DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrodeposition of InSb branched nanowires: Controlled growth with structurally tailored properties

Abstract

In this article, electrodeposition method is used to demonstrate growth of InSb nanowire (NW) arrays with hierarchical branched structures and complex morphology at room temperature using an all-solution, catalyst-free technique. A gold coated, porous anodic alumina membrane provided the template for the branched NWs. The NWs have a hierarchical branched structure, with three nominal regions: a “trunk” (average diameter of 150 nm), large branches (average diameter of 100 nm), and small branches (average diameter of sub-10 nm to sub-20 nm). The structural properties of the branched NWs were studied using scanning transmission electron microscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and Raman spectroscopy. In the as-grown state, the small branches of InSb NWs were crystalline, but the trunk regions were mostly nanocrystalline with an amorphous boundary. Post-annealing of NWs at 420°C in argon produced single crystalline structures along $$\langle$$311$$\rangle$$ directions for the branches and along $$\langle$$111$$\rangle$$ for the trunks. Based on the high crystallinity and tailored structure in this branched NW array, the effective refractive index allows us to achieve excellent antireflection properties signifying its technological usefulness for photon management and energy harvesting.

Authors:
 [1];  [1];  [1];  [1];  [2];  [3];  [3];  [1];  [1];  [1];  [1]
  1. Purdue Univ., West Lafayette, IN (United States)
  2. Tokyo Institute of Technology (Japan); Inst. of Physical and Chemical Research (RIKEN), Wako (Japan)
  3. Inst. of Physical and Chemical Research (RIKEN), Wako (Japan)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1384211
Grant/Contract Number:  
SC0001085
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 116; Journal Issue: 8; Related Information: RPEMSC partners with Columbia University (lead); Brookhaven National Laboratory; Purdue University; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 42 ENGINEERING; 77 NANOSCIENCE AND NANOTECHNOLOGY; solar (photovoltaic); electrodes - solar; charge transport; materials and chemistry by design; optics; synthesis (novel materials)

Citation Formats

Das, Suprem R., Akatay, Cem, Mohammad, Asaduzzaman, Khan, Mohammad Ryyan, Maeda, Kosuke, Deacon, Russell S., Ishibashi, Koji, Chen, Yong P., Sands, Timothy D., Alam, Muhammad A., and Janes, David B. Electrodeposition of InSb branched nanowires: Controlled growth with structurally tailored properties. United States: N. p., 2014. Web. doi:10.1063/1.4893704.
Das, Suprem R., Akatay, Cem, Mohammad, Asaduzzaman, Khan, Mohammad Ryyan, Maeda, Kosuke, Deacon, Russell S., Ishibashi, Koji, Chen, Yong P., Sands, Timothy D., Alam, Muhammad A., & Janes, David B. Electrodeposition of InSb branched nanowires: Controlled growth with structurally tailored properties. United States. https://doi.org/10.1063/1.4893704
Das, Suprem R., Akatay, Cem, Mohammad, Asaduzzaman, Khan, Mohammad Ryyan, Maeda, Kosuke, Deacon, Russell S., Ishibashi, Koji, Chen, Yong P., Sands, Timothy D., Alam, Muhammad A., and Janes, David B. Mon . "Electrodeposition of InSb branched nanowires: Controlled growth with structurally tailored properties". United States. https://doi.org/10.1063/1.4893704. https://www.osti.gov/servlets/purl/1384211.
@article{osti_1384211,
title = {Electrodeposition of InSb branched nanowires: Controlled growth with structurally tailored properties},
author = {Das, Suprem R. and Akatay, Cem and Mohammad, Asaduzzaman and Khan, Mohammad Ryyan and Maeda, Kosuke and Deacon, Russell S. and Ishibashi, Koji and Chen, Yong P. and Sands, Timothy D. and Alam, Muhammad A. and Janes, David B.},
abstractNote = {In this article, electrodeposition method is used to demonstrate growth of InSb nanowire (NW) arrays with hierarchical branched structures and complex morphology at room temperature using an all-solution, catalyst-free technique. A gold coated, porous anodic alumina membrane provided the template for the branched NWs. The NWs have a hierarchical branched structure, with three nominal regions: a “trunk” (average diameter of 150 nm), large branches (average diameter of 100 nm), and small branches (average diameter of sub-10 nm to sub-20 nm). The structural properties of the branched NWs were studied using scanning transmission electron microscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and Raman spectroscopy. In the as-grown state, the small branches of InSb NWs were crystalline, but the trunk regions were mostly nanocrystalline with an amorphous boundary. Post-annealing of NWs at 420°C in argon produced single crystalline structures along $\langle$311$\rangle$ directions for the branches and along $\langle$111$\rangle$ for the trunks. Based on the high crystallinity and tailored structure in this branched NW array, the effective refractive index allows us to achieve excellent antireflection properties signifying its technological usefulness for photon management and energy harvesting.},
doi = {10.1063/1.4893704},
journal = {Journal of Applied Physics},
number = 8,
volume = 116,
place = {United States},
year = {Mon Aug 25 00:00:00 EDT 2014},
month = {Mon Aug 25 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-resolution detection of Au catalyst atoms in Si nanowires
journal, February 2008

  • Allen, Jonathan E.; Hemesath, Eric R.; Perea, Daniel E.
  • Nature Nanotechnology, Vol. 3, Issue 3
  • DOI: 10.1038/nnano.2008.5

Vapor-liquid-solid mechanism of single crystal growth
journal, March 1964

  • Wagner, R. S.; Ellis, W. C.
  • Applied Physics Letters, Vol. 4, Issue 5, p. 89-90
  • DOI: 10.1063/1.1753975

Diffusion-Controlled Growth Model for Electrodeposited Cobalt Nanowires in Highly Ordered Aluminum Oxide Membrane
conference, January 2010

  • Ghahremaninezhad, Ahmad; Dolati, Abolghasem
  • 217th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3503348

Solar Cell Light Trapping beyond the Ray Optic Limit
journal, December 2011

  • Callahan, Dennis M.; Munday, Jeremy N.; Atwater, Harry A.
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl203351k

Raman spectroscopy of silicon nanowires
journal, December 2003


Tuning Light Absorption in Core/Shell Silicon Nanowire Photovoltaic Devices through Morphological Design
journal, January 2012

  • Kim, Sun-Kyung; Day, Robert W.; Cahoon, James F.
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl302578z

Room temperature device performance of electrodeposited InSb nanowire field effect transistors
journal, June 2011

  • Das, Suprem R.; Delker, Collin J.; Zakharov, Dmitri
  • Applied Physics Letters, Vol. 98, Issue 24
  • DOI: 10.1063/1.3587638

Raman Scattering from InSb Surfaces at Photon Energies Near the E 1 Energy Gap
journal, October 1968


Epitaxial InSb(111) layers on Sb(111) substrates characterised by Raman spectroscopy
journal, October 1989


Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates
journal, July 2009

  • Fan, Zhiyong; Razavi, Haleh; Do, Jae-won
  • Nature Materials, Vol. 8, Issue 8, p. 648-653
  • DOI: 10.1038/nmat2493

Synthesis and Structural Characterization of Single-Crystalline Branched Nanowire Heterostructures
journal, February 2007

  • Jung, Yeonwoong; Ko, Dong-Kyun; Agarwal, Ritesh
  • Nano Letters, Vol. 7, Issue 2
  • DOI: 10.1021/nl0621847

InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch
journal, November 2009


Terahetz detection by heterostructed InAs/InSb nanowire based field effect transistors
journal, October 2012

  • Pitanti, A.; Coquillat, D.; Ercolani, D.
  • Applied Physics Letters, Vol. 101, Issue 14
  • DOI: 10.1063/1.4757005

Light management for photovoltaics using high-index nanostructures
journal, April 2014

  • Brongersma, Mark L.; Cui, Yi; Fan, Shanhui
  • Nature Materials, Vol. 13, Issue 5
  • DOI: 10.1038/nmat3921

A Simple Solution Route to Single-Crystalline Sb 2 O 3 Nanowires with Rectangular Cross Sections
journal, September 2006

  • Deng, Zhengtao; Tang, Fangqiong; Chen, Dong
  • The Journal of Physical Chemistry B, Vol. 110, Issue 37
  • DOI: 10.1021/jp063748y

Design and Synthesis of Diverse Functional Kinked Nanowire Structures for Nanoelectronic Bioprobes
journal, January 2013

  • Xu, Lin; Jiang, Zhe; Qing, Quan
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl304435z

Preparation of In X (X = P, As, Sb) Thin Films by Electrochemical Methods
journal, January 1989

  • Ortega, J.
  • Journal of The Electrochemical Society, Vol. 136, Issue 11
  • DOI: 10.1149/1.2096456

Light Trapping in Silicon Nanowire Solar Cells
journal, January 2010

  • Garnett, Erik; Yang, Peidong
  • Nano Letters, Vol. 10, Issue 3, p. 1082-1087
  • DOI: 10.1021/nl100161z

Second-order Raman scattering in InSb
journal, September 1975


Multicolored Vertical Silicon Nanowires
journal, April 2011

  • Seo, Kwanyong; Wober, Munib; Steinvurzel, Paul
  • Nano Letters, Vol. 11, Issue 4
  • DOI: 10.1021/nl200201b

Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings
journal, February 2012

  • Wang, Ken Xingze; Yu, Zongfu; Liu, Victor
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl204550q

Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays
journal, December 2008

  • Zhu, Jia; Yu, Zongfu; Burkhard, George F.
  • Nano Letters, Vol. 9, Issue 1, p. 279-282
  • DOI: 10.1021/nl802886y

Oxide-assisted growth and optical characterization of gallium-arsenide nanowires
journal, May 2001

  • Shi, W. S.; Zheng, Y. F.; Wang, N.
  • Applied Physics Letters, Vol. 78, Issue 21
  • DOI: 10.1063/1.1371966

Fabrication of Highly Ordered InSb Nanowire Arrays by Electrodeposition in Porous Anodic Alumina Membranes
journal, January 2005

  • Zhang, Xueru; Hao, Yufeng; Meng, Guowen
  • Journal of The Electrochemical Society, Vol. 152, Issue 10
  • DOI: 10.1149/1.2007187

Electrochemical Growth of InSb Nanowires and Report of a Single Nanowire Field Effect Transistor
journal, July 2008

  • Khan, M. Ibrahim; Penchev, Miroslav; Jing, Xiaoye
  • Journal of Nanoelectronics and Optoelectronics, Vol. 3, Issue 2
  • DOI: 10.1166/jno.2008.203

Second-order Raman scattering in the group- V b semimetals: Bi, Sb, and As
journal, July 1975


Advanced core/multishell germanium/silicon nanowire heterostructures: The Au-diffusion bottleneck
journal, July 2011

  • Dayeh, Shadi A.; Mack, Nathan H.; Huang, Jian Yu
  • Applied Physics Letters, Vol. 99, Issue 2
  • DOI: 10.1063/1.3567932

Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption
journal, October 2010

  • Fan, Zhiyong; Kapadia, Rehan; Leu, Paul W.
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl1010788

Metal Oxide Composite Enabled Nanotextured Si Photoanode for Efficient Solar Driven Water Oxidation
journal, April 2013

  • Sun, Ke; Pang, Xiaolu; Shen, Shaohua
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400343a

Measurement and analysis of thermopower and electrical conductivity of an indium antimonide nanowire from a vapor-liquid-solid method
journal, January 2007

  • Seol, Jae Hun; Moore, Arden L.; Saha, Sanjoy K.
  • Journal of Applied Physics, Vol. 101, Issue 2
  • DOI: 10.1063/1.2430508

Au on vapor-liquid-solid grown Si nanowires: Spreading of liquid AuSi from the catalytic seed
journal, September 2010

  • Dailey, Eric; Madras, Prashanth; Drucker, Jeff
  • Journal of Applied Physics, Vol. 108, Issue 6
  • DOI: 10.1063/1.3487971

Structural characterization of indium oxide nanostructures: a Raman analysis
journal, January 2010

  • Berengue, Olivia M.; Rodrigues, Ariano D.; Dalmaschio, Cleocir J.
  • Journal of Physics D: Applied Physics, Vol. 43, Issue 4
  • DOI: 10.1088/0022-3727/43/4/045401

A Study of Point Defects and Cause of Nonstoichiometry in InSb Nanowires
journal, January 2011


Nature of heterointerfaces in GaAs/InAs and InAs/GaAs axial nanowire heterostructures
journal, September 2008

  • Paladugu, Mohanchand; Zou, Jin; Guo, Ya-Nan
  • Applied Physics Letters, Vol. 93, Issue 10
  • DOI: 10.1063/1.2978959

Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices
journal, April 2012


From The Cover: Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires
journal, May 2005

  • Meng, G.; Jung, Y. J.; Cao, A.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 20
  • DOI: 10.1073/pnas.0502098102

Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires
journal, April 2004


Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism
journal, July 2003

  • Tian, Mingliang; Wang, Jinguo; Kurtz, James
  • Nano Letters, Vol. 3, Issue 7
  • DOI: 10.1021/nl034217d

Understanding the Impact of Schottky Barriers on the Performance of Narrow Bandgap Nanowire Field Effect Transistors
journal, September 2012

  • Zhao, Yanjie; Candebat, Drew; Delker, Collin
  • Nano Letters, Vol. 12, Issue 10
  • DOI: 10.1021/nl302684s

Formation of chiral branched nanowires by the Eshelby Twist
journal, June 2008


Crystallization under nanoscale confinement
journal, January 2014


Self-supporting nanowire arrays templated in sacrificial branched porous anodic alumina for thermoelectric devices
journal, August 2009

  • Biswas, Kalapi G.; El Matbouly, Hatem; Rawat, Vijay
  • Applied Physics Letters, Vol. 95, Issue 7
  • DOI: 10.1063/1.3207756

Black Ge Based on Crystalline/Amorphous Core/Shell Nanoneedle Arrays
journal, February 2010

  • Chueh, Yu-Lun; Fan, Zhiyong; Takei, Kuniharu
  • Nano Letters, Vol. 10, Issue 2
  • DOI: 10.1021/nl903366z

Majorana fermions in a tunable semiconductor device
journal, March 2010


Colorful InAs Nanowire Arrays: From Strong to Weak Absorption with Geometrical Tuning
journal, January 2012

  • Wu, Phillip M.; Anttu, Nicklas; Xu, H. Q.
  • Nano Letters, Vol. 12, Issue 4
  • DOI: 10.1021/nl204552v

Quantized Conductance in an InSb Nanowire
journal, December 2012

  • van Weperen, Ilse; Plissard, Sébastien R.; Bakkers, Erik P. A. M.
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl3035256

Solution–Liquid–Solid Growth of Soluble GaAs Nanowires
journal, March 2003


Quantum Dot Monolayer Sensitized ZnO Nanowire-Array Photoelectrodes: True Efficiency for Water Splitting
journal, July 2010

  • Chen, Hao Ming; Chen, Chih Kai; Chang, Yu-Chuan
  • Angewandte Chemie, Vol. 122, Issue 34
  • DOI: 10.1002/ange.201001827

Wavelength-Dependent Absorption in Structurally Tailored Randomly Branched Vertical Arrays of InSb Nanowires
journal, February 2012

  • Mohammad, Asaduzzaman; Das, Suprem R.; Khan, M. Ryyan
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl302803e

Nanowires for Integrated Multicolor Nanophotonics
journal, October 2004

  • Huang, Yu; Duan, Xiangfeng; Lieber, Charles M.
  • Small, Vol. 1, Issue 1, p. 142-147
  • DOI: 10.1002/smll.200400030

InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit
journal, January 2013


The influence of the surface migration of gold on the growth of silicon nanowires
journal, January 2006

  • Hannon, J. B.; Kodambaka, S.; Ross, F. M.
  • Nature, Vol. 440, Issue 7080
  • DOI: 10.1038/nature04574

Works referencing / citing this record:

Indium Antimonide Nanowires: Synthesis and Properties
journal, March 2016


Structure and Electronic Properties of InSb Nanowires Grown in Flexible Polycarbonate Membranes
journal, September 2019

  • Singh, Abhay Pratap; Roccapriore, Kevin; Algarni, Zaina
  • Nanomaterials, Vol. 9, Issue 9
  • DOI: 10.3390/nano9091260

Indium Antimonide Nanowires: Synthesis and Properties
journal, March 2016


Structure and Electronic Properties of InSb Nanowires Grown in Flexible Polycarbonate Membranes
journal, September 2019

  • Singh, Abhay Pratap; Roccapriore, Kevin; Algarni, Zaina
  • Nanomaterials, Vol. 9, Issue 9
  • DOI: 10.3390/nano9091260