DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation

Abstract

Towards building large-scale integrated photonic systems for quantum information processing, spatial and spectral alignment of single quantum systems to photonic nanocavities is required. In this paper, we demonstrate spatially targeted implantation of nitrogen vacancy (NV) centers into the mode maximum of 2-d diamond photonic crystal cavities with quality factors up to 8000, achieving an average of 1.1 ± 0.2 NVs per cavity. Nearly all NV-cavity systems have significant emission intensity enhancement, reaching a cavity-fed spectrally selective intensity enhancement, Fint, of up to 93. Although spatial NV-cavity overlap is nearly guaranteed within about 40 nm, spectral tuning of the NV’s zero-phonon-line (ZPL) is still necessary after fabrication. To demonstrate spectral control, we temperature tune a cavity into an NV ZPL, yielding FZPLint~5 at cryogenic temperatures.

Authors:
 [1];  [2];  [3];  [2];  [2];  [4];  [4];  [5];  [5];  [2];  [2]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. of Copenhagen (Denmark)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Columbia Univ., New York, NY (United States)
  4. SUNY Polytechnic Inst., Albany, NY (United States)
  5. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. of Copenhagen (Denmark); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Air Force Office of Scientific Research (AFOSR); Army Research Laboratory (ARL) (United States); Danish Council for Independent Research (Denmark)
OSTI Identifier:
1392257
Report Number(s):
BNL-114306-2017-JA
Journal ID: ISSN 2159-3930; KC0403020
Grant/Contract Number:  
SC0012704; 1325-00144
Resource Type:
Accepted Manuscript
Journal Name:
Optical Materials Express
Additional Journal Information:
Journal Volume: 7; Journal Issue: 5; Journal ID: ISSN 2159-3930
Publisher:
Optical Society of America (OSA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; defect center materials; nitrogen vacancy centers; photonic crystal cavities; quantum information processing; spectral properties; spontaneous emission

Citation Formats

Schröder, T., Walsh, M., Zheng, J., Mouradian, S., Li, L., Malladi, G., Bakhru, H., Lu, M., Stein, A., Heuck, M., and Englund, D. Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation. United States: N. p., 2017. Web. doi:10.1364/OME.7.001514.
Schröder, T., Walsh, M., Zheng, J., Mouradian, S., Li, L., Malladi, G., Bakhru, H., Lu, M., Stein, A., Heuck, M., & Englund, D. Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation. United States. https://doi.org/10.1364/OME.7.001514
Schröder, T., Walsh, M., Zheng, J., Mouradian, S., Li, L., Malladi, G., Bakhru, H., Lu, M., Stein, A., Heuck, M., and Englund, D. Thu . "Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation". United States. https://doi.org/10.1364/OME.7.001514. https://www.osti.gov/servlets/purl/1392257.
@article{osti_1392257,
title = {Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation},
author = {Schröder, T. and Walsh, M. and Zheng, J. and Mouradian, S. and Li, L. and Malladi, G. and Bakhru, H. and Lu, M. and Stein, A. and Heuck, M. and Englund, D.},
abstractNote = {Towards building large-scale integrated photonic systems for quantum information processing, spatial and spectral alignment of single quantum systems to photonic nanocavities is required. In this paper, we demonstrate spatially targeted implantation of nitrogen vacancy (NV) centers into the mode maximum of 2-d diamond photonic crystal cavities with quality factors up to 8000, achieving an average of 1.1 ± 0.2 NVs per cavity. Nearly all NV-cavity systems have significant emission intensity enhancement, reaching a cavity-fed spectrally selective intensity enhancement, Fint, of up to 93. Although spatial NV-cavity overlap is nearly guaranteed within about 40 nm, spectral tuning of the NV’s zero-phonon-line (ZPL) is still necessary after fabrication. To demonstrate spectral control, we temperature tune a cavity into an NV ZPL, yielding FZPLint~5 at cryogenic temperatures.},
doi = {10.1364/OME.7.001514},
journal = {Optical Materials Express},
number = 5,
volume = 7,
place = {United States},
year = {Thu Apr 06 00:00:00 EDT 2017},
month = {Thu Apr 06 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication
journal, December 1998


Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters
journal, November 2005


Photonic Quantum Networks formed from NV− centers
journal, May 2016

  • Nemoto, Kae; Trupke, Michael; Devitt, Simon J.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26284

Quantum computers
journal, March 2010


Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects
journal, February 2014


Heralded entanglement between solid-state qubits separated by three metres
journal, April 2013


Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres
journal, October 2015


Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity
journal, April 2011

  • Faraon, Andrei; Barclay, Paul E.; Santori, Charles
  • Nature Photonics, Vol. 5, Issue 5
  • DOI: 10.1038/nphoton.2011.52

One- and two-dimensional photonic crystal microcavities in single crystal diamond
journal, November 2011

  • Riedrich-Möller, Janine; Kipfstuhl, Laura; Hepp, Christian
  • Nature Nanotechnology, Vol. 7, Issue 1
  • DOI: 10.1038/nnano.2011.190

Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond
journal, July 2012


Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond
journal, November 2013

  • Hausmann, B. J. M.; Shields, B. J.; Quan, Q.
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl402174g

Coherent spin control of a nanocavity-enhanced qubit in diamond
journal, January 2015

  • Li, Luozhou; Schröder, Tim; Chen, Edward H.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7173

On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator
journal, October 2009

  • Gregor, Markus; Henze, Rico; Schröder, Tim
  • Applied Physics Letters, Vol. 95, Issue 15
  • DOI: 10.1063/1.3243989

Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity
journal, October 2010

  • Englund, Dirk; Shields, Brendan; Rivoire, Kelley
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl101662v

Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity
journal, October 2010

  • Wolters, Janik; Schell, Andreas W.; Kewes, Günter
  • Applied Physics Letters, Vol. 97, Issue 14
  • DOI: 10.1063/1.3499300

Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond
journal, June 2015

  • Riedrich-Möller, Janine; Pezzagna, Sébastien; Meijer, Jan
  • Applied Physics Letters, Vol. 106, Issue 22
  • DOI: 10.1063/1.4922117

Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides
journal, May 2016

  • Schukraft, M.; Zheng, J.; Schröder, T.
  • APL Photonics, Vol. 1, Issue 2
  • DOI: 10.1063/1.4948746

Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond
journal, August 2010

  • Toyli, David M.; Weis, Christoph D.; Fuchs, Gregory D.
  • Nano Letters, Vol. 10, Issue 8
  • DOI: 10.1021/nl102066q

Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology: Maskless and targeted creation of arrays of colour centres in diamond
journal, July 2013

  • Lesik, Margarita; Spinicelli, Piernicola; Pezzagna, Sébastien
  • physica status solidi (a), Vol. 210, Issue 10
  • DOI: 10.1002/pssa.201300102

Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation
journal, October 2014

  • Tamura, Syuto; Koike, Godai; Komatsubara, Akira
  • Applied Physics Express, Vol. 7, Issue 11
  • DOI: 10.7567/APEX.7.115201

Quality control of JEOL JBX-9500FSZ e-beam lithography system in a multi-user laboratory
journal, April 2016

  • Greibe, Tine; Anhøj, Thomas Aarøe; Johansen, Leif Steen
  • Microelectronic Engineering, Vol. 155
  • DOI: 10.1016/j.mee.2016.02.003

Diamond based photonic crystal microcavities
journal, January 2006

  • Tomljenovic-Hanic, S.; Steel, M. J.; de Sterke, C. Martijn
  • Optics Express, Vol. 14, Issue 8
  • DOI: 10.1364/OE.14.003556

Design of microcavities in diamond-based photonic crystals by Fourier- and real-space analysis of cavity fields
journal, July 2010

  • Riedrich-Möller, Janine; Neu, Elke; Becher, Christoph
  • Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, Issue 3
  • DOI: 10.1016/j.photonics.2010.02.004

High-Q photonic nanocavity in a two-dimensional photonic crystal
journal, October 2003

  • Akahane, Yoshihiro; Asano, Takashi; Song, Bong-Shik
  • Nature, Vol. 425, Issue 6961
  • DOI: 10.1038/nature02063

Trapping and emission of photons by a single defect in a photonic bandgap structure
journal, October 2000

  • Noda, Susumu; Chutinan, Alongkarn; Imada, Masahiro
  • Nature, Vol. 407, Issue 6804
  • DOI: 10.1038/35036532

Quantum nanophotonics in diamond [Invited]
journal, January 2016

  • Schröder, Tim; Mouradian, Sara L.; Zheng, Jiabao
  • Journal of the Optical Society of America B, Vol. 33, Issue 4
  • DOI: 10.1364/JOSAB.33.000B65

Nanofabrication on unconventional substrates using transferred hard masks
journal, January 2015

  • Li, Luozhou; Bayn, Igal; Lu, Ming
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep07802

Aspect ratio dependent etching lag reduction in deep silicon etch processes
journal, July 2006

  • Lai, S. L.; Johnson, D.; Westerman, R.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 24, Issue 4
  • DOI: 10.1116/1.2172944

BSM 7: RIE lag in high aspect ratio trench etching of silicon
journal, February 1997


SRIM – The stopping and range of ions in matter (2010)
journal, June 2010

  • Ziegler, James F.; Ziegler, M. D.; Biersack, J. P.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 268, Issue 11-12
  • DOI: 10.1016/j.nimb.2010.02.091

Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity
journal, June 2013


Resonance Absorption by Nuclear Magnetic Moments in a Solid
journal, January 1946

  • Purcell, E. M.; Torrey, H. C.; Pound, R. V.
  • Physical Review, Vol. 69, Issue 1-2, p. 37-38
  • DOI: 10.1103/PhysRev.69.37

Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect
journal, January 2012

  • Zhao, Hong-Quan; Fujiwara, Masazumi; Takeuchi, Shigeki
  • Optics Express, Vol. 20, Issue 14
  • DOI: 10.1364/OE.20.015628

First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres
journal, July 2014


Nanophotonic quantum phase switch with a single atom
journal, April 2014

  • Tiecke, T. G.; Thompson, J. D.; de Leon, N. P.
  • Nature, Vol. 508, Issue 7495
  • DOI: 10.1038/nature13188

Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity
journal, August 2014

  • Albrecht, Roland; Bommer, Alexander; Pauly, Christoph
  • Applied Physics Letters, Vol. 105, Issue 7
  • DOI: 10.1063/1.4893612

Scanning a photonic crystal slab nanocavity by condensation of xenon
journal, October 2005

  • Mosor, S.; Hendrickson, J.; Richards, B. C.
  • Applied Physics Letters, Vol. 87, Issue 14
  • DOI: 10.1063/1.2076435

Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond
journal, July 2016


An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities
journal, January 2010

  • Chew, Xiongyeu; Zhou, Guangya; Yu, Hongbin
  • Optics Express, Vol. 18, Issue 21
  • DOI: 10.1364/OE.18.022232

Works referencing / citing this record:

Quantum Micro–Nano Devices Fabricated in Diamond by Femtosecond Laser and Ion Irradiation
journal, April 2019

  • Eaton, Shane M.; Hadden, John P.; Bharadwaj, Vibhav
  • Advanced Quantum Technologies, Vol. 2, Issue 5-6
  • DOI: 10.1002/qute.201900006

Material platforms for spin-based photonic quantum technologies
journal, April 2018


Spin measurements of NV centers coupled to a photonic crystal cavity
journal, December 2019

  • Jung, T.; Görlitz, J.; Kambs, B.
  • APL Photonics, Vol. 4, Issue 12
  • DOI: 10.1063/1.5120120

Fabrication of highly dense arrays of nanocrystalline diamond nanopillars with integrated silicon-vacancy color centers during the growth
journal, January 2019

  • Schmidt, Alexander; Naydenov, Boris; Jelezko, Fedor
  • Optical Materials Express, Vol. 9, Issue 12
  • DOI: 10.1364/ome.9.004545

Quantum information processing with closely-spaced diamond color centers in strain and magnetic fields [Invited]
journal, January 2019

  • Xu, Zhujing; Yin, Zhang-qi; Han, Qinkai
  • Optical Materials Express, Vol. 9, Issue 12
  • DOI: 10.1364/ome.9.004654