 1971

  • Chantry, P. J.
  • The Journal of Chemical Physics, Vol. 55, Issue 6
  • DOI: 10.1063/1.1676489

Thermochemistry and Structures of CoC3H6+: Metallacycle and Metal-Alkene Isomers
journal, September 1994

  • Haynes, Chris L.; Armentrout, P. B.
  • Organometallics, Vol. 13, Issue 9
  • DOI: 10.1021/om00021a022

Reactions of Fe+, Co+, and Ni+ with Silane. Electronic State Effects, Comparison to Reactions with Methane, and M+-SiHx (x = 0-3) Bond Energies
journal, January 1995

  • Kickel, Bernice L.; Armentrout, P. B.
  • Journal of the American Chemical Society, Vol. 117, Issue 2
  • DOI: 10.1021/ja00107a020

State-Specific Reactions of Fe+(a6D,a4F) with D2O and Reactions of FeO+ with D2
journal, June 1994

  • Clemmer, D. E.; Chen, Yu-Min; Khan, Farooq A.
  • The Journal of Physical Chemistry, Vol. 98, Issue 26
  • DOI: 10.1021/j100077a017

Kinetic energy dependence of ion–molecule reactions: guided ion beams and threshold measurements
journal, December 2000


Theory of translationally driven reactions
journal, April 1979

  • Chesnavich, Walter J.; Bowers, Michael T.
  • The Journal of Physical Chemistry, Vol. 83, Issue 8
  • DOI: 10.1021/j100471a004

Guided ion beam study of collision-induced dissociation dynamics: integral and differential cross sections
journal, July 2001

  • Muntean, Felician; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 115, Issue 3
  • DOI: 10.1063/1.1371958

Correlation consistent basis sets for actinides. I. The Th and U atoms
journal, February 2015

  • Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 142, Issue 7
  • DOI: 10.1063/1.4907596

Relativistic Small-Core Pseudopotentials for Actinium, Thorium, and Protactinium
journal, March 2014

  • Weigand, Anna; Cao, Xiaoyan; Hangele, Tim
  • The Journal of Physical Chemistry A, Vol. 118, Issue 13
  • DOI: 10.1021/jp500215z

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

The role of databases in support of computational chemistry calculations
journal, October 1996


Basis Set Exchange:  A Community Database for Computational Sciences
journal, March 2007

  • Schuchardt, Karen L.; Didier, Brett T.; Elsethagen, Todd
  • Journal of Chemical Information and Modeling, Vol. 47, Issue 3
  • DOI: 10.1021/ci600510j

Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials
journal, January 2003

  • Cao, Xiaoyan; Dolg, Michael; Stoll, Hermann
  • The Journal of Chemical Physics, Vol. 118, Issue 2
  • DOI: 10.1063/1.1521431

Quantum electrodynamical corrections to the fine structure of helium
journal, January 1974


Revision of the Douglas-Kroll transformation
journal, June 1989


Parallel Douglas–Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas–Kroll contracted basis sets
journal, January 2001

  • de Jong, W. A.; Harrison, R. J.; Dixon, D. A.
  • The Journal of Chemical Physics, Vol. 114, Issue 1
  • DOI: 10.1063/1.1329891

Two-component methods of relativistic quantum chemistry: from the Douglas–Kroll approximation to the exact two-component formalism
journal, October 2001


Spectroscopic investigations of ThF and ThF +
journal, March 2012

  • Barker, Beau J.; Antonov, Ivan O.; Heaven, Michael C.
  • The Journal of Chemical Physics, Vol. 136, Issue 10
  • DOI: 10.1063/1.3691301

Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations” [Jensen F (2005) Theor Chem Acc 113:267]
journal, December 2005


Ab initio total atomization energies of small molecules — towards the basis set limit
journal, September 1996


On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies
journal, July 2011

  • Feller, David; Peterson, Kirk A.; Grant Hill, J.
  • The Journal of Chemical Physics, Vol. 135, Issue 4
  • DOI: 10.1063/1.3613639

The performance of density‐functional/Hartree–Fock hybrid methods: Cationic transition‐metal methyl complexes MCH + 3 (M=Sc–Cu,La,Hf–Au)
journal, March 1995

  • Holthausen, Max C.; Heinemann, Christoph; Cornehl, Hans H.
  • The Journal of Chemical Physics, Vol. 102, Issue 12
  • DOI: 10.1063/1.469541

Kinetic energy dependence of Al + +O 2 →AlO + +O
journal, February 1986

  • Weber, M. E.; Elkind, J. L.; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 84, Issue 3
  • DOI: 10.1063/1.450497

Periodic trends in the reactions of atomic ions with molecular hydrogen
journal, April 1990


Translational energy dependence of O+(4S) + H2(D2, HD) → OH+(OD+) + H(D) from thermal energies to 30 eV c.m.
journal, December 1987

  • Burley, J. D.; Ervin, Kent M.; Armentrout, P. B.
  • International Journal of Mass Spectrometry and Ion Processes, Vol. 80
  • DOI: 10.1016/0168-1176(87)87027-1

Handbook of Basic Atomic Spectroscopic Data
journal, December 2005

  • Sansonetti, J. E.; Martin, W. C.
  • Journal of Physical and Chemical Reference Data, Vol. 34, Issue 4
  • DOI: 10.1063/1.1800011

Resonant two-photon ionization spectroscopy of jet-cooled OsN: 520–418 nm
journal, September 2011

  • Garcia, Maria A.; Morse, Michael D.
  • The Journal of Chemical Physics, Vol. 135, Issue 11
  • DOI: 10.1063/1.3633694

The bond energy of ReO + : Guided ion-beam and theoretical studies of the reaction of Re + ( 7 S) with O 2
journal, August 2013

  • Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 139, Issue 8
  • DOI: 10.1063/1.4818642

Bond Energy of IrO + : Guided Ion-Beam and Theoretical Studies of the Reaction of Ir + ( 5 F) with O 2
journal, July 2013

  • Armentrout, P. B.; Li, Feng-Xia
  • The Journal of Physical Chemistry A, Vol. 117, Issue 33
  • DOI: 10.1021/jp4063143

Activation of Methane by Os + : Guided-Ion-Beam and Theoretical Studies
journal, August 2013

  • Armentrout, P. B.; Parke, Laura; Hinton, Christopher
  • ChemPlusChem, Vol. 78, Issue 9
  • DOI: 10.1002/cplu.201300147

Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac–Lr
journal, October 2006


The triplets of helium
journal, February 1929

  • Gaunt, J. Arthur
  • Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 122, Issue 790, p. 513-532
  • DOI: 10.1098/rspa.1929.0037

Theoretical study of transition-metal hydrides. 5. Hafnium to mercury (HfH+ through HgH+), barium and lanthanum (BaH+ and LaH+)
journal, September 1990

  • Ohanessian, Gilles; Brusich, Mark J.; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 112, Issue 20
  • DOI: 10.1021/ja00176a016

Candidate molecular ions for an electron electric dipole moment experiment
journal, June 2006


Experimental and Theoretical Evidence for the Isolation of Thorium Hydride Molecules in Argon Matrices
journal, February 1997

  • Souter, Philip F.; Kushto, Gary P.; Andrews, Lester
  • The Journal of Physical Chemistry A, Vol. 101, Issue 7
  • DOI: 10.1021/jp962863d

Potential Energy Surface for Activation of Methane by Pt + :  A Combined Guided Ion Beam and DFT Study
journal, June 2001

  • Zhang, Xiao-Guang; Liyanage, Rohana; Armentrout, P. B.
  • Journal of the American Chemical Society, Vol. 123, Issue 23
  • DOI: 10.1021/ja010382o

Is Spin Conserved in Heavy Metal Systems? Experimental and Theoretical Studies of the Reaction of Re + with Methane
journal, November 2004

  • Armentrout, Matthew M.; Li, Feng-Xia; Armentrout, P. B.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 45
  • DOI: 10.1021/jp0486447

Activation of CH 4 by Gas-Phase Mo + , and the Thermochemistry of Mo−ligand Complexes
journal, July 2006

  • Armentrout, P. B.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 27
  • DOI: 10.1021/jp056804o

The most reactive third-row transition metal: Guided ion beam and theoretical studies of the activation of methane by Ir+
journal, September 2006

  • Li, Feng-Xia; Zhang, Xiao-Guang; Armentrout, P. B.
  • International Journal of Mass Spectrometry, Vol. 255-256
  • DOI: 10.1016/j.ijms.2006.02.021

Bonding in Cationic MCH 2 + (M=K-La, Hf-Rn): A Theoretical Study on Periodic Trends
journal, April 2010

  • Zhang, Xinhao; Schwarz, Helmut
  • Chemistry - A European Journal, Vol. 16, Issue 20
  • DOI: 10.1002/chem.201000567

Positive ions of the first‐ and second‐row transition metal hydrides
journal, July 1987

  • Pettersson, Lars G. M.; Bauschlicher, Charles W.; Langhoff, Stephen R.
  • The Journal of Chemical Physics, Vol. 87, Issue 1
  • DOI: 10.1063/1.453594

Three methods to measure RH bond energies
journal, March 1994

  • Berkowitz, Joseph; Ellison, G. Barney; Gutman, David
  • The Journal of Physical Chemistry, Vol. 98, Issue 11
  • DOI: 10.1021/j100062a009

Vacuum ultraviolet photoelectron spectroscopy of transient species. Part 18.—The cyclopropyl, isopropyl and n-propyl radicals
journal, January 1985

  • Dyke, John; Ellis, Andrew; Jonathan, Neville
  • J. Chem. Soc., Faraday Trans. 2, Vol. 81, Issue 10
  • DOI: 10.1039/f29858101573

Ionization potential of neutral atomic plutonium determined by laser spectroscopy
journal, January 1993

  • Worden, Earl F.; Carlson, Lee R.; Johnson, Steve A.
  • Journal of the Optical Society of America B, Vol. 10, Issue 11
  • DOI: 10.1364/JOSAB.10.001998

High temperature thermodynamic studies of some gaseous thorium fluorides
journal, January 1989

  • Lau, K. H.; Brittain, R. D.; Hildenbrand, D. L.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456171

Redetermination of the thermochemistry of gaseous UF 5 , UF 2 , and UF
journal, January 1991

  • Hildenbrand, D. L.; Lau, K. H.
  • The Journal of Chemical Physics, Vol. 94, Issue 2
  • DOI: 10.1063/1.460000

Works referencing / citing this record:

Bond dissociation energy of Au 2 + : A guided ion beam and theoretical investigation
journal, May 2019

  • Owen, Cameron J.; Keyes, Nicholas R.; Xie, Changjian
  • The Journal of Chemical Physics, Vol. 150, Issue 17
  • DOI: 10.1063/1.5092957

Bond energy of ThN + : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N 2 and NO
journal, July 2019

  • Cox, Richard M.; Kafle, Arjun; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 151, Issue 3
  • DOI: 10.1063/1.5111534

Samarium cation (Sm + ) reactions with H 2 , D 2 , and HD: SmH + bond energy and mechanistic insights from guided ion beam and theoretical studies
journal, October 2018

  • Demireva, Maria; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 149, Issue 16
  • DOI: 10.1063/1.5053758

Bond energies of ThO + and ThC + : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O 2 and CO
journal, May 2016

  • Cox, Richard M.; Citir, Murat; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 144, Issue 18
  • DOI: 10.1063/1.4948812