DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: How Does Nanoporous Gold Dissociate Molecular Oxygen?

Abstract

Nanoporous Au and other dilute AgAu alloys are highly active and selective oxidation catalysts. Their ability to dissociate O2 is to a large extent unexplained, given that unsupported Au cannot generally dissociate O2, while large ensembles of Ag atoms (>4) are generally necessary to lower the O2 dissociation barrier significantly. In this work, we identify a site on the surface of dilute AgAu alloys that is stable under reaction conditions and has a low O2 dissociation barrier, in agreement with experimental measurements. Although Ag generally prefers to disperse throughout Au, the presence of adsorbed O near surface steps creates sites of high local Ag concentration, where the Ag atoms sit in the rows next to the step Au atoms. O2 adsorbs on the Au step atoms, but the transition state involves significant Ag–O interaction, resulting in a barrier lower than expected from the adsorption energies of either the initial or final state.

Authors:
 [1];  [1];  [1]
  1. Harvard Univ., Cambridge, MA (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Energy Frontier Research Centers (EFRC) (United States). Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1387899
Grant/Contract Number:  
SC0012573; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 120; Journal Issue: 30; Related Information: IMASC partners with Harvard University (lead); Fritz Haber Institute; Lawrence Berkeley National Laboratory; Lawrence Livermore National Laboratory; University of Kansas; Tufts University; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (heterogeneous); mesostructured materials; materials and chemistry by design; synthesis (novel materials)

Citation Formats

Montemore, Matthew M., Madix, Robert J., and Kaxiras, Efthimios. How Does Nanoporous Gold Dissociate Molecular Oxygen?. United States: N. p., 2016. Web. doi:10.1021/acs.jpcc.6b03371.
Montemore, Matthew M., Madix, Robert J., & Kaxiras, Efthimios. How Does Nanoporous Gold Dissociate Molecular Oxygen?. United States. https://doi.org/10.1021/acs.jpcc.6b03371
Montemore, Matthew M., Madix, Robert J., and Kaxiras, Efthimios. Wed . "How Does Nanoporous Gold Dissociate Molecular Oxygen?". United States. https://doi.org/10.1021/acs.jpcc.6b03371. https://www.osti.gov/servlets/purl/1387899.
@article{osti_1387899,
title = {How Does Nanoporous Gold Dissociate Molecular Oxygen?},
author = {Montemore, Matthew M. and Madix, Robert J. and Kaxiras, Efthimios},
abstractNote = {Nanoporous Au and other dilute AgAu alloys are highly active and selective oxidation catalysts. Their ability to dissociate O2 is to a large extent unexplained, given that unsupported Au cannot generally dissociate O2, while large ensembles of Ag atoms (>4) are generally necessary to lower the O2 dissociation barrier significantly. In this work, we identify a site on the surface of dilute AgAu alloys that is stable under reaction conditions and has a low O2 dissociation barrier, in agreement with experimental measurements. Although Ag generally prefers to disperse throughout Au, the presence of adsorbed O near surface steps creates sites of high local Ag concentration, where the Ag atoms sit in the rows next to the step Au atoms. O2 adsorbs on the Au step atoms, but the transition state involves significant Ag–O interaction, resulting in a barrier lower than expected from the adsorption energies of either the initial or final state.},
doi = {10.1021/acs.jpcc.6b03371},
journal = {Journal of Physical Chemistry. C},
number = 30,
volume = 120,
place = {United States},
year = {Wed Jul 13 00:00:00 EDT 2016},
month = {Wed Jul 13 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Catalysis by Unsupported Skeletal Gold Catalysts
journal, November 2013

  • Wittstock, Arne; Bäumer, Marcus
  • Accounts of Chemical Research, Vol. 47, Issue 3
  • DOI: 10.1021/ar400202p

From model studies on Au(111) to working conditions with unsupported nanoporous gold catalysts: Oxygen-assisted coupling reactions
journal, December 2013


Predicting Gold-Mediated Catalytic Oxidative-Coupling Reactions from Single Crystal Studies
journal, December 2013

  • Xu, Bingjun; Madix, Robert J.; Friend, Cynthia M.
  • Accounts of Chemical Research, Vol. 47, Issue 3
  • DOI: 10.1021/ar4002476

Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts
journal, January 2016

  • Wang, Lu-Cun; Friend, C. M.; Fushimi, Rebecca
  • Faraday Discussions, Vol. 188
  • DOI: 10.1039/C5FD00161G

Oxygen-Mediated Coupling of Alcohols over Nanoporous Gold Catalysts at Ambient Pressures
journal, January 2012

  • Kosuda, Kathryn M.; Wittstock, Arne; Friend, Cynthia M.
  • Angewandte Chemie International Edition, Vol. 51, Issue 7
  • DOI: 10.1002/anie.201107178

The critical role of water at the gold-titania interface in catalytic CO oxidation
journal, September 2014


CO oxidation on gold nanoparticles: Theoretical studies
journal, September 2005

  • Remediakis, Ioannis N.; Lopez, Nuria; Nørskov, Jens K.
  • Applied Catalysis A: General, Vol. 291, Issue 1-2
  • DOI: 10.1016/j.apcata.2005.01.052

Critical Size for O 2 Dissociation by Au Nanoparticles
journal, February 2009

  • Roldán, Alberto; González, Silvia; Ricart, Josep Manel
  • ChemPhysChem, Vol. 10, Issue 2
  • DOI: 10.1002/cphc.200800702

Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis
journal, September 2010


Atomic origins of the high catalytic activity of nanoporous gold
journal, August 2012

  • Fujita, Takeshi; Guan, Pengfei; McKenna, Keith
  • Nature Materials, Vol. 11, Issue 9
  • DOI: 10.1038/nmat3391

Oxygen adsorption and oxidation reactions on Au(211) surfaces: Exposures using O2 at high pressures and ozone (O3) in UHV
journal, October 2006


Nanoporous Au: An Unsupported Pure Gold Catalyst?
journal, March 2009

  • Wittstock, Arne; Neumann, Björn; Schaefer, Andreas
  • The Journal of Physical Chemistry C, Vol. 113, Issue 14
  • DOI: 10.1021/jp808185v

Catalysis on nanoporous gold–silver systems: Synergistic effects toward oxidation reactions and influence of the surface composition
journal, March 2014


Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold
journal, January 2011

  • Moskaleva, Lyudmila V.; Röhe, Sarah; Wittstock, Arne
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 10
  • DOI: 10.1039/c0cp02372h

Chemisorbed Oxygen on the Au(321) Surface Alloyed with Silver: A First-Principles Investigation
journal, April 2015

  • Moskaleva, Lyudmila V.; Weiss, Theodor; Klüner, Thorsten
  • The Journal of Physical Chemistry C, Vol. 119, Issue 17
  • DOI: 10.1021/jp511884k

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data
journal, February 2009


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

High-precision sampling for Brillouin-zone integration in metals
journal, August 1989


Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
journal, December 2000

  • Henkelman, Graeme; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323224

Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization
journal, September 2006

  • Tarini, Marco; Cignoni, Paolo; Montani, Claudio
  • IEEE Transactions on Visualization and Computer Graphics, Vol. 12, Issue 5
  • DOI: 10.1109/TVCG.2006.115

Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment
journal, January 2012

  • Zafeiratos, Spiros; Piccinin, Simone; Teschner, Detre
  • Catalysis Science & Technology, Vol. 2, Issue 9
  • DOI: 10.1039/c2cy00487a

First-principles investigations of the structure and stability of oxygen adsorption and surface oxide formation at Au(111)
journal, August 2007


Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation
journal, June 2015


Chainlike Au−O Structures on Au(110)-(1 × r ) Surfaces Calculated from First Principles
journal, March 2009

  • Landmann, M.; Rauls, E.; Schmidt, W. G.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 14
  • DOI: 10.1021/jp810581s

O 2 dissociation before the onset of added row nucleation on Ag(110): an atomistic scanning tunnelling microscopy view
journal, July 2010


Atomic and molecular oxygen adsorption on Ag(111)
journal, July 1985


Reactivity Theory of Transition-Metal Surfaces: A Brønsted−Evans−Polanyi Linear Activation Energy−Free-Energy Analysis
journal, December 2009

  • van Santen, Rutger A.; Neurock, Matthew; Shetty, Sharan G.
  • Chemical Reviews, Vol. 110, Issue 4
  • DOI: 10.1021/cr9001808

Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces
journal, July 2007


Scaling relations between adsorption energies for computational screening and design of catalysts
journal, January 2014

  • Montemore, Matthew M.; Medlin, J. Will
  • Catal. Sci. Technol., Vol. 4, Issue 11
  • DOI: 10.1039/C4CY00335G

Site-Specific Scaling Relations for Hydrocarbon Adsorption on Hexagonal Transition Metal Surfaces
journal, September 2013

  • Montemore, Matthew M.; Medlin, J. Will
  • The Journal of Physical Chemistry C, Vol. 117, Issue 39
  • DOI: 10.1021/jp4076405

Works referencing / citing this record:

Methanol oxidation on the Pt(321) surface: a theoretical approach on the role of surface morphology and surface coverage effects
journal, January 2019

  • Tomaschun, Gabriele; Klüner, Thorsten
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 33
  • DOI: 10.1039/c9cp03291f

Oxygen Adsorption and Low-Temperature CO Oxidation on a Nanoporous Au Catalyst: Reaction Mechanism and Foreign Metal Effects
journal, January 2018


Aerobic Methanol Oxidation over Unsupported Nanoporous Gold: The Influence of an Added Base
journal, May 2019

  • Lackmann, Anastasia; Mahr, Christoph; Rosenauer, Andreas
  • Catalysts, Vol. 9, Issue 5
  • DOI: 10.3390/catal9050416

Independent control over residual silver content of nanoporous gold by galvanodynamically controlled dealloying
journal, January 2018

  • Lackmann, Anastasia; Bäumer, Marcus; Wittstock, Gunther
  • Nanoscale, Vol. 10, Issue 36
  • DOI: 10.1039/c8nr03699c

Electrocatalytic methanol oxidation with nanoporous gold: microstructure and selectivity
text, January 2017

  • Graf, Matthias; Haensch, Mareike; Carstens, Jörg
  • Royal Society of Chemistry (RSC)
  • DOI: 10.15480/882.2007