DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photosynthetic responses to altitude: an explanation based on optimality principles

Abstract

Ecophysiologists have long been fascinated by the photosynthetic behaviour of alpine plants, which often have to withstand extreme environmental pressures (Gale, 1972; Friend&Woodward, 1990; Korner, 2003, 2007; Shi et al., 2006). About 8%of the world’s land surface is above 1500 maltitude (Korner, 2007). High altitudes can be climatically unusual, often with (for example) low temperatures, strong winds, and now high rates of warming (Korner, 2003; Pepin &Lundquist, 2008; Rangwala&Miller, 2012). Moreover, the low atmospheric pressure provides a set of environmental conditions unique on Earth (Table 1). There has been extensive speculation about altitudinal effects on photosynthesis and, in particular, how to account for the puzzling – but consistently observed – tendencies towards higher carbon dioxide (CO2) drawdown (low ratio of leafinternal to ambient CO2 partial pressures (ci:ca; hereafter, v), resulting in low carbon isotope discrimination) and higher carboxylation capacity (Vcmax) with increasing altitude (Gale, 1972; Korner & Diemer, 1987; Friend et al., 1989; Terashima et al., 1995; Bresson et al., 2009; Zhu et al., 2010). At first glance, it might be expected that CO2 assimilation rates would be reduced at high altitudes due to the low partial pressure of CO2 (Friend & Woodward, 1990). But, actual measured photosynthetic rates aremore » usually as high as, or even higher than, those at low altitudes (Machler & Nosberger, 1977; Korner & Diemer, 1987; Cordell et al., 1999; Shi et al., 2006).« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6]
  1. Northwest A&F Univ., Yangling (China); Macquarie Univ., NSW (Australia)
  2. Northwest A&F Univ., Yangling (China); Macquarie Univ., NSW (Australia); Imperial College, London (United Kingdom)
  3. Imperial College, London (United Kingdom); US Dept. of Agriculture (USDA)., Ithaca, NY (United States)
  4. Macquarie Univ., NSW (Australia); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Macquarie Univ., NSW (Australia)
  6. Northwest A&F Univ., Yangling (China); Univ. of Quebec (Canada)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1379706
Alternate Identifier(s):
OSTI ID: 1400592
Grant/Contract Number:  
AC02-05CH11231; DE‐AC02‐05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
New Phytologist
Additional Journal Information:
Journal Volume: 213; Journal Issue: 3; Journal ID: ISSN 0028-646X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Wang, Han, Prentice, I. Colin, Davis, Tyler W., Keenan, Trevor F., Wright, Ian J., and Peng, Changhui. Photosynthetic responses to altitude: an explanation based on optimality principles. United States: N. p., 2016. Web. doi:10.1111/nph.14332.
Wang, Han, Prentice, I. Colin, Davis, Tyler W., Keenan, Trevor F., Wright, Ian J., & Peng, Changhui. Photosynthetic responses to altitude: an explanation based on optimality principles. United States. https://doi.org/10.1111/nph.14332
Wang, Han, Prentice, I. Colin, Davis, Tyler W., Keenan, Trevor F., Wright, Ian J., and Peng, Changhui. Fri . "Photosynthetic responses to altitude: an explanation based on optimality principles". United States. https://doi.org/10.1111/nph.14332. https://www.osti.gov/servlets/purl/1379706.
@article{osti_1379706,
title = {Photosynthetic responses to altitude: an explanation based on optimality principles},
author = {Wang, Han and Prentice, I. Colin and Davis, Tyler W. and Keenan, Trevor F. and Wright, Ian J. and Peng, Changhui},
abstractNote = {Ecophysiologists have long been fascinated by the photosynthetic behaviour of alpine plants, which often have to withstand extreme environmental pressures (Gale, 1972; Friend&Woodward, 1990; Korner, 2003, 2007; Shi et al., 2006). About 8%of the world’s land surface is above 1500 maltitude (Korner, 2007). High altitudes can be climatically unusual, often with (for example) low temperatures, strong winds, and now high rates of warming (Korner, 2003; Pepin &Lundquist, 2008; Rangwala&Miller, 2012). Moreover, the low atmospheric pressure provides a set of environmental conditions unique on Earth (Table 1). There has been extensive speculation about altitudinal effects on photosynthesis and, in particular, how to account for the puzzling – but consistently observed – tendencies towards higher carbon dioxide (CO2) drawdown (low ratio of leafinternal to ambient CO2 partial pressures (ci:ca; hereafter, v), resulting in low carbon isotope discrimination) and higher carboxylation capacity (Vcmax) with increasing altitude (Gale, 1972; Korner & Diemer, 1987; Friend et al., 1989; Terashima et al., 1995; Bresson et al., 2009; Zhu et al., 2010). At first glance, it might be expected that CO2 assimilation rates would be reduced at high altitudes due to the low partial pressure of CO2 (Friend & Woodward, 1990). But, actual measured photosynthetic rates are usually as high as, or even higher than, those at low altitudes (Machler & Nosberger, 1977; Korner & Diemer, 1987; Cordell et al., 1999; Shi et al., 2006).},
doi = {10.1111/nph.14332},
journal = {New Phytologist},
number = 3,
volume = 213,
place = {United States},
year = {Fri Nov 18 00:00:00 EST 2016},
month = {Fri Nov 18 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 61 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

On the Computation of Saturation Vapor Pressure
journal, February 1967


To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech?
journal, September 2011


A universal model for carbon dioxide uptake by plants
posted_content, February 2016

  • Wang, Han; Prentice, I. Colin; Cornwell, William K.
  • DOI: 10.1101/040246

Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients
journal, December 2009


Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics
journal, May 2012


The Ecology of Arctic and Alpine Plants
journal, November 1968


Plant Thermoregulation: Energetics, Trait–Environment Interactions, and Carbon Economics
journal, December 2015

  • Michaletz, Sean T.; Weiser, Michael D.; Zhou, Jizhong
  • Trends in Ecology & Evolution, Vol. 30, Issue 12
  • DOI: 10.1016/j.tree.2015.09.006

Is Photosynthesis Suppressed at Higher Elevations Due to Low CO 2 Pressure?
journal, December 1995

  • Terashima, Ichiro; Masuzawa, Takehiro; Ohba, Hideaki
  • Ecology, Vol. 76, Issue 8
  • DOI: 10.2307/2265838

Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency
journal, June 2004


Field Measurements of Photosynthesis, Stomatal Conductance, Leaf Nitrogen and δ 13 C Along Altitudinal Gradients in Scotland
journal, January 1989

  • Friend, A. D.; Woodward, F. I.; Switsur, V. R.
  • Functional Ecology, Vol. 3, Issue 1
  • DOI: 10.2307/2389682

Heat resistance and energy budget in different Scandinavian plants
journal, January 1984


A General Model for the Light-Use Efficiency of Primary Production
journal, October 1996

  • Haxeltine, A.; Prentice, I. C.
  • Functional Ecology, Vol. 10, Issue 5
  • DOI: 10.2307/2390165

Simulated influence of altitude on photosynthetic CO2 uptake potential in plants
journal, January 1991


Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand
journal, July 1986

  • Körner, Ch.; Bannister, P.; Mark, A. F.
  • Oecologia, Vol. 69, Issue 4
  • DOI: 10.1007/BF00410366

Measurement of the universal gas-constant R using a spherical acoustic resonator
journal, March 1988

  • Moldover, M. R.; Trusler, J. P. M.; Edwards, T. J.
  • Journal of Research of the National Bureau of Standards, Vol. 93, Issue 2
  • DOI: 10.6028/jres.093.010

Coordination theory of leaf nitrogen distribution in a canopy
journal, February 1993

  • Chen, Jia-Lin; Reynolds, James F.; Harley, Peter C.
  • Oecologia, Vol. 93, Issue 1
  • DOI: 10.1007/BF00321192

Climate change in mountains: a review of elevation-dependent warming and its possible causes
journal, March 2012


Humidity and Moisture
book, January 1979


Alpine Plant Life
book, January 2003


Temperature trends at high elevations: Patterns across the globe
journal, January 2008

  • Pepin, N. C.; Lundquist, J. D.
  • Geophysical Research Letters, Vol. 35, Issue 14
  • DOI: 10.1029/2008GL034026

Reconciling the optimal and empirical approaches to modelling stomatal conductance: RECONCILING OPTIMAL AND EMPIRICAL STOMATAL MODELS
journal, January 2011


The use of ‘altitude’ in ecological research
journal, November 2007


An Introduction to Environmental Biophysics
book, January 1998


Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology
journal, November 2013

  • Prentice, I. Colin; Dong, Ning; Gleason, Sean M.
  • Ecology Letters, Vol. 17, Issue 1
  • DOI: 10.1111/ele.12211

Assessing Integrity of Weather Data for Reference Evapotranspiration Estimation
journal, March 1996


Effect of Low Concentrations of Carbon Dioxide on Photosynthesis Rates of Two Races of Oxyria
journal, June 1961


On the barometric formula
journal, May 1997

  • Berberan-Santos, Mário N.; Bodunov, Evgeny N.; Pogliani, Lionello
  • American Journal of Physics, Vol. 65, Issue 5
  • DOI: 10.1119/1.18555

Least‐Cost Input Mixtures of Water and Nitrogen for Photosynthesis
journal, January 2003

  • Wright, Ian J.; Reich, Peter B.; Westoby, Mark
  • The American Naturalist, Vol. 161, Issue 1
  • DOI: 10.1086/344920

The Coordination of Leaf Photosynthesis Links C and N Fluxes in C3 Plant Species
journal, June 2012


A global survey of carbon isotope discrimination in plants from high altitude
journal, January 1988

  • Körner, Ch.; Farquhar, G. D.; Roksandic, Z.
  • Oecologia, Vol. 74, Issue 4
  • DOI: 10.1007/BF00380063

In situ Photosynthetic Responses to Light, Temperature and Carbon Dioxide in Herbaceous Plants from Low and High Altitude
journal, January 1987

  • Korner, Ch.; Diemer, M.
  • Functional Ecology, Vol. 1, Issue 3
  • DOI: 10.2307/2389420

Thermophysical and transport properties of humid air at temperature range between 0 and 100°C
journal, May 2008


Variation in foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance?
journal, October 1990

  • Vitousek, Peter M.; Field, Christopher B.; Matson, Pamela A.
  • Oecologia, Vol. 84, Issue 3
  • DOI: 10.1007/BF00329760

Leaf macro- and micro-morphological altitudinal variability of Carpinus betulus in the Hyrcanian forest (Iran)
journal, April 2013

  • Paridari, Iman Chapolagh; Jalali, Seyed Gholamali; Sonboli, Ali
  • Journal of Forestry Research, Vol. 24, Issue 2
  • DOI: 10.1007/s11676-013-0353-x

Comparative Physiological Ecology of Arctic and Alpine Populations of Oxyria digyna
journal, January 1961

  • Mooney, H. A.; Billings, W. D.
  • Ecological Monographs, Vol. 31, Issue 1
  • DOI: 10.2307/1950744

Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects
journal, February 1997


Mountain Weather and Climate
book, January 1992


A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species
journal, June 1980

  • Farquhar, G. D.; von Caemmerer, S.; Berry, J. A.
  • Planta, Vol. 149, Issue 1
  • DOI: 10.1007/BF00386231

Some Effects of Temperature and Carbon Dioxide Concentration on Photosynthesis of Mimulus
journal, March 1959


Improved temperature response functions for models of Rubisco-limited photosynthesis
journal, February 2001


Evidence of altitudinal increase in photosynthetic capacity: gas exchange measurements at ambient and constant CO2 partial pressures
journal, January 2009

  • Bresson, Caroline C.; Kowalski, Andrew S.; Kremer, Antoine
  • Annals of Forest Science, Vol. 66, Issue 5
  • DOI: 10.1051/forest/2009027

Determination of photosynthetic parameters Vcmax and Jmax for a C3 plant (spring hulless barley) at two altitudes on the Tibetan Plateau
journal, December 2011


Carbon isotope discrimination by plants follows latitudinal and altitudinal trends
journal, September 1991

  • Körner, Ch.; Farquhar, G. D.; Wong, S. C.
  • Oecologia, Vol. 88, Issue 1
  • DOI: 10.1007/BF00328400

Impact of Lower Atmospheric Carbon Dioxide on Tropical Mountain Ecosystems
journal, November 1997


Evolutionary and Ecophysiological Responses of Mountain Plants to the Growing Season Environment
book, January 1990


Humidity and Moisture
journal, September 1962


Alpine Plant Life
journal, September 1911

  • Fuller, Geo. D.
  • Botanical Gazette, Vol. 52, Issue 3, p. 236-236
  • DOI: 10.1086/330618

Reconciling the optimal and empirical approaches to modelling stomatal conductance
journal, October 2012


Plants and Microclimate
journal, October 1984


Alpine Plant Life
book, January 2021


Humidity and moisture
journal, November 1965


Mountain weather and climate
journal, September 2009


Measurement of the universal gas constant R using a spherical acoustic resonator
journal, November 1987

  • Moldover, M. R.; Trusler, J. P. M.; Edwards, T. J.
  • The Journal of the Acoustical Society of America, Vol. 82, Issue S1
  • DOI: 10.1121/1.2024984

Plants and microclimate
journal, July 1984


Works referencing / citing this record:

Drivers of leaf carbon exchange capacity across biomes at the continental scale
journal, June 2018

  • Smith, Nicholas G.; Dukes, Jeffrey S.
  • Ecology, Vol. 99, Issue 7
  • DOI: 10.1002/ecy.2370

Tree-ring isotopes suggest atmospheric drying limits temperature–growth responses of treeline bristlecone pine
journal, May 2019


Global photosynthetic capacity is optimized to the environment
journal, January 2019

  • Smith, Nicholas G.; Keenan, Trevor F.; Colin Prentice, I.
  • Ecology Letters, Vol. 22, Issue 3
  • DOI: 10.1111/ele.13210

Comparing optimal and empirical stomatal conductance models for application in Earth system models
journal, October 2018

  • Franks, Peter J.; Bonan, Gordon B.; Berry, Joseph A.
  • Global Change Biology, Vol. 24, Issue 12
  • DOI: 10.1111/gcb.14445

Late Quaternary ecotone change between sub-alpine and montane forest zone on the leeward northern slope of Mt. Kilimanjaro
journal, May 2018

  • Montade, Vincent; Schüler, Lisa; Hemp, Andreas
  • Journal of Vegetation Science, Vol. 29, Issue 3
  • DOI: 10.1111/jvs.12639

New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis
journal, October 2017

  • Dewar, Roderick; Mauranen, Aleksanteri; Mäkelä, Annikki
  • New Phytologist, Vol. 217, Issue 2
  • DOI: 10.1111/nph.14848

Ecosystem responses to elevated CO 2 governed by plant-soil interactions and the cost of nitrogen acquisition
journal, November 2017

  • Terrer, César; Vicca, Sara; Stocker, Benjamin D.
  • New Phytologist, Vol. 217, Issue 2
  • DOI: 10.1111/nph.14872

The validity of optimal leaf traits modelled on environmental conditions
journal, October 2018

  • Bloomfield, Keith J.; Prentice, I. Colin; Cernusak, Lucas A.
  • New Phytologist, Vol. 221, Issue 3
  • DOI: 10.1111/nph.15495

Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle
journal, December 2019

  • Lavergne, Aliénor; Voelker, Steve; Csank, Adam
  • New Phytologist, Vol. 225, Issue 6
  • DOI: 10.1111/nph.16314