DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework

Abstract

Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the welldefined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present in this paper a method for installing Ni ions uniformly and precisely on the node of a Zr-based metal–organic framework (MOF), NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a MOF (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.

Authors:
 [1];  [1];  [2];  [2];  [1];  [3];  [1];  [4];  [5];  [5];  [6];  [2];  [2];  [1];  [7]
  1. Northwestern Univ., Evanston, IL (United States)
  2. Univ. of Minnesota, Minneapolis, MN (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Purdue Univ., West Lafayette, IN (United States)
  5. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Inst. for Integrated Catalysis
  6. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Inst. for Integrated Catalysis; Technische Univ. Munchen, Garching (Germany)
  7. Northwestern Univ., Evanston, IL (United States); King Abdulaziz Univ., Jeddah (Saudi Arabia)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC); Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOD; USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division; National Science Foundation (NSF); International Institute for Nanotechnology (IIN); State of Illinois; National Institutes of Health (NIH)
OSTI Identifier:
1387404
Grant/Contract Number:  
SC0012702; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 138; Journal Issue: 6; Related Information: ICDC partners with University of Minnesota(lead); Argonne National Laboratory; Clemson University; Dow Chemical Company; Northwestern University; Pacific Northwest National Laboratory; University of California Davis; University of Washington; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (heterogeneous); materials and chemistry by design; synthesis (novel materials); hydrocarbons; metals; metal organic frameworks; catalysts; catalytic reactions

Citation Formats

Li, Zhanyong, Schweitzer, Neil M., League, Aaron B., Bernales, Varinia, Peters, Aaron W., Getsoian, Andrew “Bean”, Wang, Timothy C., Miller, Jeffrey T., Vjunov, Aleksei, Fulton, John L., Lercher, Johannes A., Cramer, Christopher J., Gagliardi, Laura, Hupp, Joseph T., and Farha, Omar K. Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework. United States: N. p., 2016. Web. doi:10.1021/jacs.5b12515.
Li, Zhanyong, Schweitzer, Neil M., League, Aaron B., Bernales, Varinia, Peters, Aaron W., Getsoian, Andrew “Bean”, Wang, Timothy C., Miller, Jeffrey T., Vjunov, Aleksei, Fulton, John L., Lercher, Johannes A., Cramer, Christopher J., Gagliardi, Laura, Hupp, Joseph T., & Farha, Omar K. Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework. United States. https://doi.org/10.1021/jacs.5b12515
Li, Zhanyong, Schweitzer, Neil M., League, Aaron B., Bernales, Varinia, Peters, Aaron W., Getsoian, Andrew “Bean”, Wang, Timothy C., Miller, Jeffrey T., Vjunov, Aleksei, Fulton, John L., Lercher, Johannes A., Cramer, Christopher J., Gagliardi, Laura, Hupp, Joseph T., and Farha, Omar K. Tue . "Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework". United States. https://doi.org/10.1021/jacs.5b12515. https://www.osti.gov/servlets/purl/1387404.
@article{osti_1387404,
title = {Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework},
author = {Li, Zhanyong and Schweitzer, Neil M. and League, Aaron B. and Bernales, Varinia and Peters, Aaron W. and Getsoian, Andrew “Bean” and Wang, Timothy C. and Miller, Jeffrey T. and Vjunov, Aleksei and Fulton, John L. and Lercher, Johannes A. and Cramer, Christopher J. and Gagliardi, Laura and Hupp, Joseph T. and Farha, Omar K.},
abstractNote = {Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the welldefined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present in this paper a method for installing Ni ions uniformly and precisely on the node of a Zr-based metal–organic framework (MOF), NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a MOF (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.},
doi = {10.1021/jacs.5b12515},
journal = {Journal of the American Chemical Society},
number = 6,
volume = 138,
place = {United States},
year = {Tue Feb 02 00:00:00 EST 2016},
month = {Tue Feb 02 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 240 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Structural representation of NU-1000, highlighting its organic linker, mesoporous channel, and Zr6-containing node and a schematic depiction of the process used to anchor Ni to the Zr6 node of NU-1000 via AIM. Color code: Zr (green), O (red), C (gray), H (white), Ni (purple).

Save / Share:

Works referenced in this record:

Atomically Dispersed Supported Metal Catalysts
journal, July 2012


Single-Site Heterogeneous Catalysts
journal, October 2005

  • Thomas, John Meurig; Raja, Robert; Lewis, Dewi W.
  • Angewandte Chemie International Edition, Vol. 44, Issue 40, p. 6456-6482
  • DOI: 10.1002/anie.200462473

Activated carbon as catalyst support
journal, October 1986


New perspectives on basic zeolites as catalysts and catalyst supports
journal, May 2003


Reticular synthesis and the design of new materials
journal, June 2003

  • Yaghi, Omar M.; O'Keeffe, Michael; Ockwig, Nathan W.
  • Nature, Vol. 423, Issue 6941, p. 705-714
  • DOI: 10.1038/nature01650

Soft porous crystals
journal, November 2009

  • Horike, Satoshi; Shimomura, Satoru; Kitagawa, Susumu
  • Nature Chemistry, Vol. 1, Issue 9, p. 695-704
  • DOI: 10.1038/nchem.444

Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties
journal, January 2015

  • Eddaoudi, Mohamed; Sava, Dorina F.; Eubank, Jarrod F.
  • Chemical Society Reviews, Vol. 44, Issue 1
  • DOI: 10.1039/C4CS00230J

Hybrid porous solids past, present, future
journal, January 2008

  • Férey, Gérard
  • Chem. Soc. Rev., Vol. 37, Issue 1, p. 191-214
  • DOI: 10.1039/B618320B

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Hydrogen storage in metal–organic frameworks
journal, January 2009

  • Murray, Leslie J.; Dincă, Mircea; Long, Jeffrey R.
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1294-1314
  • DOI: 10.1039/b802256a

Cooperative insertion of CO2 in diamine-appended metal-organic frameworks
journal, March 2015

  • McDonald, Thomas M.; Mason, Jarad A.; Kong, Xueqian
  • Nature, Vol. 519, Issue 7543
  • DOI: 10.1038/nature14327

Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Enantioselective catalysis with homochiral metal–organic frameworks
journal, January 2009

  • Ma, Liqing; Abney, Carter; Lin, Wenbin
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1248-1256
  • DOI: 10.1039/b807083k

Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks
journal, April 2012

  • Vermoortele, Frederik; Vandichel, Matthias; Van de Voorde, Ben
  • Angewandte Chemie International Edition, Vol. 51, Issue 20
  • DOI: 10.1002/anie.201108565

Chemical, thermal and mechanical stabilities of metal–organic frameworks
journal, February 2016


Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement
journal, January 2014

  • Deria, Pravas; Mondloch, Joseph E.; Karagiaridi, Olga
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00067F

Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M-BTT Metal–Organic Frameworks
journal, January 2013

  • Sumida, Kenji; Stück, David; Mino, Lorenzo
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 1083-1091
  • DOI: 10.1021/ja310173e

Metals@MOFs - Loading MOFs with Metal Nanoparticles for Hybrid Functions
journal, July 2010

  • Meilikhov, Mikhail; Yusenko, Kirill; Esken, Daniel
  • European Journal of Inorganic Chemistry, Vol. 2010, Issue 24, p. 3701-3714
  • DOI: 10.1002/ejic.201000473

Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

Defining the Proton Topology of the Zr6-Based Metal–Organic Framework NU-1000
journal, October 2014

  • Planas, Nora; Mondloch, Joseph E.; Tussupbayev, Samat
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21, p. 3716-3723
  • DOI: 10.1021/jz501899j

Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition
journal, June 2015


Nickel-based solid catalysts for ethylene oligomerization – a review
journal, January 2014

  • Finiels, Annie; Fajula, François; Hulea, Vasile
  • Catal. Sci. Technol., Vol. 4, Issue 8
  • DOI: 10.1039/c4cy00305e

Kinetics of ethylene hydrogenation over a supported nickel catalyst
journal, April 1974


Catalytic Ethylene Dimerization and Oligomerization:  Recent Developments with Nickel Complexes Containing P , N-Chelating Ligands
journal, October 2005

  • Speiser, Fredy; Braunstein, Pierre; Saussine, Lucien
  • Accounts of Chemical Research, Vol. 38, Issue 10
  • DOI: 10.1021/ar050040d

Selective Propene Oligomerization with Nickel(II)-Based Metal–Organic Frameworks
journal, January 2014

  • Mlinar, Anton N.; Keitz, Benjamin K.; Gygi, David
  • ACS Catalysis, Vol. 4, Issue 3
  • DOI: 10.1021/cs401189a

Atomic layer deposition of transition metals
journal, October 2003

  • Lim, Booyong S.; Rahtu, Antti; Gordon, Roy G.
  • Nature Materials, Vol. 2, Issue 11
  • DOI: 10.1038/nmat1000

Works referencing / citing this record:

One‐Pot Synthesis of Heterobimetallic Metal–Organic Frameworks (MOFs) for Multifunctional Catalysis
journal, July 2019

  • Iqbal, Bushra; Saleem, Murtaza; Arshad, Salman Noshear
  • Chemistry – A European Journal, Vol. 25, Issue 44
  • DOI: 10.1002/chem.201901939

Atomic and molecular layer deposition: off the beaten track
journal, January 2017

  • Van Bui, H.; Grillo, F.; van Ommen, J. R.
  • Chemical Communications, Vol. 53, Issue 1
  • DOI: 10.1039/c6cc05568k

Two new metal–organic frameworks based on tetrazole–heterocyclic ligands accompanied by in situ ligand formation
journal, January 2017

  • Li, Qin; Yu, Mei-Hui; Xu, Jian
  • Dalton Transactions, Vol. 46, Issue 10
  • DOI: 10.1039/c7dt00005g

Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials
journal, November 2016

  • Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh
  • Advanced Materials, Vol. 29, Issue 6
  • DOI: 10.1002/adma.201605071

Stable Metal-Organic Frameworks: Design, Synthesis, and Applications
journal, February 2018


Eine Brücke zwischen industriellen und wohldefinierten Trägerkatalysatoren
journal, March 2018

  • Copéret, Christophe; Allouche, Florian; Chan, Ka Wing
  • Angewandte Chemie, Vol. 130, Issue 22
  • DOI: 10.1002/ange.201702387

Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts
journal, May 2019

  • Agirrezabal-Telleria, Iker; Luz, Ignacio; Ortuño, Manuel A.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-10013-6

NanoMOFs: little crystallites for substantial applications
journal, January 2018

  • Majewski, M. B.; Noh, H.; Islamoglu, T.
  • Journal of Materials Chemistry A, Vol. 6, Issue 17
  • DOI: 10.1039/c8ta02132e

The effects of active site and support on hydrogen elimination over transition-metal-functionalized yttria-decorated metal–organic frameworks
journal, January 2019

  • Yang, Bo; Sharkas, Kamal; Gagliardi, Laura
  • Catalysis Science & Technology, Vol. 9, Issue 24
  • DOI: 10.1039/c9cy01069f

A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts
journal, September 2018


From IR to x-rays: gaining molecular level insights on metal-organic frameworks through spectroscopy
journal, August 2019

  • Hanna, Lauren; Lockard, Jenny V.
  • Journal of Physics: Condensed Matter, Vol. 31, Issue 48
  • DOI: 10.1088/1361-648x/ab38da

A highly stable amino-coordinated MOF for unprecedented block off N 2 adsorption and extraordinary CO 2 /N 2 separation
journal, January 2016

  • Zhang, Ling; Jiang, Ke; Jiang, Mengdie
  • Chemical Communications, Vol. 52, Issue 93
  • DOI: 10.1039/c6cc07858c

Rational design of a flu -type heterometallic cluster-based Zr-MOF
journal, January 2016

  • Tan, Yan-Xi; Yang, Xue; Li, Bei-Bei
  • Chemical Communications, Vol. 52, Issue 94
  • DOI: 10.1039/c6cc08191f

Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports
journal, January 2017

  • Desai, Sai Puneet; Malonzo, Camille D.; Webber, Thomas
  • Faraday Discussions, Vol. 201
  • DOI: 10.1039/c7fd00055c

Atomically Dispersed Metal Sites in MOF-Based Materials for Electrocatalytic and Photocatalytic Energy Conversion
journal, June 2018

  • Liang, Zibin; Qu, Chong; Xia, Dingguo
  • Angewandte Chemie International Edition, Vol. 57, Issue 31
  • DOI: 10.1002/anie.201800269

Towards highly active and stable nickel-based metal–organic frameworks as ethylene oligomerization catalysts
journal, January 2019

  • Arrozi, Ubed S. F.; Bon, Volodymyr; Kutzscher, Christel
  • Dalton Transactions, Vol. 48, Issue 10
  • DOI: 10.1039/c8dt03866j

Metal–Organic Framework Hybrid Materials and Their Applications
journal, August 2018

  • Sosa, Joshua; Bennett, Timothy; Nelms, Katherine
  • Crystals, Vol. 8, Issue 8
  • DOI: 10.3390/cryst8080325

Single Pt Atoms Confined into a Metal-Organic Framework for Efficient Photocatalysis
journal, January 2018


Strategies for Stabilizing Atomically Dispersed Metal Catalysts
journal, December 2017


Selective Catalytic Chemistry at Rhodium(II) Nodes in Bimetallic Metal–Organic Frameworks
journal, September 2019

  • Shakya, Deependra M.; Ejegbavwo, Otega A.; Rajeshkumar, Thayalan
  • Angewandte Chemie, Vol. 131, Issue 46
  • DOI: 10.1002/ange.201908761

Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000
journal, January 2017

  • Platero-Prats, Ana E.; Li, Zhanyong; Gallington, Leighanne C.
  • Faraday Discussions, Vol. 201
  • DOI: 10.1039/c7fd00110j

Ethylene oligomerization in metal–organic frameworks bearing nickel( ii ) 2,2′-bipyridine complexes
journal, January 2017

  • Gonzalez, Miguel I.; Oktawiec, Julia; Long, Jeffrey R.
  • Faraday Discussions, Vol. 201
  • DOI: 10.1039/c7fd00061h

Stable metal–organic frameworks as a host platform for catalysis and biomimetics
journal, January 2018

  • Qin, Jun-Sheng; Yuan, Shuai; Lollar, Christina
  • Chemical Communications, Vol. 54, Issue 34
  • DOI: 10.1039/c7cc09173g

Facile synthesis of a metal–organic framework nanocarrier for NIR imaging-guided photothermal therapy
journal, January 2018

  • Li, Yawei; Xu, Na; Zhou, Junli
  • Biomaterials Science, Vol. 6, Issue 11
  • DOI: 10.1039/c8bm00830b

Synthesis of Cd x Zn1−xS@MIL-101(Cr) Composite Catalysts for the Photodegradation of Methylene Blue
journal, October 2018


Bridging the Gap between Industrial and Well-Defined Supported Catalysts
journal, March 2018

  • Copéret, Christophe; Allouche, Florian; Chan, Ka Wing
  • Angewandte Chemie International Edition, Vol. 57, Issue 22
  • DOI: 10.1002/anie.201702387

In Operando Analysis of Diffusion in Porous Metal‐Organic Framework Catalysts
journal, December 2018

  • Gao, Wen‐Yang; Cardenal, Ashley D.; Wang, Chen‐Hao
  • Chemistry – A European Journal, Vol. 25, Issue 14
  • DOI: 10.1002/chem.201804490

Strong electrostatic adsorption of Pt onto SiO 2 partially overcoated Al 2 O 3 —Towards single atom catalysts
journal, December 2019

  • Bo, Zhenyu; McCullough, Lauren R.; Dull, Samuel
  • The Journal of Chemical Physics, Vol. 151, Issue 21
  • DOI: 10.1063/1.5128934

Metal-Organic Frameworks as Platforms for Catalytic Applications
journal, November 2017


Atomic layer deposition of Cu( i ) oxide films using Cu( ii ) bis(dimethylamino-2-propoxide) and water
journal, January 2017

  • Avila, J. R.; Peters, A. W.; Li, Zhanyong
  • Dalton Transactions, Vol. 46, Issue 18
  • DOI: 10.1039/c6dt02572b

A Dynamically Stabilized Single‐Nickel Electrocatalyst for Selective Reduction of Oxygen to Hydrogen Peroxide
journal, July 2018

  • Wang, Tingting; Zeng, Zhongming; Cao, Lingyun
  • Chemistry – A European Journal, Vol. 24, Issue 64
  • DOI: 10.1002/chem.201804312

Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates
journal, January 2017

  • Chadwick, F. Mark; McKay, Alasdair I.; Martinez-Martinez, Antonio J.
  • Chemical Science, Vol. 8, Issue 9
  • DOI: 10.1039/c7sc01491k

Exploitation of missing linker in Zr-based metal-organic framework as the catalyst support for selective oxidation of benzyl alcohol
journal, November 2019

  • Jumpathong, Watthanachai; Pila, Taweesak; Lekjing, Yuwanda
  • APL Materials, Vol. 7, Issue 11
  • DOI: 10.1063/1.5126077

On the Accuracy of Density Functional Theory in Zeolite Catalysis
journal, July 2019

  • Goncalves, Tiago J.; Plessow, Philipp N.; Studt, Felix
  • ChemCatChem, Vol. 11, Issue 17
  • DOI: 10.1002/cctc.201900791

Metal–organic framework catalysis
journal, January 2017

  • Doonan, Christian J.; Sumby, Christopher J.
  • CrystEngComm, Vol. 19, Issue 29
  • DOI: 10.1039/c7ce90106b

A 3D metal–organic framework with dual-aerial-octahedral trinucleate building units: synthesis, structure and fluorescence sensing properties
journal, January 2018

  • Zhao, Yan-Ning; Zhang, Shu-Ran; Wang, Wei
  • New Journal of Chemistry, Vol. 42, Issue 17
  • DOI: 10.1039/c8nj02078g

Second-generation hexavalent molybdenum oxo-amidinate precursors for atomic layer deposition
journal, January 2017

  • Jurca, T.; Peters, A. W.; Mouat, A. R.
  • Dalton Transactions, Vol. 46, Issue 4
  • DOI: 10.1039/c6dt03952a

Carbon-Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage
journal, August 2018


Rational Design of Catalytic Centers in Crystalline Frameworks
journal, June 2018


Emerging Multifunctional Metal-Organic Framework Materials
journal, July 2016


Postsynthetic Modification of Zirconium Metal-Organic Frameworks: Postsynthetic Modification of Zirconium Metal-Organic Frameworks
journal, July 2016

  • Marshall, Ross J.; Forgan, Ross S.
  • European Journal of Inorganic Chemistry, Vol. 2016, Issue 27
  • DOI: 10.1002/ejic.201600394

In situ synthesis of ultrafine metal clusters triggered by dodecaborate supramolecular organic frameworks
journal, January 2018


Single-site metal–organic framework catalysts for the oxidative coupling of arenes via C–H/C–H activation
journal, January 2019

  • Van Velthoven, Niels; Waitschat, Steve; Chavan, Sachin M.
  • Chemical Science, Vol. 10, Issue 12
  • DOI: 10.1039/c8sc05510f

Decarboxylative Cross-Coupling of Cinnamic Acids Catalyzed by Iron-Based Covalent Organic Frameworks
journal, March 2018

  • Cifuentes, Jhonny M. C.; Ferreira, Bruno X.; Esteves, Pierre M.
  • Topics in Catalysis, Vol. 61, Issue 7-8
  • DOI: 10.1007/s11244-018-0910-9

Three new Zn-based metal–organic frameworks exhibiting selective fluorescence sensing and photocatalytic activity
journal, January 2018

  • Wang, Jun-Jie; Zhang, You-Juan; Chen, Yan
  • CrystEngComm, Vol. 20, Issue 27
  • DOI: 10.1039/c8ce00598b

Selective Catalytic Chemistry at Rhodium(II) Nodes in Bimetallic Metal–Organic Frameworks
journal, November 2019

  • Shakya, Deependra M.; Ejegbavwo, Otega A.; Rajeshkumar, Thayalan
  • Angewandte Chemie International Edition, Vol. 58, Issue 46
  • DOI: 10.1002/anie.201908761

Bridging the Gap between Industrial and Well-Defined Supported Catalysts
text, January 2018


Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities
journal, October 2018

  • Vogiatzis, Konstantinos D.; Polynski, Mikhail V.; Kirkland, Justin K.
  • Chemical Reviews, Vol. 119, Issue 4
  • DOI: 10.1021/acs.chemrev.8b00361

Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature
journal, November 2016


Oxidative Dehydrogenation of Propane in the Realm of Metal–Organic Frameworks
journal, January 2017


Grand Challenges and Future Opportunities for Metal–Organic Frameworks
journal, June 2017

  • Hendon, Christopher H.; Rieth, Adam J.; Korzyński, Maciej D.
  • ACS Central Science, Vol. 3, Issue 6
  • DOI: 10.1021/acscentsci.7b00197

Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends
journal, February 2018


Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts
journal, May 2019

  • Agirrezabal-Telleria, Iker; Luz, Ignacio; Ortuño, Manuel A.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-10013-6

Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates
journal, January 2017

  • Chadwick, F. Mark; McKay, Alasdair I.; Martinez-Martinez, Antonio J.
  • Chemical Science, Vol. 8, Issue 9
  • DOI: 10.1039/c7sc01491k

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.