DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Light-Driven Water Oxidation Using Polyelectrolyte Layer-by-Layer Chromophore–Catalyst Assemblies

Abstract

Layer-by-Layer (LbL) polyelectrolyte self-assembly occurs by the alternate exposure of a substrate to solutions of oppositely charged polyelectrolytes or polyions. Here, we report the application of LbL to construct chromophore–catalyst assemblies consisting of a cationic polystyrene-based Ru polychromophore (PS-Ru) and a [Ru(tpy)(2-pyridyl-N-methylbenzimidazole) (OH2)]2+ water oxidation catalyst (RuC), codeposited with poly(acrylic acid) (PAA) as an inert polyanion. These assemblies are deposited onto planar indium tin oxide (ITO, Sn:In2O3) substrates for electrochemical characterization and onto mesoporous substrates consisting of a SnO2/TiO2 core/shell structure atop fluorine doped tin oxide (FTO) for application to light-driven water oxidation in a dye-sensitized photoelectrosynthesis cell. Cyclic voltammetry and ultraviolet–visible absorption spectroscopy reveal that multilayer deposition progressively increases the film thickness on ITO glass substrates. Under an applied bias, photocurrent measurements of the (PAA/PS-Ru)5/(PAA/RuC)5 LbL films formed on FTO//SnO2/TiO2 mesoporous core–shell electrodes demonstrate a clear anodic photocurrent response. Prolonged photoelectrolysis experiments, with the use of a dual working electrode collector–generator cell, reveal production of O2 from the illuminated photoanode with a Faradaic efficiency of 22%. Finally, this is the first report to demonstrate the use of polyelectrolyte LbL to construct chromophore–catalyst assemblies for water oxidation.

Authors:
 [1];  [2];  [1];  [2];  [2];  [2];  [2];  [1]
  1. Univ. of Florida, Gainesville, FL (United States)
  2. Univ. of North Carolina, Chapel Hill, NC (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1387883
Grant/Contract Number:  
SC0001011
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 1; Journal Issue: 2; Related Information: UNC partners with University of North Carolina (lead); Duke University; University of Florida; Georgia Institute of Technology; University; North Carolina Central University; Research Triangle Institute; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (homogeneous); catalysis (heterogeneous); solar (photovoltaic); solar (fuels); photosynthesis (natural and artificial); hydrogen and fuel cells; electrodes - solar; charge transport; materials and chemistry by design; synthesis (novel materials); synthesis (self-assembly)

Citation Formats

Leem, Gyu, Sherman, Benjamin D., Burnett, Alex J., Morseth, Zachary A., Wee, Kyung-Ryang, Papanikolas, John M., Meyer, Thomas J., and Schanze, Kirk S. Light-Driven Water Oxidation Using Polyelectrolyte Layer-by-Layer Chromophore–Catalyst Assemblies. United States: N. p., 2016. Web. doi:10.1021/acsenergylett.6b00171.
Leem, Gyu, Sherman, Benjamin D., Burnett, Alex J., Morseth, Zachary A., Wee, Kyung-Ryang, Papanikolas, John M., Meyer, Thomas J., & Schanze, Kirk S. Light-Driven Water Oxidation Using Polyelectrolyte Layer-by-Layer Chromophore–Catalyst Assemblies. United States. https://doi.org/10.1021/acsenergylett.6b00171
Leem, Gyu, Sherman, Benjamin D., Burnett, Alex J., Morseth, Zachary A., Wee, Kyung-Ryang, Papanikolas, John M., Meyer, Thomas J., and Schanze, Kirk S. Tue . "Light-Driven Water Oxidation Using Polyelectrolyte Layer-by-Layer Chromophore–Catalyst Assemblies". United States. https://doi.org/10.1021/acsenergylett.6b00171. https://www.osti.gov/servlets/purl/1387883.
@article{osti_1387883,
title = {Light-Driven Water Oxidation Using Polyelectrolyte Layer-by-Layer Chromophore–Catalyst Assemblies},
author = {Leem, Gyu and Sherman, Benjamin D. and Burnett, Alex J. and Morseth, Zachary A. and Wee, Kyung-Ryang and Papanikolas, John M. and Meyer, Thomas J. and Schanze, Kirk S.},
abstractNote = {Layer-by-Layer (LbL) polyelectrolyte self-assembly occurs by the alternate exposure of a substrate to solutions of oppositely charged polyelectrolytes or polyions. Here, we report the application of LbL to construct chromophore–catalyst assemblies consisting of a cationic polystyrene-based Ru polychromophore (PS-Ru) and a [Ru(tpy)(2-pyridyl-N-methylbenzimidazole) (OH2)]2+ water oxidation catalyst (RuC), codeposited with poly(acrylic acid) (PAA) as an inert polyanion. These assemblies are deposited onto planar indium tin oxide (ITO, Sn:In2O3) substrates for electrochemical characterization and onto mesoporous substrates consisting of a SnO2/TiO2 core/shell structure atop fluorine doped tin oxide (FTO) for application to light-driven water oxidation in a dye-sensitized photoelectrosynthesis cell. Cyclic voltammetry and ultraviolet–visible absorption spectroscopy reveal that multilayer deposition progressively increases the film thickness on ITO glass substrates. Under an applied bias, photocurrent measurements of the (PAA/PS-Ru)5/(PAA/RuC)5 LbL films formed on FTO//SnO2/TiO2 mesoporous core–shell electrodes demonstrate a clear anodic photocurrent response. Prolonged photoelectrolysis experiments, with the use of a dual working electrode collector–generator cell, reveal production of O2 from the illuminated photoanode with a Faradaic efficiency of 22%. Finally, this is the first report to demonstrate the use of polyelectrolyte LbL to construct chromophore–catalyst assemblies for water oxidation.},
doi = {10.1021/acsenergylett.6b00171},
journal = {ACS Energy Letters},
number = 2,
volume = 1,
place = {United States},
year = {Tue Jun 21 00:00:00 EDT 2016},
month = {Tue Jun 21 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Visible Light Driven Water Splitting in a Molecular Device with Unprecedentedly High Photocurrent Density
journal, March 2013

  • Gao, Yan; Ding, Xin; Liu, Jianhui
  • Journal of the American Chemical Society, Vol. 135, Issue 11
  • DOI: 10.1021/ja400402d

An aqueous, organic dye derivatized SnO 2 /TiO 2 core/shell photoanode
journal, January 2016

  • Wee, Kyung-Ryang; Sherman, Benjamin D.; Brennaman, M. Kyle
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA06678F

Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications
journal, August 2015


Accumulation of Multiple Oxidative Equivalents at a Single Site by Cross-Surface Electron Transfer on TiO 2
journal, July 2013

  • Song, Wenjing; Ito, Akitaka; Binstead, Robert A.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja4032538

Self-Assembled Bilayers on Indium–Tin Oxide (SAB-ITO) Electrodes: A Design for Chromophore–Catalyst Photoanodes
journal, August 2012

  • Glasson, Christopher R. K.; Song, Wenjing; Ashford, Dennis L.
  • Inorganic Chemistry, Vol. 51, Issue 16
  • DOI: 10.1021/ic300636w

Watching Photoactivation in a Ru(II) Chromophore–Catalyst Assembly on TiO 2 by Ultrafast Spectroscopy
journal, November 2013

  • Wang, Li; Ashford, Dennis L.; Thompson, David W.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 46
  • DOI: 10.1021/jp410571x

Light Harvesting and Charge Separation in a π-Conjugated Antenna Polymer Bound to TiO 2
journal, November 2014

  • Leem, Gyu; Morseth, Zachary A.; Puodziukynaite, Egle
  • The Journal of Physical Chemistry C, Vol. 118, Issue 49
  • DOI: 10.1021/jp5113558

Polymer-Based Ruthenium(II) Polypyridyl Chromophores on TiO 2 for Solar Energy Conversion
journal, March 2016

  • Leem, Gyu; Morseth, Zachary A.; Wee, Kyung-Ryang
  • Chemistry - An Asian Journal, Vol. 11, Issue 8
  • DOI: 10.1002/asia.201501384

Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites
journal, August 1997


Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films
journal, December 2012


pH-Dependent Thickness Behavior of Sequentially Adsorbed Layers of Weak Polyelectrolytes
journal, May 2000

  • Shiratori, S. S.; Rubner, M. F.
  • Macromolecules, Vol. 33, Issue 11
  • DOI: 10.1021/ma991645q

Efficient Light-Driven Oxidation of Alcohols Using an Organic Chromophore–Catalyst Assembly Anchored to TiO 2
journal, March 2016

  • Pho, Toan V.; Sheridan, Matthew V.; Morseth, Zachary A.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 14
  • DOI: 10.1021/acsami.6b00932

Visible photoelectrochemical water splitting into H 2 and O 2 in a dye-sensitized photoelectrosynthesis cell
journal, April 2015

  • Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 19
  • DOI: 10.1073/pnas.1506111112

Multilayer Assemblies of Redox Polyelectrolytes
journal, March 1997

  • Laurent, Delphine; Schlenoff, Joseph B.
  • Langmuir, Vol. 13, Issue 6
  • DOI: 10.1021/la960959t

Single-Site, Catalytic Water Oxidation on Oxide Surfaces
journal, November 2009

  • Chen, Zuofeng; Concepcion, Javier J.; Jurss, Jonah W.
  • Journal of the American Chemical Society, Vol. 131, Issue 43, p. 15580-15581
  • DOI: 10.1021/ja906391w

Oxidative electropolymerization of polypyridyl complexes of ruthenium
journal, April 1983

  • Ellis, Charles D.; Margerum, Lawrence D.; Murray, Royce W.
  • Inorganic Chemistry, Vol. 22, Issue 9
  • DOI: 10.1021/ic00151a005

Redox Mediator Effect on Water Oxidation in a Ruthenium-Based Chromophore–Catalyst Assembly
journal, January 2013

  • Norris, Michael R.; Concepcion, Javier J.; Harrison, Daniel P.
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja311645d

Low-Overpotential Water Oxidation by a Surface-Bound Ruthenium-Chromophore-Ruthenium-Catalyst Assembly
journal, November 2013

  • Norris, Michael R.; Concepcion, Javier J.; Fang, Zhen
  • Angewandte Chemie International Edition, Vol. 52, Issue 51
  • DOI: 10.1002/anie.201305951

Photoassisted Overall Water Splitting in a Visible Light-Absorbing Dye-Sensitized Photoelectrochemical Cell
journal, January 2009

  • Youngblood, W. Justin; Lee, Seung-Hyun Anna; Kobayashi, Yoji
  • Journal of the American Chemical Society, Vol. 131, Issue 3, p. 926-927
  • DOI: 10.1021/ja809108y

Visible Photoelectrochemical Water Splitting Based on a Ru(II) Polypyridyl Chromophore and Iridium Oxide Nanoparticle Catalyst
journal, July 2015

  • Michaux, Katherine E.; Gambardella, Alessa A.; Alibabaei, Leila
  • The Journal of Physical Chemistry C, Vol. 119, Issue 29
  • DOI: 10.1021/acs.jpcc.5b05711

Light-Driven Water Splitting with a Molecular Electroassembly-Based Core/Shell Photoanode
journal, July 2015

  • Sherman, Benjamin D.; Ashford, Dennis L.; Lapides, Alexander M.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 16
  • DOI: 10.1021/acs.jpclett.5b01370

Works referencing / citing this record:

Layer-by-layer assembly for photoelectrochemical nanoarchitectonics
journal, January 2019

  • Kim, Dongseok; Gu, Minsu; Park, Minju
  • Molecular Systems Design & Engineering, Vol. 4, Issue 1
  • DOI: 10.1039/c8me00067k

Inorganic Photochemistry and Solar Energy Harvesting: Current Developments and Challenges to Solar Fuel Production
journal, January 2019

  • Sousa, Sinval F.; Souza, Breno L.; Barros, Cristiane L.
  • International Journal of Photoenergy, Vol. 2019
  • DOI: 10.1155/2019/9624092

Polymer-based chromophore–catalyst assemblies for solar energy conversion
journal, December 2017