DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of ionization-induced electron injection in a wakefield driven by laser inside a gas cell

Abstract

Ionization-induced electron injection was investigated experimentally by focusing a driving laser pulse with a maximum normalized potential of 1.2 at different positions along the plasma density profile inside a gas cell, filled with a gas mixture composed of 99%H2+1%N2. Changing the laser focus position relative to the gas cell entrance controls the accelerated electron bunch properties, such as the spectrum width, maximum energy, and accelerated charge. Simulations performed using the 3D particle-in-cell code WARP with a realistic density profile give results that are in good agreement with the experimental ones. Lastly, we discuss the interest of this regime for optimizing the bunch charge in a selected energy window.

Authors:
 [1]; ORCiD logo [2];  [1];  [1];  [1];  [3];  [4];  [4];  [2];  [2];  [2];  [3]; ORCiD logo [3];  [2];  [2];  [1]
  1. Univ. Paris-Sud, Orsay (France). Lab. de Physique des Gaz et des Plasmas, CNRS
  2. Lund Univ. (Sweden). Dept. of Physics
  3. Univ. Paris-Saclay, Gif-sur-Yvette (France); Alternative Energies and Atomic Energy Commission (CEA), Saclay (France). Lab. Interactions, Dynamique et Lasers (LIDyL)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); Swedish Research Council (SRC)
OSTI Identifier:
1379064
Alternate Identifier(s):
OSTI ID: 1238203
Grant/Contract Number:  
AC02-05CH11231; 2012-032TELISA; 284464; 312453
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 2; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Focal points; Charge injection; Plasma waves; Particle-in-cell method; Electric fields

Citation Formats

Audet, T. L., Hansson, M., Lee, P., Desforges, F. G., Maynard, G., Dobosz Dufrénoy, S., Lehe, R., Vay, J. -L., Aurand, B., Persson, A., Gallardo González, I., Maitrallain, A., Monot, P., Wahlström, C. -G., Lundh, O., and Cros, B. Investigation of ionization-induced electron injection in a wakefield driven by laser inside a gas cell. United States: N. p., 2016. Web. doi:10.1063/1.4942033.
Audet, T. L., Hansson, M., Lee, P., Desforges, F. G., Maynard, G., Dobosz Dufrénoy, S., Lehe, R., Vay, J. -L., Aurand, B., Persson, A., Gallardo González, I., Maitrallain, A., Monot, P., Wahlström, C. -G., Lundh, O., & Cros, B. Investigation of ionization-induced electron injection in a wakefield driven by laser inside a gas cell. United States. https://doi.org/10.1063/1.4942033
Audet, T. L., Hansson, M., Lee, P., Desforges, F. G., Maynard, G., Dobosz Dufrénoy, S., Lehe, R., Vay, J. -L., Aurand, B., Persson, A., Gallardo González, I., Maitrallain, A., Monot, P., Wahlström, C. -G., Lundh, O., and Cros, B. Tue . "Investigation of ionization-induced electron injection in a wakefield driven by laser inside a gas cell". United States. https://doi.org/10.1063/1.4942033. https://www.osti.gov/servlets/purl/1379064.
@article{osti_1379064,
title = {Investigation of ionization-induced electron injection in a wakefield driven by laser inside a gas cell},
author = {Audet, T. L. and Hansson, M. and Lee, P. and Desforges, F. G. and Maynard, G. and Dobosz Dufrénoy, S. and Lehe, R. and Vay, J. -L. and Aurand, B. and Persson, A. and Gallardo González, I. and Maitrallain, A. and Monot, P. and Wahlström, C. -G. and Lundh, O. and Cros, B.},
abstractNote = {Ionization-induced electron injection was investigated experimentally by focusing a driving laser pulse with a maximum normalized potential of 1.2 at different positions along the plasma density profile inside a gas cell, filled with a gas mixture composed of 99%H2+1%N2. Changing the laser focus position relative to the gas cell entrance controls the accelerated electron bunch properties, such as the spectrum width, maximum energy, and accelerated charge. Simulations performed using the 3D particle-in-cell code WARP with a realistic density profile give results that are in good agreement with the experimental ones. Lastly, we discuss the interest of this regime for optimizing the bunch charge in a selected energy window.},
doi = {10.1063/1.4942033},
journal = {Physics of Plasmas},
number = 2,
volume = 23,
place = {United States},
year = {Tue Feb 16 00:00:00 EST 2016},
month = {Tue Feb 16 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Laser Electron Accelerator
journal, July 1979


Particle injection into the wave acceleration phase due to nonlinear wake wave breaking
journal, November 1998


Plasma-Density-Gradient Injection of Low Absolute-Momentum-Spread Electron Bunches
journal, May 2008


Dynamics of ionization-induced electron injection in the high density regime of laser wakefield acceleration
journal, December 2014

  • Desforges, F. G.; Paradkar, B. S.; Hansson, M.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4903845

Enhanced stability of laser wakefield acceleration using dielectric capillary tubes
journal, March 2014

  • Hansson, M.; Senje, L.; Persson, A.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 17, Issue 3
  • DOI: 10.1103/PhysRevSTAB.17.031303

Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases
journal, March 2006

  • Chen, Min; Sheng, Zheng-Ming; Ma, Yan-Yun
  • Journal of Applied Physics, Vol. 99, Issue 5
  • DOI: 10.1063/1.2179194

Laser wakefield acceleration using wire produced double density ramps
journal, January 2013

  • Burza, M.; Gonoskov, A.; Svensson, K.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 16, Issue 1
  • DOI: 10.1103/PhysRevSTAB.16.011301

Absolute charge calibration of scintillating screens for relativistic electron detection
journal, March 2010

  • Buck, A.; Zeil, K.; Popp, A.
  • Review of Scientific Instruments, Vol. 81, Issue 3
  • DOI: 10.1063/1.3310275

Electron Injection into Plasma Wakefields by Colliding Laser Pulses
journal, October 1997


Novel methods in the Particle-In-Cell accelerator Code-Framework Warp
journal, January 2012


Particle-in-Cell modelling of laser–plasma interaction using Fourier decomposition
journal, March 2009

  • Lifschitz, A. F.; Davoine, X.; Lefebvre, E.
  • Journal of Computational Physics, Vol. 228, Issue 5
  • DOI: 10.1016/j.jcp.2008.11.017

Theory of ionization-induced trapping in laser-plasma accelerators
journal, March 2012

  • Chen, M.; Esarey, E.; Schroeder, C. B.
  • Physics of Plasmas, Vol. 19, Issue 3
  • DOI: 10.1063/1.3689922

Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime
journal, June 2007


Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced Injection
journal, September 2010


Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses
journal, December 2006


Ionization Induced Trapping in a Laser Wakefield Accelerator
journal, January 2010


Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes
journal, January 2010


Reproducibility of electron beams from laser wakefield acceleration in capillary tubes
journal, March 2014

  • Desforges, F. G.; Hansson, M.; Ju, J.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 740
  • DOI: 10.1016/j.nima.2013.10.062

Characterization of temporal and spatial distribution of hydrogen gas density in capillary tubes for laser-plasma experiments
journal, December 2012

  • Ju, J.; Cros, B.
  • Journal of Applied Physics, Vol. 112, Issue 11
  • DOI: 10.1063/1.4768209

Demonstration of a Narrow Energy Spread, 0.5 GeV Electron Beam from a Two-Stage Laser Wakefield Accelerator
journal, July 2011


Generation of Stable, Low-Divergence Electron Beams by Laser-Wakefield Acceleration in a Steady-State-Flow Gas Cell
journal, August 2008


Nonadiabatic tunnel ionization: Looking inside a laser cycle
journal, June 2001


Works referencing / citing this record:

The resonant multi-pulse ionization injection
journal, October 2017

  • Tomassini, Paolo; De Nicola, Sergio; Labate, Luca
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.5000696

Simulation study of ionization-induced injection in sub-terawatt laser wakefield acceleration
journal, January 2020

  • Lin, M. -W.; Hsieh, C. -Y.; Tran, D. K.
  • Physics of Plasmas, Vol. 27, Issue 1
  • DOI: 10.1063/1.5129483

Improved performance of laser wakefield acceleration by tailored self-truncated ionization injection
journal, March 2018

  • Irman, A.; Couperus, J. P.; Debus, A.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 4
  • DOI: 10.1088/1361-6587/aaaef1

High-quality 5 GeV electron bunches with resonant multi-pulse ionization injection
journal, October 2019

  • Tomassini, P.; Terzani, D.; Baffigi, F.
  • Plasma Physics and Controlled Fusion, Vol. 62, Issue 1
  • DOI: 10.1088/1361-6587/ab45c5

COXINEL transport of laser plasma accelerated electrons
journal, January 2020

  • Espinos, Driss Oumbarek; Ghaith, Amin; Loulergue, Alexandre
  • Plasma Physics and Controlled Fusion, Vol. 62, Issue 3
  • DOI: 10.1088/1361-6587/ab5fec

Optimization of laser-plasma injector via beam loading effects using ionization-induced injection
journal, May 2018


Skew Quadrupole Effect of Laser Plasma Electron Beam Transport
journal, June 2019

  • Oumbarek Espinos, Driss; Ghaith, Amin; André, Thomas
  • Applied Sciences, Vol. 9, Issue 12
  • DOI: 10.3390/app9122447

The REsonant Multi-Pulse Ionization injection
text, January 2017