DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

Abstract

Tin and lead iodide perovskite semiconductors of the composition AMX3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, wemore » demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

Authors:
ORCiD logo [1];  [2];  [1]; ORCiD logo [3];  [3];  [3]; ORCiD logo [4]; ORCiD logo [1]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Hasselt Univ., Diepenbeek (Belgium)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1390619
Grant/Contract Number:  
AC02-76SF00515; DGE-1147470; 659225
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 32; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 14 SOLAR ENERGY

Citation Formats

Prasanna, Rohit, Gold-Parker, Aryeh, Leijtens, Tomas, Conings, Bert, Babayigit, Aslihan, Boyen, Hans -Gerd, Toney, Michael F., and McGehee, Michael D. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. United States: N. p., 2017. Web. doi:10.1021/jacs.7b04981.
Prasanna, Rohit, Gold-Parker, Aryeh, Leijtens, Tomas, Conings, Bert, Babayigit, Aslihan, Boyen, Hans -Gerd, Toney, Michael F., & McGehee, Michael D. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. United States. https://doi.org/10.1021/jacs.7b04981
Prasanna, Rohit, Gold-Parker, Aryeh, Leijtens, Tomas, Conings, Bert, Babayigit, Aslihan, Boyen, Hans -Gerd, Toney, Michael F., and McGehee, Michael D. Thu . "Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics". United States. https://doi.org/10.1021/jacs.7b04981. https://www.osti.gov/servlets/purl/1390619.
@article{osti_1390619,
title = {Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics},
author = {Prasanna, Rohit and Gold-Parker, Aryeh and Leijtens, Tomas and Conings, Bert and Babayigit, Aslihan and Boyen, Hans -Gerd and Toney, Michael F. and McGehee, Michael D.},
abstractNote = {Tin and lead iodide perovskite semiconductors of the composition AMX3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.},
doi = {10.1021/jacs.7b04981},
journal = {Journal of the American Chemical Society},
number = 32,
volume = 139,
place = {United States},
year = {Thu Jul 13 00:00:00 EDT 2017},
month = {Thu Jul 13 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 485 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
journal, May 2015


Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
journal, January 2016

  • Saliba, Michael; Matsui, Taisuke; Seo, Ji-Youn
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03874J

Perovskite-perovskite tandem photovoltaics with optimized band gaps
journal, October 2016


23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
journal, February 2017

  • Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.9

Perovskite ink with wide processing window for scalable high-efficiency solar cells
journal, March 2017


Composition Engineering in Doctor-Blading of Perovskite Solar Cells
journal, May 2017

  • Tang, Shi; Deng, Yehao; Zheng, Xiaopeng
  • Advanced Energy Materials, Vol. 7, Issue 18
  • DOI: 10.1002/aenm.201700302

Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells
journal, December 2016

  • Forgács, Dávid; Gil-Escrig, Lidón; Pérez-Del-Rey, Daniel
  • Advanced Energy Materials, Vol. 7, Issue 8
  • DOI: 10.1002/aenm.201602121

Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells
journal, January 2015

  • Hwang, Kyeongil; Jung, Yen-Sook; Heo, Youn-Jung
  • Advanced Materials, Vol. 27, Issue 7
  • DOI: 10.1002/adma.201404598

Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells
journal, March 2013

  • Noh, Jun Hong; Im, Sang Hyuk; Heo, Jin Hyuck
  • Nano Letters, Vol. 13, Issue 4, p. 1764-1769
  • DOI: 10.1021/nl400349b

Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells
journal, January 2014

  • Eperon, Giles E.; Stranks, Samuel D.; Menelaou, Christopher
  • Energy & Environmental Science, Vol. 7, Issue 3
  • DOI: 10.1039/c3ee43822h

Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells
journal, June 2016


Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Antagonism between Spin–Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH 3 NH 3 Sn 1– x Pb x I 3
journal, August 2015

  • Im, Jino; Stoumpos, Constantinos C.; Jin, Hosub
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 17
  • DOI: 10.1021/acs.jpclett.5b01738

Stable Low-Bandgap Pb-Sn Binary Perovskites for Tandem Solar Cells
journal, August 2016

  • Yang, Zhibin; Rajagopal, Adharsh; Chueh, Chu-Chen
  • Advanced Materials, Vol. 28, Issue 40
  • DOI: 10.1002/adma.201602696

Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells
journal, March 2017


Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide
journal, September 2016

  • Liao, Weiqiang; Zhao, Dewei; Yu, Yue
  • Journal of the American Chemical Society, Vol. 138, Issue 38
  • DOI: 10.1021/jacs.6b08337

Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics
journal, January 2015

  • Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC03141E

Light-Induced Phase Segregation in Halide-Perovskite Absorbers
journal, November 2016


Steric engineering of metal-halide perovskites with tunable optical band gaps
journal, December 2014

  • Filip, Marina R.; Eperon, Giles E.; Snaith, Henry J.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6757

Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting
journal, May 2014

  • Amat, Anna; Mosconi, Edoardo; Ronca, Enrico
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl5012992

Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells
journal, July 2014


A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability
journal, January 2017

  • Leijtens, Tomas; Bush, Kevin; Cheacharoen, Rongrong
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00434F

Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells
journal, May 2014

  • Hao, Feng; Stoumpos, Constantinos C.; Chang, Robert P. H.
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja5033259

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Parametric Generalized Mixed Implicit Quasi-Variational Inclusions
journal, July 2007


Resolving the Physical Origin of Octahedral Tilting in Halide Perovskites
journal, June 2016


Strain Tuning of Tin–Halide and Lead–Halide Perovskites: A First-Principles Atomic and Electronic Structure Study
journal, September 2015

  • Grote, Christopher; Berger, Robert F.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 40
  • DOI: 10.1021/acs.jpcc.5b07446

Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide
journal, November 2016

  • Fabini, Douglas H.; Stoumpos, Constantinos C.; Laurita, Geneva
  • Angewandte Chemie International Edition, Vol. 55, Issue 49
  • DOI: 10.1002/anie.201609538

Tuning the Band Gap in Hybrid Tin Iodide Perovskite Semiconductors Using Structural Templating
journal, June 2005

  • Knutson, Jeremy L.; Martin, James D.; Mitzi, David B.
  • Inorganic Chemistry, Vol. 44, Issue 13
  • DOI: 10.1021/ic050244q

Minimal Effect of the Hole-Transport Material Ionization Potential on the Open-Circuit Voltage of Perovskite Solar Cells
journal, August 2016


The classification of tilted octahedra in perovskites
journal, November 1972

  • Glazer, A. M.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 28, Issue 11
  • DOI: 10.1107/S0567740872007976

Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide
journal, October 2016

  • Whitfield, P. S.; Herron, N.; Guise, W. E.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep35685

Octahedral Tilting in Perovskites. I. Geometrical Considerations
journal, February 1997


Efficiency limits for single-junction and tandem solar cells
journal, November 2006


High Open-Circuit Voltages in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction Photovoltaics
journal, November 2016

  • Zhao, Baodan; Abdi-Jalebi, Mojtaba; Tabachnyk, Maxim
  • Advanced Materials, Vol. 29, Issue 2
  • DOI: 10.1002/adma.201604744

Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer
journal, December 2017


Works referencing / citing this record:

Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors
journal, July 2018


Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs,FA,MA)Pb(I,Br) 3 perovskites
journal, March 2019

  • Ruf, Fabian; Aygüler, Meltem F.; Giesbrecht, Nadja
  • APL Materials, Vol. 7, Issue 3
  • DOI: 10.1063/1.5083792

Effect of High Dipole Moment Cation on Layered 2D Organic–Inorganic Halide Perovskite Solar Cells
journal, December 2018


Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin-Lead Triiodide Perovskites
journal, June 2018

  • Parrott, Elizabeth S.; Green, Thomas; Milot, Rebecca L.
  • Advanced Functional Materials, Vol. 28, Issue 33
  • DOI: 10.1002/adfm.201802803

Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites
journal, January 2018


Band gap engineering and transport properties of Ba 2 In 2 O 5 : effect of fluorine doping and hydration
journal, January 2019

  • Vlasov, Maxim I.; Tarasova, Nataliia A.; Galisheva, Anzhelika O.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 42
  • DOI: 10.1039/c9cp04551a

Bowing of transport gap in hybrid halide perovskite alloys (CH 3 NH 3 Sn 1− x Pb x I 3 ): Which band is responsible?
journal, January 2020

  • Khatun, Salma; Maiti, Abhishek; Pal, Amlan J.
  • Applied Physics Letters, Vol. 116, Issue 1
  • DOI: 10.1063/1.5134749

Wide-bandgap, low-bandgap, and tandem perovskite solar cells
journal, July 2019

  • Song, Zhaoning; Chen, Cong; Li, Chongwen
  • Semiconductor Science and Technology, Vol. 34, Issue 9
  • DOI: 10.1088/1361-6641/ab27f7

Integrated Perovskite/Bulk‐Heterojunction Organic Solar Cells
journal, February 2019


Impact of cesium on the phase and device stability of triple cation Pb–Sn double halide perovskite films and solar cells
journal, January 2018

  • Tosado, Gabriella A.; Lin, Yi-Yu; Zheng, Erjin
  • Journal of Materials Chemistry A, Vol. 6, Issue 36
  • DOI: 10.1039/c8ta06391e

Thin‐film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se 2 -, and perovskite-based materials
journal, December 2018

  • Powalla, Michael; Paetel, Stefan; Ahlswede, Erik
  • Applied Physics Reviews, Vol. 5, Issue 4
  • DOI: 10.1063/1.5061809

Highly Efficient Sn/Pb Binary Perovskite Solar Cell via Precursor Engineering: A Two-Step Fabrication Process
journal, December 2018

  • Lian, Xiaomei; Chen, Jiehuan; Zhang, Yingzhu
  • Advanced Functional Materials, Vol. 29, Issue 5
  • DOI: 10.1002/adfm.201807024

Lewis-Adduct Mediated Grain-Boundary Functionalization for Efficient Ideal-Bandgap Perovskite Solar Cells with Superior Stability
journal, August 2018

  • Zong, Yingxia; Zhou, Zhongmin; Chen, Min
  • Advanced Energy Materials, Vol. 8, Issue 27
  • DOI: 10.1002/aenm.201800997

Vacuum‐Assisted Growth of Low‐Bandgap Thin Films (FA 0.8 MA 0.2 Sn 0.5 Pb 0.5 I 3 ) for All‐Perovskite Tandem Solar Cells
journal, December 2019

  • Abdollahi Nejand, Bahram; Hossain, Ihteaz M.; Jakoby, Marius
  • Advanced Energy Materials, Vol. 10, Issue 5
  • DOI: 10.1002/aenm.201902583

Photophysics of lead-free tin halide perovskite films and solar cells
journal, August 2019

  • Handa, Taketo; Wakamiya, Atsushi; Kanemitsu, Yoshihiko
  • APL Materials, Vol. 7, Issue 8
  • DOI: 10.1063/1.5109704

Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique
journal, January 2018

  • Tavakoli, Mohammad Mahdi; Zakeeruddin, Shaik Mohammed; Grätzel, Michael
  • Advanced Materials, Vol. 30, Issue 11
  • DOI: 10.1002/adma.201705998

Controlling the Growth Kinetics and Optoelectronic Properties of 2D/3D Lead–Tin Perovskite Heterojunctions
journal, November 2019

  • Ruggeri, Edoardo; Anaya, Miguel; Gałkowski, Krzysztof
  • Advanced Materials, Vol. 31, Issue 51
  • DOI: 10.1002/adma.201905247

Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics
journal, June 2018

  • Palmstrom, Axel F.; Raiford, James A.; Prasanna, Rohit
  • Advanced Energy Materials, Vol. 8, Issue 23
  • DOI: 10.1002/aenm.201800591

Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability
journal, October 2019


Small-Band-Gap Halide Double Perovskites
journal, August 2018

  • Slavney, Adam H.; Leppert, Linn; Saldivar Valdes, Abraham
  • Angewandte Chemie International Edition, Vol. 57, Issue 39
  • DOI: 10.1002/anie.201807421

Imaging Metal Halide Perovskites Material and Properties at the Nanoscale
journal, December 2019


Constructing moisture-stable hybrid lead iodine semiconductors based on hydrogen-bond-free and dual-iodine strategies
journal, January 2019

  • Liu, Guang-Ning; Zhao, Ruo-Yu; Xu, Rang-Dong
  • Journal of Materials Chemistry C, Vol. 7, Issue 25
  • DOI: 10.1039/c9tc01967g

Strain engineering in perovskite solar cells and its impacts on carrier dynamics
journal, February 2019


First‐Principles Simulation of Carrier Recombination Mechanisms in Halide Perovskites
journal, April 2020

  • Zhang, Xie; Shen, Jimmy‐Xuan; Van de Walle, Chris G.
  • Advanced Energy Materials, Vol. 10, Issue 13
  • DOI: 10.1002/aenm.201902830

Lead‐Free Tin‐Based Perovskite Solar Cells: Strategies Toward High Performance
journal, May 2019


Pressures Tuning the Band Gap of Organic–Inorganic Trihalide Perovskites (MAPbBr3): A First-Principles Study
journal, September 2018

  • Tan, Mengping; Wang, Sanjun; Rao, Fengfei
  • Journal of Electronic Materials, Vol. 47, Issue 12
  • DOI: 10.1007/s11664-018-6653-3

Structure-controlled optical thermoresponse in Ruddlesden-Popper layered perovskites
journal, November 2018

  • Cortecchia, D.; Neutzner, S.; Yin, J.
  • APL Materials, Vol. 6, Issue 11
  • DOI: 10.1063/1.5045782

Exciton-band tuning induced by the width of the cation in 2D lead iodide perovskite hybrids
journal, January 2020

  • Tremblay, Marie-Hélène; Bacsa, John; Barlow, Stephen
  • Materials Chemistry Frontiers
  • DOI: 10.1039/d0qm00118j

Low‐Bandgap Mixed Tin‐Lead Perovskites and Their Applications in All‐Perovskite Tandem Solar Cells
journal, February 2019

  • Wang, Changlei; Song, Zhaoning; Li, Chongwen
  • Advanced Functional Materials, Vol. 29, Issue 47
  • DOI: 10.1002/adfm.201808801

Sn‐Pb Binary Perovskite Films with High Crystalline Quality for High Performance Solar Cells
journal, August 2019

  • Guo, Xuankun; Chen, Jiehuan; Lian, Xiaomei
  • Chinese Journal of Chemistry, Vol. 37, Issue 10
  • DOI: 10.1002/cjoc.201900219

Energy Level Tuning of PEDOT:PSS for High Performance Tin-Lead Mixed Perovskite Solar Cells
journal, November 2018


Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering
journal, June 2018

  • Rajagopal, Adharsh; Yao, Kai; Jen, Alex K. -Y.
  • Advanced Materials, Vol. 30, Issue 32
  • DOI: 10.1002/adma.201800455

Water in hybrid perovskites: Bulk MAPbI 3 degradation via super-hydrous state
journal, April 2019

  • Kakekhani, Arvin; Katti, Radhika N.; Rappe, Andrew M.
  • APL Materials, Vol. 7, Issue 4
  • DOI: 10.1063/1.5087290

A Review on Energy Band‐Gap Engineering for Perovskite Photovoltaics
journal, September 2019


Greener, Nonhalogenated Solvent Systems for Highly Efficient Perovskite Solar Cells
journal, April 2018

  • Yavari, Mozhgan; Mazloum-Ardakani, Mohammad; Gholipour, Somayeh
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201800177

Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications
journal, January 2018

  • Xiao, Zewen; Zhou, Yuanyuan; Hosono, Hideo
  • Chemistry - A European Journal, Vol. 24, Issue 10
  • DOI: 10.1002/chem.201705031

Cs 1−x Rb x SnI 3 light harvesting semiconductors for perovskite photovoltaics
journal, January 2018

  • Marshall, Kenneth P.; Tao, Shuxia; Walker, Marc
  • Materials Chemistry Frontiers, Vol. 2, Issue 8
  • DOI: 10.1039/c8qm00159f

Pushing the limit of Cs incorporation into FAPbBr 3 perovskite to enhance solar cells performances
journal, April 2019

  • Sutanto, Albertus A.; Queloz, Valentin I. E.; Garcia-Benito, Inés
  • APL Materials, Vol. 7, Issue 4
  • DOI: 10.1063/1.5087246

Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells
journal, November 2018

  • Li, Chongwen; Song, Zhaoning; Zhao, Dewei
  • Advanced Energy Materials, Vol. 9, Issue 3
  • DOI: 10.1002/aenm.201803135

Band gap tuning of layered III-Te materials
journal, July 2018

  • Olmos-Asar, Jimena Anahí; Rocha Leão, Cedric; Fazzio, Adalberto
  • Journal of Applied Physics, Vol. 124, Issue 4
  • DOI: 10.1063/1.5021259

White light emission in low-dimensional perovskites
journal, January 2019

  • Cortecchia, Daniele; Yin, Jun; Petrozza, Annamaria
  • Journal of Materials Chemistry C, Vol. 7, Issue 17
  • DOI: 10.1039/c9tc01036j

Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells
journal, April 2019


Crystallization, Properties, and Challenges of Low-Bandgap Sn-Pb Binary Perovskites
journal, July 2018


Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy
journal, July 2018


Small-Band-Gap Halide Double Perovskites
journal, August 2018

  • Slavney, Adam H.; Leppert, Linn; Saldivar Valdes, Abraham
  • Angewandte Chemie, Vol. 130, Issue 39
  • DOI: 10.1002/ange.201807421

Controlling the Growth Kinetics and Optoelectronic Properties of 2D/3D Lead–Tin Perovskite Heterojunctions
text, January 2019

  • Ruggeri, Edoardo; Anaya, Miguel; Gałkowski, Krzysztof
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45923

A Review on Energy Band‐Gap Engineering for Perovskite Photovoltaics
journal, December 2019


Tin(iv) dopant removal through anti-solvent engineering enabling tin based perovskite solar cells with high charge carrier mobilities
text, January 2019

  • Bandara, Rmi; Jayawardena, Kdgi; Adeyemo, Stephanie
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.40441

Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs,FA,MA)Pb(I,Br)$_{3}$ perovskites
text, January 2019

  • Ruf, Fabian; Aygüler, Meltem F.; Giesbrecht, Nadja
  • American Institute of Physics (AIP)
  • DOI: 10.5445/ir/1000093765

Anion Distribution, Structural Distortion, and Symmetry-Driven Optical Band Gap Bowing in Mixed Halide Cs 2 SnX 6 Vacancy Ordered Double Perovskites
journal, November 2019


Microsecond Carrier Lifetimes, Controlled p-Doping, and Enhanced Air Stability in Low-Bandgap Metal Halide Perovskites
journal, August 2019