DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation

Abstract

Small-band-gap (E g < 2 eV) semiconductors must be stabilized for use in integrated devices that convert solar energy into the bonding energy of a reduced fuel, specifically H 2 (g) or a reduced-carbon species such as CH 3 OH or CH 4 . To sustainably and scalably complete the fuel cycle, electrons must be liberated through the oxidation of water to O 2 (g). Strongly acidic or strongly alkaline electrolytes are needed to enable efficient and intrinsically safe operation of a full solar-driven water-splitting system. But, under water-oxidation conditions, the small-band-gap semiconductors required for efficient cell operation are unstable, either dissolving or forming insulating surface oxides. Here, we describe herein recent progress in the protection of semiconductor photoanodes under such operational conditions. We specifically describe the properties of two protective overlayers, TiO 2 /Ni and NiO x , both of which have demonstrated the ability to protect otherwise unstable semiconductors for > 100 h of continuous solar-driven water oxidation when in contact with a highly alkaline aqueous electrolyte (1.0 M KOH(aq)). Furthermore, the stabilization of various semiconductor photoanodes is reviewed in the context of the electronic characteristics and a mechanistic analysis of the TiO 2 films, along with amore » discussion of the optical, catalytic, and electronic nature of NiO x films for stabilization of semiconductor photoanodes for water oxidation.« less

Authors:
 [1];  [1];  [2];  [3];  [1];  [1];  [3];  [4];  [5];  [3];  [4];  [6]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Chemistry and Chemical Engineering, Joint Center for Artificial Photosynthesis
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Chemistry and Chemical Engineering, Joint Center for Artificial Photosynthesis, Beckman Inst.
  3. California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source
  5. California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Chemistry and Chemical Engineering
  6. California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Chemistry and Chemical Engineering, Joint Center for Artificial Photosynthesis, Beckman Inst., Kavli Nanoscience Inst.
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1379158
Alternate Identifier(s):
OSTI ID: 1358892
Grant/Contract Number:  
AC02-05CH11231; SC0004993
Resource Type:
Accepted Manuscript
Journal Name:
Catalysis Today
Additional Journal Information:
Journal Volume: 262; Journal Issue: C; Journal ID: ISSN 0920-5861
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; artificial photosynthesis; photoelectrochemistry; corrosion; catalysis

Citation Formats

Lichterman, Michael F., Sun, Ke, Hu, Shu, Zhou, Xinghao, McDowell, Matthew T., Shaner, Matthew R., Richter, Matthias H., Crumlin, Ethan J., Carim, Azhar I., Saadi, Fadl H., Brunschwig, Bruce S., and Lewis, Nathan S. Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation. United States: N. p., 2015. Web. doi:10.1016/j.cattod.2015.08.017.
Lichterman, Michael F., Sun, Ke, Hu, Shu, Zhou, Xinghao, McDowell, Matthew T., Shaner, Matthew R., Richter, Matthias H., Crumlin, Ethan J., Carim, Azhar I., Saadi, Fadl H., Brunschwig, Bruce S., & Lewis, Nathan S. Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation. United States. https://doi.org/10.1016/j.cattod.2015.08.017
Lichterman, Michael F., Sun, Ke, Hu, Shu, Zhou, Xinghao, McDowell, Matthew T., Shaner, Matthew R., Richter, Matthias H., Crumlin, Ethan J., Carim, Azhar I., Saadi, Fadl H., Brunschwig, Bruce S., and Lewis, Nathan S. Sun . "Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation". United States. https://doi.org/10.1016/j.cattod.2015.08.017. https://www.osti.gov/servlets/purl/1379158.
@article{osti_1379158,
title = {Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation},
author = {Lichterman, Michael F. and Sun, Ke and Hu, Shu and Zhou, Xinghao and McDowell, Matthew T. and Shaner, Matthew R. and Richter, Matthias H. and Crumlin, Ethan J. and Carim, Azhar I. and Saadi, Fadl H. and Brunschwig, Bruce S. and Lewis, Nathan S.},
abstractNote = {Small-band-gap (E g < 2 eV) semiconductors must be stabilized for use in integrated devices that convert solar energy into the bonding energy of a reduced fuel, specifically H 2 (g) or a reduced-carbon species such as CH 3 OH or CH 4 . To sustainably and scalably complete the fuel cycle, electrons must be liberated through the oxidation of water to O 2 (g). Strongly acidic or strongly alkaline electrolytes are needed to enable efficient and intrinsically safe operation of a full solar-driven water-splitting system. But, under water-oxidation conditions, the small-band-gap semiconductors required for efficient cell operation are unstable, either dissolving or forming insulating surface oxides. Here, we describe herein recent progress in the protection of semiconductor photoanodes under such operational conditions. We specifically describe the properties of two protective overlayers, TiO 2 /Ni and NiO x , both of which have demonstrated the ability to protect otherwise unstable semiconductors for > 100 h of continuous solar-driven water oxidation when in contact with a highly alkaline aqueous electrolyte (1.0 M KOH(aq)). Furthermore, the stabilization of various semiconductor photoanodes is reviewed in the context of the electronic characteristics and a mechanistic analysis of the TiO 2 films, along with a discussion of the optical, catalytic, and electronic nature of NiO x films for stabilization of semiconductor photoanodes for water oxidation.},
doi = {10.1016/j.cattod.2015.08.017},
journal = {Catalysis Today},
number = C,
volume = 262,
place = {United States},
year = {Sun Oct 25 00:00:00 EDT 2015},
month = {Sun Oct 25 00:00:00 EDT 2015}
}

Journal Article:

Citation Metrics:
Cited by: 73 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions – A Review
journal, January 2015


Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films
journal, January 2014

  • Carim, Azhar I.; Saadi, Fadl H.; Soriaga, Manuel P.
  • J. Mater. Chem. A, Vol. 2, Issue 34
  • DOI: 10.1039/C4TA02611J

A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
journal, January 2014

  • Qiao, Jinli; Liu, Yuyu; Hong, Feng
  • Chem. Soc. Rev., Vol. 43, Issue 2
  • DOI: 10.1039/C3CS60323G

Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst
journal, January 2012

  • Seabold, Jason A.; Choi, Kyoung-Shin
  • Journal of the American Chemical Society, Vol. 134, Issue 4, p. 2186-2192
  • DOI: 10.1021/ja209001d

The n-Silicon/Thallium(III) Oxide Heterojunction Photoelectrochemical Solar Cell
journal, January 1986

  • Switzer, Jay A.
  • Journal of The Electrochemical Society, Vol. 133, Issue 4
  • DOI: 10.1149/1.2108662

BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation
journal, January 2013

  • Pilli, Satyananda Kishore; Deutsch, Todd G.; Furtak, Thomas E.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 9
  • DOI: 10.1039/c2cp44577h

Enhanced Stability and Activity for Water Oxidation in Alkaline Media with Bismuth Vanadate Photoelectrodes Modified with a Cobalt Oxide Catalytic Layer Produced by Atomic Layer Deposition
journal, November 2013

  • Lichterman, Michael F.; Shaner, Matthew R.; Handler, Sheila G.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 23
  • DOI: 10.1021/jz4022415

Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias
journal, January 2013

  • Ding, Chunmei; Shi, Jingying; Wang, Donge
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 13
  • DOI: 10.1039/c3cp50295c

Efficient BiVO 4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-doping
journal, November 2012

  • Abdi, Fatwa F.; Firet, Nienke; van de Krol, Roel
  • ChemCatChem, Vol. 5, Issue 2
  • DOI: 10.1002/cctc.201200472

Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
journal, July 2013

  • Abdi, Fatwa F.; Han, Lihao; Smets, Arno H. M.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3195

An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Hu, Shu; Xiang, Chengxiang; Haussener, Sophia
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40453f

Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
journal, January 2012

  • Haussener, Sophia; Xiang, Chengxiang; Spurgeon, Joshua M.
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee23187e

Limiting and realizable efficiencies of solar photolysis of water
journal, August 1985

  • Bolton, James R.; Strickler, Stewart J.; Connolly, John S.
  • Nature, Vol. 316, Issue 6028, p. 495-500
  • DOI: 10.1038/316495a0

Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production
journal, June 2003


H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover
journal, May 2013

  • Esposito, Daniel V.; Levin, Igor; Moffat, Thomas P.
  • Nature Materials, Vol. 12, Issue 6
  • DOI: 10.1038/nmat3626

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Photo-Electrochemical Behaviors of Semiconductor Electrodes Coated with thin Metal Films
journal, August 1975

  • Nakato, Yoshihiro; Ohnishi, Toshihiro; Tsubomura, Hiroshi
  • Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1246/cl.1975.883

Significant Efficiency Increase in Self-Driven Photoelectrochemical Cell for Water Photoelectrolysis
journal, January 1987

  • Kainthla, R. C.
  • Journal of The Electrochemical Society, Vol. 134, Issue 4
  • DOI: 10.1149/1.2100583

High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation
journal, November 2013


Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
journal, June 2011

  • Chen, Yi Wei; Prange, Jonathan D.; Dühnen, Simon
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3047

Semiconductor Electrodes: XXXIX . Techniques for Stabilization of n‐Silicon Electrodes in Aqueous Solution Photoelectrochemical Cells
journal, September 1981

  • Fan, Fu‐Ren F.; Wheeler, Bob L.; Bard, Allen J.
  • Journal of The Electrochemical Society, Vol. 128, Issue 9
  • DOI: 10.1149/1.2127794

Photoelectrolysis of water by irradiation of platinized n-type semiconducting metal oxides
journal, September 1977

  • Wrighton, Mark S.; Wolczanski, Peter T.; Ellis, Arthur B.
  • Journal of Solid State Chemistry, Vol. 22, Issue 1
  • DOI: 10.1016/0022-4596(77)90185-2

Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts
journal, September 2011


Hydrogen evolution and iodine reduction on an illuminated n-p junction silicon electrode and its application to efficient solar photoelectrolysis of hydrogen iodide
journal, September 1984

  • Nakato, Yoshihiro; Egi, Yoshihiro; Hiramoto, Masahiro
  • The Journal of Physical Chemistry, Vol. 88, Issue 19
  • DOI: 10.1021/j150663a006

Photoelectrolysis of water with TiO 2 ‐covered solar‐cell electrodes
journal, September 1976

  • Morisaki, H.; Watanabe, T.; Iwase, M.
  • Applied Physics Letters, Vol. 29, Issue 6
  • DOI: 10.1063/1.89088

Semiconductor-Based Composite Materials:  Preparation, Properties, and Performance
journal, September 2001

  • Rajeshwar, Krishnan; de Tacconi, Norma R.; Chenthamarakshan, C. R.
  • Chemistry of Materials, Vol. 13, Issue 9
  • DOI: 10.1021/cm010254z

Semiconductor Electrodes
journal, January 1982

  • Fan, F. -R. F.
  • Journal of The Electrochemical Society, Vol. 129, Issue 7
  • DOI: 10.1149/1.2124229

Electrode Materials for Hydrobromic Acid Electrolysis in Texas Instruments' Solar Chemical Converter
journal, January 1985

  • Luttmer, J. D.
  • Journal of The Electrochemical Society, Vol. 132, Issue 5
  • DOI: 10.1149/1.2114014

Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes
journal, January 2012

  • Warren, Emily L.; McKone, James R.; Atwater, Harry A.
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee23192a

High Density n-Si/n-TiO 2 Core/Shell Nanowire Arrays with Enhanced Photoactivity
journal, January 2009

  • Hwang, Yun Jeong; Boukai, Akram; Yang, Peidong
  • Nano Letters, Vol. 9, Issue 1
  • DOI: 10.1021/nl8032763

Stable Hydrogen Evolution from CdS-Modified CuGaSe 2 Photoelectrode under Visible-Light Irradiation
journal, March 2013

  • Moriya, Makoto; Minegishi, Tsutomu; Kumagai, Hiromu
  • Journal of the American Chemical Society, Vol. 135, Issue 10
  • DOI: 10.1021/ja312653y

A taxonomy for solar fuels generators
journal, January 2015

  • Nielander, Adam C.; Shaner, Matthew R.; Papadantonakis, Kimberly M.
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE02251C

Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators
journal, October 2015

  • Hu, Shu; Lewis, Nathan S.; Ager, Joel W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 43
  • DOI: 10.1021/acs.jpcc.5b05976

Protection of p + -n-Si Photoanodes by Sputter-Deposited Ir/IrO x Thin Films
journal, May 2014

  • Mei, Bastian; Seger, Brian; Pedersen, Thomas
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 11
  • DOI: 10.1021/jz500865g

One step method to produce hydrogen by a triple stack amorphous silicon solar cell
journal, July 1989

  • Lin, G. H.; Kapur, M.; Kainthla, R. C.
  • Applied Physics Letters, Vol. 55, Issue 4
  • DOI: 10.1063/1.101879

One chip photovoltaic water electrolysis device
journal, November 2003


Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting
journal, September 2006


Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst
journal, June 2011

  • Pijpers, J. J. H.; Winkler, M. T.; Surendranath, Y.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 25
  • DOI: 10.1073/pnas.1106545108

Photoassisted Overall Water Splitting in a Visible Light-Absorbing Dye-Sensitized Photoelectrochemical Cell
journal, January 2009

  • Youngblood, W. Justin; Lee, Seung-Hyun Anna; Kobayashi, Yoji
  • Journal of the American Chemical Society, Vol. 131, Issue 3, p. 926-927
  • DOI: 10.1021/ja809108y

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
journal, October 1991

  • O'Regan, Brian; Grätzel, Michael
  • Nature, Vol. 353, Issue 6346, p. 737-740
  • DOI: 10.1038/353737a0

Titanium dioxide (TiO 2 )-based gate insulators
journal, May 1999

  • Campbell, S. A.; Kim, H. -S.; Gilmer, D. C.
  • IBM Journal of Research and Development, Vol. 43, Issue 3
  • DOI: 10.1147/rd.433.0383

Stabilization of n-cadmium telluride photoanodes for water oxidation to O 2 (g) in aqueous alkaline electrolytes using amorphous TiO 2 films formed by atomic-layer deposition
journal, January 2014

  • Lichterman, Michael F.; Carim, Azhar I.; McDowell, Matthew T.
  • Energy Environ. Sci., Vol. 7, Issue 10
  • DOI: 10.1039/C4EE01914H

Stabilization of Si microwire arrays for solar-driven H 2 O oxidation to O 2 (g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO 2
journal, January 2015

  • Shaner, Matthew R.; Hu, Shu; Sun, Ke
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE03012E

(Invited) Investigation of the Si/TiO2/Electrolyte Interface Using Operando Tender X-ray Photoelectron Spectroscopy
journal, April 2015


Protection of n-Si Photoanode against Photocorrosion in Photoelectrochemical Cell for Water Electrolysis
journal, January 1986

  • Kainthla, R. C.
  • Journal of The Electrochemical Society, Vol. 133, Issue 2
  • DOI: 10.1149/1.2108556

Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition
journal, March 2013

  • Strandwitz, Nicholas C.; Comstock, David J.; Grimm, Ronald L.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 10
  • DOI: 10.1021/jp311207x

High Photocurrent in Silicon Photoanodes Catalyzed by Iron Oxide Thin Films for Water Oxidation
journal, November 2011

  • Jun, Kimin; Lee, Yun Seog; Buonassisi, Tonio
  • Angewandte Chemie International Edition, Vol. 51, Issue 2
  • DOI: 10.1002/anie.201104367

Nickel oxide functionalized silicon for efficient photo-oxidation of water
journal, January 2012

  • Sun, Ke; Park, Namseok; Sun, Zhelin
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21708b

Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes
journal, September 2014

  • Mei, Bastian; Permyakova, Anastasia A.; Frydendal, Rasmus
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 20
  • DOI: 10.1021/jz501872k

Stable Solar-Driven Water Oxidation to O 2 (g) by Ni-Oxide-Coated Silicon Photoanodes
journal, January 2015

  • Sun, Ke; McDowell, Matthew T.; Nielander, Adam C.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 4
  • DOI: 10.1021/jz5026195

Metal Oxide Composite Enabled Nanotextured Si Photoanode for Efficient Solar Driven Water Oxidation
journal, April 2013

  • Sun, Ke; Pang, Xiaolu; Shen, Shaohua
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400343a

Photoelectrochemical characteristics of metal-modified epitaxial n-Si anodes
journal, July 1987

  • Li, Guozheng; Wang, Shixun
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 227, Issue 1-2
  • DOI: 10.1016/0022-0728(87)80076-1

Enabling Silicon for Solar-Fuel Production
journal, January 2014

  • Sun, Ke; Shen, Shaohua; Liang, Yongqi
  • Chemical Reviews, Vol. 114, Issue 17
  • DOI: 10.1021/cr300459q

Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices
journal, January 2014

  • Döscher, H.; Geisz, J. F.; Deutsch, T. G.
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01753F

An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts
journal, March 2013

  • Trotochaud, Lena; Mills, Thomas J.; Boettcher, Shannon W.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 6
  • DOI: 10.1021/jz4002604

Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
journal, April 2014

  • Trotochaud, Lena; Young, Samantha L.; Ranney, James K.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja502379c

Photoelectrochemical corrosion as influenced by an oxide layer
journal, December 1980

  • Madou, Marc J.; Frese, Karl W.; Morrison, S. Roy
  • The Journal of Physical Chemistry, Vol. 84, Issue 25
  • DOI: 10.1021/j100462a022

Bias-Dependent Etching of Silicon in Aqueous KOH
journal, January 1985

  • Glembocki, Orest J.
  • Journal of The Electrochemical Society, Vol. 132, Issue 1
  • DOI: 10.1149/1.2113750

Study of the Etch-Stop Mechanism in Silicon
journal, January 1982

  • Palik, E. D.
  • Journal of The Electrochemical Society, Vol. 129, Issue 9
  • DOI: 10.1149/1.2124367

The Effects of Surface Treatment for ZnS:Ag,Cl Using a Combination of Stirring and Ultrasonication in KOH Solutions
journal, January 2004

  • Lee, Dong Chin; Bukesov, Sergey A.; Lee, Sora
  • Journal of The Electrochemical Society, Vol. 151, Issue 11
  • DOI: 10.1149/1.1805525

Study of Bias‐Dependent Etching of Si in Aqueous  KOH 
journal, February 1987

  • Palik, E. D.; Glembocki, O. J.; Heard, I.
  • Journal of The Electrochemical Society, Vol. 134, Issue 2
  • DOI: 10.1149/1.2100468

Works referencing / citing this record:

Computation of Electronic Energy Band Diagrams for Piezotronic Semiconductor and Electrochemical Systems
journal, January 2018

  • German, Lazarus N.; Starr, Matthew B.; Wang, Xudong
  • Advanced Electronic Materials, Vol. 4, Issue 3
  • DOI: 10.1002/aelm.201700395

Operando electrochemical study of charge carrier processes in water splitting photoanodes protected by atomic layer deposited TiO 2
journal, January 2019

  • Cui, Wei; Moehl, Thomas; Siol, Sebastian
  • Sustainable Energy & Fuels, Vol. 3, Issue 11
  • DOI: 10.1039/c9se00399a

Passivation layers for nanostructured photoanodes: ultra-thin oxides on InGaN nanowires
journal, January 2018

  • Neuderth, P.; Hille, P.; Schörmann, J.
  • Journal of Materials Chemistry A, Vol. 6, Issue 2
  • DOI: 10.1039/c7ta08071a

Tin Oxide as a Protective Heterojunction with Silicon for Efficient Photoelectrochemical Water Oxidation in Strongly Acidic or Alkaline Electrolytes
journal, July 2018

  • Moreno-Hernandez, Ivan A.; Brunschwig, Bruce S.; Lewis, Nathan S.
  • Advanced Energy Materials, Vol. 8, Issue 24
  • DOI: 10.1002/aenm.201801155

Silicon based photoelectrodes for photoelectrochemical water splitting
journal, January 2019

  • Fan, Ronglei; Mi, Zetian; Shen, Mingrong
  • Optics Express, Vol. 27, Issue 4
  • DOI: 10.1364/oe.27.000a51

Efficiency and stability of narrow-gap semiconductor-based photoelectrodes
journal, January 2019

  • Zheng, Jianyun; Zhou, Huaijuan; Zou, Yuqin
  • Energy & Environmental Science, Vol. 12, Issue 8
  • DOI: 10.1039/c9ee00524b

Core–shell structured titanium dioxide nanomaterials for solar energy utilization
journal, January 2018

  • Li, Wei; Elzatahry, Ahmed; Aldhayan, Dhaifallah
  • Chemical Society Reviews, Vol. 47, Issue 22
  • DOI: 10.1039/c8cs00443a

Kinetic Competition between Water‐Splitting and Photocorrosion Reactions in Photoelectrochemical Devices
journal, November 2018


Degradation in photoelectrochemical devices: review with an illustrative case study
journal, February 2017

  • Nandjou, Fredy; Haussener, Sophia
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 12
  • DOI: 10.1088/1361-6463/aa5b11

Carbon-Based Photocathode Materials for Solar Hydrogen Production
journal, September 2018

  • Bellani, Sebastiano; Antognazza, Maria Rosa; Bonaccorso, Francesco
  • Advanced Materials, Vol. 31, Issue 9
  • DOI: 10.1002/adma.201801446

A porous Ni-O/Ni/Si photoanode for stable and efficient photoelectrochemical water splitting
journal, January 2019

  • Huang, Guanping; Fan, Ronglei; Zhou, Xiaoxue
  • Chemical Communications, Vol. 55, Issue 3
  • DOI: 10.1039/c8cc08146h

Data-driven material discovery for photocatalysis: a short review
journal, July 2018


Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics
journal, January 2016

  • Shen, Shaohua; Lindley, Sarah A.; Chen, Xiangyan
  • Energy & Environmental Science, Vol. 9, Issue 9
  • DOI: 10.1039/c6ee01845a

Single-crystal silicon-based electrodes for unbiased solar water splitting: current status and prospects
journal, January 2019

  • Luo, Zhibin; Wang, Tuo; Gong, Jinlong
  • Chemical Society Reviews, Vol. 48, Issue 7
  • DOI: 10.1039/c8cs00638e

Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid
journal, January 2017

  • Huynh, Michael; Ozel, Tuncay; Liu, Chong
  • Chemical Science, Vol. 8, Issue 7
  • DOI: 10.1039/c7sc01239j

Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry
journal, January 2017

  • Laskowski, Forrest A. L.; Nellist, Michael R.; Venkatkarthick, Radhakrishnan
  • Energy & Environmental Science, Vol. 10, Issue 2
  • DOI: 10.1039/c6ee03505a

Degradation and regeneration mechanisms of NiO protective layers deposited by ALD on photoanodes
journal, January 2019

  • Ros, Carles; Andreu, Teresa; David, Jérémy
  • Journal of Materials Chemistry A, Vol. 7, Issue 38
  • DOI: 10.1039/c9ta08638b

Monolithic Photoelectrochemical Device for 19% Direct Water Splitting
text, January 2017