DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Abstract

Grain boundary segregation provides a method for stabilization of nanocrystalline metals—an alloying element that will segregate to the boundaries can lower the grain boundary energy, attenuating the driving force for grain growth. The segregation strength relative to the mixing enthalpy of a binary system determines the propensity for segregation stabilization. This relationship has been codified for the design space of positive enthalpy alloys; unfortunately, quantitative values for the grain boundary segregation enthalpy exist in only very few material systems, hampering the prospect of nanocrystalline alloy design. We present a Miedema-type model for estimation of grain boundary segregation enthalpy, with which potential nanocrystalline phase-forming alloys can be rapidly screened. Calculations of the necessary enthalpies are made for ~2500 alloys and used to make predictions about nanocrystalline stability.

Authors:
 [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1386990
Grant/Contract Number:  
SC0001299
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Research
Additional Journal Information:
Journal Volume: 28; Journal Issue: 16; Journal ID: ISSN 0884-2914
Publisher:
Materials Research Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Murdoch, Heather A., and Schuh, Christopher A. Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. United States: N. p., 2013. Web. doi:10.1557/jmr.2013.211.
Murdoch, Heather A., & Schuh, Christopher A. Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. United States. https://doi.org/10.1557/jmr.2013.211
Murdoch, Heather A., and Schuh, Christopher A. Tue . "Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design". United States. https://doi.org/10.1557/jmr.2013.211. https://www.osti.gov/servlets/purl/1386990.
@article{osti_1386990,
title = {Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design},
author = {Murdoch, Heather A. and Schuh, Christopher A.},
abstractNote = {Grain boundary segregation provides a method for stabilization of nanocrystalline metals—an alloying element that will segregate to the boundaries can lower the grain boundary energy, attenuating the driving force for grain growth. The segregation strength relative to the mixing enthalpy of a binary system determines the propensity for segregation stabilization. This relationship has been codified for the design space of positive enthalpy alloys; unfortunately, quantitative values for the grain boundary segregation enthalpy exist in only very few material systems, hampering the prospect of nanocrystalline alloy design. We present a Miedema-type model for estimation of grain boundary segregation enthalpy, with which potential nanocrystalline phase-forming alloys can be rapidly screened. Calculations of the necessary enthalpies are made for ~2500 alloys and used to make predictions about nanocrystalline stability.},
doi = {10.1557/jmr.2013.211},
journal = {Journal of Materials Research},
number = 16,
volume = 28,
place = {United States},
year = {Tue Aug 06 00:00:00 EDT 2013},
month = {Tue Aug 06 00:00:00 EDT 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 136 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermal stability and hydrogen absorption characteristics of palladium-yttrium nanoalloys
journal, September 1996


Analysis of controlled-mechanism of grain growth in undercooled Fe–Cu alloy
journal, June 2011


Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP)
journal, February 2000


Bismuth segregation at copper grain boundaries
journal, November 1999


Thermal stability of Ni–Mn electrodeposits
journal, April 2006


Anisotropy of segregation at grain boundaries and surfaces
journal, September 2006

  • Wynblatt, Paul; Chatain, Dominique
  • Metallurgical and Materials Transactions A, Vol. 37, Issue 9
  • DOI: 10.1007/BF02586096

Solid solubility and grain boundary segregation
journal, June 1996


Grain Boundary Segregation and Interdiffusion Effects in Nickel–Copper Alloys: An Effective Means to Improve the Thermal Stability of Nanocrystalline Nickel
journal, June 2011

  • Pellicer, Eva; Varea, Aïda; Sivaraman, Kartik M.
  • ACS Applied Materials & Interfaces, Vol. 3, Issue 7
  • DOI: 10.1021/am2004587

Solute segregation at [001] tilt boundaries in dilute f.c.c. alloys
journal, February 1998


Thermal stability of nanocrystalline Fe–Zr alloys
journal, June 2010

  • Darling, K. A.; VanLeeuwen, B. K.; Koch, C. C.
  • Materials Science and Engineering: A, Vol. 527, Issue 15
  • DOI: 10.1016/j.msea.2010.02.043

Microstructural evolution at large driving forces during grain growth of ultrafine-grained Ni–1.2wt%P
journal, June 1992


The theory of grain boundary segregation in terms of surface adsorption analogues
journal, September 1977

  • Hondros, E. D.; Seah, M. P.
  • Metallurgical Transactions A, Vol. 8, Issue 9
  • DOI: 10.1007/BF02642850

Alloy effects in nanostructures
journal, January 1993


The stabilization of nanocrystalline copper by zirconium
journal, January 2013

  • Atwater, Mark A.; Scattergood, Ronald O.; Koch, Carl C.
  • Materials Science and Engineering: A, Vol. 559
  • DOI: 10.1016/j.msea.2012.08.092

Calculation of grain-boundary segregation in Ni-Cu alloys
journal, December 1989


Algebraic Representation of Thermodynamic Properties and the Classification of Solutions
journal, February 1948

  • Redlich, Otto; Kister, A. T.
  • Industrial & Engineering Chemistry, Vol. 40, Issue 2
  • DOI: 10.1021/ie50458a036

Relation between grain boundary segregation and grain boundary character in FCC alloys
journal, June 2005


Thermodynamic stabilization of nanocrystallinity
journal, October 2005

  • Krill, C. E.; Ehrhardt, H.; Birringer, R.
  • Zeitschrift für Metallkunde, Vol. 96, Issue 10
  • DOI: 10.3139/146.101152

Atomistic vs phenomenological approaches to grain boundary segregation: Computer modeling of CuAg alloys
journal, August 1994


Study of grain growth in electrodeposited nanocrystalline nickel-1.2 wt.% phosphorus alloy
journal, December 1995


Grain coarsening inhibited by solute segregation
journal, January 2002


Ostwald ripening of Pb nanocrystalline phase in mechanically milled Al–Pb alloys and the influence of Cu additive
journal, September 2005


Comparison of the intergranular segregation for eight dilute binary metallic systems in the Σ 11′ {332} tilt grain boundary
journal, June 2005


Solute-atom segregation is high-angle (002) twist boundaries in dilute Au–Pt alloys
journal, August 1995


Thermodynamic model of alloy grain boundaries
journal, March 2011


Design of Stable Nanocrystalline Alloys
journal, August 2012


Electronic structure of primary solid solutions in metals
journal, October 1954


Nanocrystalline Ni–3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy
journal, February 2000


The thermal stability of nanocrystalline copper cryogenically milled with tungsten
journal, December 2012

  • Atwater, Mark A.; Roy, Debdas; Darling, Kristopher A.
  • Materials Science and Engineering: A, Vol. 558
  • DOI: 10.1016/j.msea.2012.07.117

Thermal stability and grain growth behavior of mechanically alloyed nanocrystalline Fe‐Cu alloys
journal, January 1993

  • Eckert, J.; Holzer, J. C.; Johnson, W. L.
  • Journal of Applied Physics, Vol. 73, Issue 1
  • DOI: 10.1063/1.353890

Thermal stability of nanocrystalline Pd81Zr19
journal, July 2010


Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys
journal, March 2009


Temperature dependence of the grain boundary segregation of Bi in Ni polycrystals
journal, September 2004


Grain boundary segregation
journal, June 1980


Electrodeposition of Metastable Au–Ni Alloys
journal, January 2010

  • Rouya, E.; Stafford, G. R.; Bertocci, U.
  • Journal of The Electrochemical Society, Vol. 157, Issue 7
  • DOI: 10.1149/1.3421749

Nanocrystalline Electroplated Cu-Ni: Metallic Thin Films with Enhanced Mechanical Properties and Tunable Magnetic Behavior
journal, March 2010

  • Pellicer, Eva; Varea, Aïda; Pané, Salvador
  • Advanced Functional Materials, Vol. 20, Issue 6
  • DOI: 10.1002/adfm.200901732

Electrodeposited nanocrystalline Co–P alloys: Microstructural characterization and thermal stability
journal, February 2007


Grain growth in nanocrystalline Fe–Ag thin film
journal, May 2005


Thermal Stability and Tensile Properties of Electrodeposited Cu-Bi Alloy
journal, July 2010

  • Chen, Xianhua; Mao, Jianjun
  • Journal of Materials Engineering and Performance, Vol. 20, Issue 3
  • DOI: 10.1007/s11665-010-9700-7

Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation
journal, March 2004


Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection
journal, May 2011

  • Darling, K. A.; VanLeeuwen, B. K.; Semones, J. E.
  • Materials Science and Engineering: A, Vol. 528, Issue 13-14
  • DOI: 10.1016/j.msea.2011.02.080

Bimodal growth of the nanophases in the dual-phase composites produced by mechanical alloying in immiscible Cu–Ag system
journal, May 2008


Stability of binary nanocrystalline alloys against grain growth and phase separation
journal, April 2013


Some basic notions on nanostructured solids
journal, May 1994


Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P
journal, September 2005


Computational study of the impurity induced reduction of grain boundary energies in nano- and bi-crystalline Al–Pb alloys
journal, March 2010


Atomistic modeling of the segregation of lead impurities to a grain boundary in an aluminum bicrystalline solid
journal, October 2008


Microstructural evolution during the heat treatment of nanocrystalline alloys
journal, November 2007


Solute-atom segregation at (002) twist boundaries in dilute NiPt alloys: Structural/chemical relations
journal, June 1994


Atomic structure and thermal stability of nanostructured Y-Fe alloys
journal, November 1992


Works referencing / citing this record:

Achieving Ultralow Wear with Stable Nanocrystalline Metals
journal, June 2018

  • Curry, John F.; Babuska, Tomas F.; Furnish, Timothy A.
  • Advanced Materials, Vol. 30, Issue 32
  • DOI: 10.1002/adma.201802026

Nanocrystalline Materials at Equilibrium: A Thermodynamic Review
journal, September 2015


Extreme creep resistance in a microstructurally stable nanocrystalline alloy
journal, September 2016

  • Darling, K. A.; Rajagopalan, M.; Komarasamy, M.
  • Nature, Vol. 537, Issue 7620
  • DOI: 10.1038/nature19313

Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility
journal, February 2016

  • Khalajhedayati, Amirhossein; Pan, Zhiliang; Rupert, Timothy J.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10802

Mechanical properties of stabilized nanocrystalline FCC metals
journal, September 2019

  • Spearot, Douglas E.; Tucker, Garritt J.; Gupta, Ankit
  • Journal of Applied Physics, Vol. 126, Issue 11
  • DOI: 10.1063/1.5114706

Thermal stability of nanocrystalline materials: thermodynamics and kinetics
journal, November 2016


Strain-stress relationship and dislocation evolution of W–Cu bilayers from a constructed n -body W–Cu potential
journal, May 2019


Lower bound on grain boundary solubility in immiscible alloys
journal, February 2019

  • Yosef, Liron; Ashkenazy, Yinon
  • Modelling and Simulation in Materials Science and Engineering, Vol. 27, Issue 3
  • DOI: 10.1088/1361-651x/aafd0d

Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures
journal, October 2018


Reducing Grain-Boundary Resistivity of Copper Nanowires by Doping
journal, May 2016


Higher Temperatures Yield Smaller Grains in a Thermally Stable Phase-Transforming Nanocrystalline Alloy
journal, October 2018


Thermodynamic stabilization of precipitates through interface segregation: Chemical effects
journal, September 2017


Structure of vacuum Cu–Ta condensates
journal, February 2017

  • Zubkov, A. I.; Zubarev, E. N.; Sobol’, O. V.
  • Physics of Metals and Metallography, Vol. 118, Issue 2
  • DOI: 10.1134/s0031918x17020156

Recent trends and open questions in grain boundary segregation
journal, July 2018

  • Lejček, Pavel; Všianská, Monika; Šob, Mojmír
  • Journal of Materials Research, Vol. 33, Issue 18
  • DOI: 10.1557/jmr.2018.230

Coupled oxidation resistance and thermal stability in sputter deposited nanograined alloys
journal, November 2018

  • Shetty, Pralav P.; Emigh, Megan G.; Krogstad, Jessica A.
  • Journal of Materials Research, Vol. 34, Issue 1
  • DOI: 10.1557/jmr.2018.403

Achieving Ultrahigh Hardness in Electrodeposited Nanograined Ni-Based Binary Alloys
journal, April 2019

  • Zheng, Xiangui; Hu, Jian; Li, Jiongxian
  • Nanomaterials, Vol. 9, Issue 4
  • DOI: 10.3390/nano9040546

Thermal Stability of Cryomilled Al-Mg-Er Powders
journal, January 2017

  • Akinrinlola, Bamidele; Gauvin, Raynald; Blais, Carl
  • Journal of Nanomaterials, Vol. 2017
  • DOI: 10.1155/2017/6348569

Simultaneous Enhancement of Mechanical and Magnetic Properties in Extremely-Fine Nanograined Ni-P Alloys
journal, October 2018

  • He, Qiongyao; Zhu, Wanquan; Fu, Xiaoxiao
  • Nanomaterials, Vol. 8, Issue 10
  • DOI: 10.3390/nano8100792

Achieving Ultrahigh Hardness in Electrodeposited Nanograined Ni-Based Binary Alloys
journal, April 2019

  • Zheng, Xiangui; Hu, Jian; Li, Jiongxian
  • Nanomaterials, Vol. 9, Issue 4
  • DOI: 10.3390/nano9040546