DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface degradation of Li1–xNi0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations

Abstract

The pronounced capacity fade in Ni-rich layered oxide lithium ion battery cathodes observed when cycling above 4.1V (versus Li/Li+) is associated with a rise in impedance, which is thought to be due to either bulk structural fatigue or surface reactions with the electrolyte (or combination of both). Here, we examine the surface reactions at electrochemically stressed Li1–xNi0.8Co0.15Al0.05O2 binderfree powder electrodes with a combination of electrochemical impedance spectroscopy, spatially resolving electron microscopy, and spatially averaging X-ray spectroscopy techniques. We circumvent issues associated with cycling by holding our electrodes at high states of charge (4.1V, 4.5V, and 4.75V) for extended periods and correlate charge-transfer impedance rises observed at high voltages with surface modifications retained in the discharged state (2.7 V). The surface modifications involve significant cation migration (and disorder) along with Ni and Co reduction, and can occur even in the absence of significant Li2CO3 and LiF. These data provide evidence that surface oxygen loss at the highest levels of Li+ extraction is driving the rise in impedance.

Authors:
 [1];  [2];  [2];  [1];  [2];  [3];  [3];  [4];  [2];  [2];  [1]
  1. Binghamton Univ., NY (United States)
  2. Rutgers Univ., New Brunswick, NJ (United States)
  3. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Diamond Light Source, Ltd.
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1388017
Alternate Identifier(s):
OSTI ID: 1259367
Grant/Contract Number:  
SC0001294; AC02-05CH11231; SC0012583
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 108; Journal Issue: 26; Related Information: NECCES partners with Stony Brook University (lead); Argonne National Laboratory; Binghamton University; Brookhaven National University; University of California, San Diego; University of Cambridge, UK; Lawrence Berkeley National Laboratory; Massachusetts Institute of Technology; University of Michigan; Rutgers University; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 42 ENGINEERING; 36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; energy storage (including batteries and capacitors); defects; charge transport; materials and chemistry by design; synthesis (novel materials)

Citation Formats

Sallis, S., Pereira, N., Mukherjee, P., Quackenbush, N. F., Faenza, N., Schlueter, C., Lee, T. -L., Yang, W. L., Cosandey, F., Amatucci, G. G., and Piper, L. F. J. Surface degradation of Li1–xNi0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations. United States: N. p., 2016. Web. doi:10.1063/1.4954800.
Sallis, S., Pereira, N., Mukherjee, P., Quackenbush, N. F., Faenza, N., Schlueter, C., Lee, T. -L., Yang, W. L., Cosandey, F., Amatucci, G. G., & Piper, L. F. J. Surface degradation of Li1–xNi0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations. United States. https://doi.org/10.1063/1.4954800
Sallis, S., Pereira, N., Mukherjee, P., Quackenbush, N. F., Faenza, N., Schlueter, C., Lee, T. -L., Yang, W. L., Cosandey, F., Amatucci, G. G., and Piper, L. F. J. Mon . "Surface degradation of Li1–xNi0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations". United States. https://doi.org/10.1063/1.4954800. https://www.osti.gov/servlets/purl/1388017.
@article{osti_1388017,
title = {Surface degradation of Li1–xNi0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations},
author = {Sallis, S. and Pereira, N. and Mukherjee, P. and Quackenbush, N. F. and Faenza, N. and Schlueter, C. and Lee, T. -L. and Yang, W. L. and Cosandey, F. and Amatucci, G. G. and Piper, L. F. J.},
abstractNote = {The pronounced capacity fade in Ni-rich layered oxide lithium ion battery cathodes observed when cycling above 4.1V (versus Li/Li+) is associated with a rise in impedance, which is thought to be due to either bulk structural fatigue or surface reactions with the electrolyte (or combination of both). Here, we examine the surface reactions at electrochemically stressed Li1–xNi0.8Co0.15Al0.05O2 binderfree powder electrodes with a combination of electrochemical impedance spectroscopy, spatially resolving electron microscopy, and spatially averaging X-ray spectroscopy techniques. We circumvent issues associated with cycling by holding our electrodes at high states of charge (4.1V, 4.5V, and 4.75V) for extended periods and correlate charge-transfer impedance rises observed at high voltages with surface modifications retained in the discharged state (2.7 V). The surface modifications involve significant cation migration (and disorder) along with Ni and Co reduction, and can occur even in the absence of significant Li2CO3 and LiF. These data provide evidence that surface oxygen loss at the highest levels of Li+ extraction is driving the rise in impedance.},
doi = {10.1063/1.4954800},
journal = {Applied Physics Letters},
number = 26,
volume = 108,
place = {United States},
year = {Mon Jun 27 00:00:00 EDT 2016},
month = {Mon Jun 27 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 60 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Role of Alumina Coating on Li−Ni−Co−Mn−O Particles as Positive Electrode Material for Lithium-Ion Batteries
journal, July 2005

  • Myung, Seung-Taek; Izumi, Kentarou; Komaba, Shinichi
  • Chemistry of Materials, Vol. 17, Issue 14, p. 3695-3704
  • DOI: 10.1021/cm050566s

The cathode–electrolyte interface in the Li-ion battery
journal, November 2004


Possible Explanation for the Efficiency of Al-Based Coatings on LiCoO 2 : Surface Properties of LiCo 1− x Al x O 2 Solid Solution
journal, December 2009

  • Dahéron, L.; Dedryvère, R.; Martinez, H.
  • Chemistry of Materials, Vol. 21, Issue 23
  • DOI: 10.1021/cm901972e

Microscopy and Spectroscopy of Lithium Nickel Oxide-Based Particles Used in High Power Lithium-Ion Cells
journal, January 2003

  • Abraham, D. P.; Twesten, R. D.; Balasubramanian, M.
  • Journal of The Electrochemical Society, Vol. 150, Issue 11
  • DOI: 10.1149/1.1613291

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Influence of the PVdF binder on the stability of LiCoO2 electrodes
journal, December 2005


Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries
journal, January 1996


Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells II
journal, December 2007


Microstructure of LiCoO 2 with and without “AlPO 4 ” Nanoparticle Coating:  Combined STEM and XPS Studies
journal, November 2007

  • Appapillai, Anjuli T.; Mansour, Azzam N.; Cho, Jaephil
  • Chemistry of Materials, Vol. 19, Issue 23
  • DOI: 10.1021/cm0715390

Microstructural Changes in LiNi0.8Co0.15Al0.05O2 Positive Electrode Material during the First Cycle
journal, January 2011

  • Zheng, Shijian; Huang, Rong; Makimura, Yoshinari
  • Journal of The Electrochemical Society, Vol. 158, Issue 4
  • DOI: 10.1149/1.3544843

Surface Characterization of Electrodes from High Power Lithium-Ion Batteries
journal, January 2002

  • Andersson, A. M.; Abraham, D. P.; Haasch, R.
  • Journal of The Electrochemical Society, Vol. 149, Issue 10
  • DOI: 10.1149/1.1505636

AC Impedance Analysis of Polycrystalline Insertion Electrodes: Application to Li[sub 1−x]CoO[sub 2]
journal, January 1985

  • Thomas, M. G. S. R.
  • Journal of The Electrochemical Society, Vol. 132, Issue 7
  • DOI: 10.1149/1.2114158

Degradation mechanisms of lithium-rich nickel manganese cobalt oxide cathode thin films
journal, January 2014

  • Baggetto, Loïc; Mohanty, Debasish; Meisner, Roberta A.
  • RSC Advances, Vol. 4, Issue 45
  • DOI: 10.1039/c4ra03674c

Investigation of Changes in the Surface Structure of Li x Ni 0.8 Co 0.15 Al 0.05 O 2 Cathode Materials Induced by the Initial Charge
journal, December 2013

  • Hwang, Sooyeon; Chang, Wonyoung; Kim, Seung Min
  • Chemistry of Materials, Vol. 26, Issue 2
  • DOI: 10.1021/cm403332s

Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni 0.7 Mn 0.3 ]O 2
journal, January 2014

  • Cho, Dae-Hyun; Jo, Chang-Heum; Cho, Woosuk
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.042406jes

Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

X-Ray Spectroscopy of Ultra-Thin Oxide/Oxide Heteroepitaxial Films: A Case Study of Single-Nanometer VO2/TiO2
journal, August 2015

  • Quackenbush, Nicholas; Paik, Hanjong; Woicik, Joseph
  • Materials, Vol. 8, Issue 8
  • DOI: 10.3390/ma8085255

Study of the Failure Mechanisms of LiNi 0.8 Mn 0.1 Co 0.1 O 2 Cathode Material for Lithium Ion Batteries
journal, January 2015

  • Li, Jing; Downie, Laura E.; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.1011507jes

Degradation Mechanism of LiNi 0.82 Co 0.15 Al 0.03 O 2 Positive Electrodes of a Lithium-Ion Battery by a Long-Term Cycling Test
journal, January 2014

  • Hayashi, Tetsutaro; Okada, Jiro; Toda, Eiji
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.056406jes

Works referencing / citing this record:

In‐Depth TEM Investigation on Structural Inhomogeneity within a Primary Li x Ni 0.835 Co 0.15 Al 0.015 O 2 Particle: Origin of Capacity Decay during High‐Rate Discharge
journal, February 2020

  • Lee, Hyesu; Jo, Eunmi; Chung, Kyung Yoon
  • Angewandte Chemie International Edition, Vol. 59, Issue 6
  • DOI: 10.1002/anie.201910670

Synthesis and Characterization of Core-Shell Nanocrystals of Co-Rich Cathodes
journal, October 2019

  • Kwon, Bob Jin; Dogan, Fulya; Jokisaari, Jacob R.
  • Journal of The Electrochemical Society, Vol. 167, Issue 5
  • DOI: 10.1149/2.0012005jes

Editors' Choice—Capacity Fading Mechanisms of NCM-811 Cathodes in Lithium-Ion Batteries Studied by X-ray Diffraction and Other Diagnostics
journal, January 2019

  • Friedrich, Franziska; Strehle, Benjamin; Freiberg, Anna T. S.
  • Journal of The Electrochemical Society, Vol. 166, Issue 15
  • DOI: 10.1149/2.0821915jes