DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The nucleotide-dependent interaction of FlaH and FlaI is essential for assembly and function of the archaellum motor

Abstract

The motor of the membrane-anchored archaeal motility structure, the archaellum, contains FlaX, FlaI and FlaH. FlaX forms a 30 nm ring structure that acts as a scaffold protein and was shown to interact with the bifunctional ATPase FlaI and FlaH. However, the structure and function of FlaH has been enigmatic. Here we present structural and functional analyses of isolated FlaH and archaellum motor subcomplexes. The FlaH crystal structure reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATP in vitro, but ATP binding to FlaH is essential for its interaction with FlaI and for archaellum assembly. FlaH interacts with the C-terminus of FlaX, which was earlier shown to be essential for FlaX ring formation and to mediate interaction with FlaI. Electron microscopy reveals that FlaH assembles as a second ring inside the FlaX ring in vitro. Collectively these data reveal central structural mechanisms for FlaH interactions in mediating archaellar assembly: FlaH binding within the FlaX ring and nucleotide-regulated FlaH binding to FlaI form the archaellar basal body core.

Authors:
 [1];  [1];  [2];  [3];  [4];  [1];  [4];  [2];  [1];  [5];  [2];  [1]
  1. Univ. of Freiburg (Germany)
  2. Max Planck Inst. of Biophysics, Frankfurt (Germany)
  3. Philipps Univ. of Marburg (Germany)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Texas M. D. Anderson Cancer Center, Houston, TX (United States)
Publication Date:
Research Org.:
Univ. of Freiburg (Germany); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE; National Inst. of Health (NIH) (United States); Max Planck Society (Germany); European Research Council (ERC)
OSTI Identifier:
1378738
Grant/Contract Number:  
AC02-05CH11231; GM105404; 311523
Resource Type:
Accepted Manuscript
Journal Name:
Molecular Microbiology
Additional Journal Information:
Journal Volume: 99; Journal Issue: 4; Journal ID: ISSN 0950-382X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Chaudhury, Paushali, Neiner, Tomasz, D'Imprima, Edoardo, Banerjee, Ankan, Reindl, Sophia, Ghosh, Abhrajyoti, Arvai, Andrew S., Mills, Deryck J., van der Does, Chris, Tainer, John A., Vonck, Janet, and Albers, Sonja-Verena. The nucleotide-dependent interaction of FlaH and FlaI is essential for assembly and function of the archaellum motor. United States: N. p., 2015. Web. doi:10.1111/mmi.13260.
Chaudhury, Paushali, Neiner, Tomasz, D'Imprima, Edoardo, Banerjee, Ankan, Reindl, Sophia, Ghosh, Abhrajyoti, Arvai, Andrew S., Mills, Deryck J., van der Does, Chris, Tainer, John A., Vonck, Janet, & Albers, Sonja-Verena. The nucleotide-dependent interaction of FlaH and FlaI is essential for assembly and function of the archaellum motor. United States. https://doi.org/10.1111/mmi.13260
Chaudhury, Paushali, Neiner, Tomasz, D'Imprima, Edoardo, Banerjee, Ankan, Reindl, Sophia, Ghosh, Abhrajyoti, Arvai, Andrew S., Mills, Deryck J., van der Does, Chris, Tainer, John A., Vonck, Janet, and Albers, Sonja-Verena. Wed . "The nucleotide-dependent interaction of FlaH and FlaI is essential for assembly and function of the archaellum motor". United States. https://doi.org/10.1111/mmi.13260. https://www.osti.gov/servlets/purl/1378738.
@article{osti_1378738,
title = {The nucleotide-dependent interaction of FlaH and FlaI is essential for assembly and function of the archaellum motor},
author = {Chaudhury, Paushali and Neiner, Tomasz and D'Imprima, Edoardo and Banerjee, Ankan and Reindl, Sophia and Ghosh, Abhrajyoti and Arvai, Andrew S. and Mills, Deryck J. and van der Does, Chris and Tainer, John A. and Vonck, Janet and Albers, Sonja-Verena},
abstractNote = {The motor of the membrane-anchored archaeal motility structure, the archaellum, contains FlaX, FlaI and FlaH. FlaX forms a 30 nm ring structure that acts as a scaffold protein and was shown to interact with the bifunctional ATPase FlaI and FlaH. However, the structure and function of FlaH has been enigmatic. Here we present structural and functional analyses of isolated FlaH and archaellum motor subcomplexes. The FlaH crystal structure reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATP in vitro, but ATP binding to FlaH is essential for its interaction with FlaI and for archaellum assembly. FlaH interacts with the C-terminus of FlaX, which was earlier shown to be essential for FlaX ring formation and to mediate interaction with FlaI. Electron microscopy reveals that FlaH assembles as a second ring inside the FlaX ring in vitro. Collectively these data reveal central structural mechanisms for FlaH interactions in mediating archaellar assembly: FlaH binding within the FlaX ring and nucleotide-regulated FlaH binding to FlaI form the archaellar basal body core.},
doi = {10.1111/mmi.13260},
journal = {Molecular Microbiology},
number = 4,
volume = 99,
place = {United States},
year = {Wed Oct 28 00:00:00 EDT 2015},
month = {Wed Oct 28 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding
journal, July 2011

  • Ghosh, Abhrajyoti; Hartung, Sophia; van der Does, Chris
  • Biochemical Journal, Vol. 437, Issue 1, p. 43-52
  • DOI: 10.1042/BJ20110410

The surprisingly diverse ways that prokaryotes move
journal, May 2008

  • Jarrell, Ken F.; McBride, Mark J.
  • Nature Reviews Microbiology, Vol. 6, Issue 6
  • DOI: 10.1038/nrmicro1900

Type IV pilus structure and bacterial pathogenicity
journal, May 2004

  • Craig, Lisa; Pique, Michael E.; Tainer, John A.
  • Nature Reviews Microbiology, Vol. 2, Issue 5
  • DOI: 10.1038/nrmicro885

Crystal structure of KaiC-like protein PH0186 from hyperthermophilic archaea Pyrococcus horikoshii OT3
journal, June 2009

  • Kang, Hee-Jin; Kubota, Keiko; Ming, Hua
  • Proteins: Structure, Function, and Bioinformatics, Vol. 75, Issue 4
  • DOI: 10.1002/prot.22367

Crystal Structure of Archaeal Recombinase RadA
journal, August 2004


EMAN2: An extensible image processing suite for electron microscopy
journal, January 2007

  • Tang, Guang; Peng, Liwei; Baldwin, Philip R.
  • Journal of Structural Biology, Vol. 157, Issue 1
  • DOI: 10.1016/j.jsb.2006.05.009

Dali server: conservation mapping in 3D
journal, May 2010

  • Holm, Liisa; Rosenstr�m, P�ivi
  • Nucleic Acids Research, Vol. 38, Issue suppl_2
  • DOI: 10.1093/nar/gkq366

Archaeal Homolog of Bacterial Type IV Prepilin Signal Peptidases with Broad Substrate Specificity
journal, July 2003


A New Generation of the IMAGIC Image Processing System
journal, January 1996

  • van Heel, Marin; Harauz, George; Orlova, Elena V.
  • Journal of Structural Biology, Vol. 116, Issue 1
  • DOI: 10.1006/jsbi.1996.0004

The archaellum: how archaea swim
journal, January 2015


Molecular analysis of the crenarchaeal flagellum: Analysis of crenarchaeal flagella
journal, November 2011


Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives
journal, November 2014

  • Berry, Jamie-Lee; Pelicic, Vladimir
  • FEMS Microbiology Reviews, Vol. 39, Issue 1
  • DOI: 10.1093/femsre/fuu001

An improved assay for nanomole amounts of inorganic phosphate
journal, November 1979


Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella
journal, November 2003


Insights into FlaI Functions in Archaeal Motor Assembly and Motility from Structures, Conformations, and Genetics
journal, March 2013


PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

AAA+ proteins: have engine, will work
journal, July 2005

  • Hanson, Phyllis I.; Whiteheart, Sidney W.
  • Nature Reviews Molecular Cell Biology, Vol. 6, Issue 7
  • DOI: 10.1038/nrm1684

Insights into subunit interactions in the Sulfolobus acidocaldarius archaellum cytoplasmic complex
journal, October 2013

  • Banerjee, Ankan; Neiner, Tomasz; Tripp, Patrick
  • FEBS Journal, Vol. 280, Issue 23
  • DOI: 10.1111/febs.12534

Purification, crystallization and preliminary X-ray crystallographic analysis of the flagellar accessory protein FlaH from the methanogenic archaeon Methanocaldococcus jannaschii
journal, October 2014

  • Meshcheryakov, Vladimir A.; Yoon, Young-Ho; Matsunami, Hideyuki
  • Acta Crystallographica Section F Structural Biology Communications, Vol. 70, Issue 11
  • DOI: 10.1107/S2053230X14019980

FlaX, A Unique Component of the Crenarchaeal Archaellum, Forms Oligomeric Ring-shaped Structures and Interacts with the Motor ATPase FlaI
journal, November 2012

  • Banerjee, Ankan; Ghosh, Abhrajyoti; Mills, Deryck J.
  • Journal of Biological Chemistry, Vol. 287, Issue 52
  • DOI: 10.1074/jbc.M112.414383

Assembly and function of the archaeal flagellum
journal, January 2011

  • Ghosh, Abhrajyoti; Albers, Sonja-Verena
  • Biochemical Society Transactions, Vol. 39, Issue 1
  • DOI: 10.1042/BST0390064

The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum: fla gene cluster in H. salinarum
journal, August 2001


Haloferax volcanii Flagella Are Required for Motility but Are Not Involved in PibD-Dependent Surface Adhesion
journal, April 2010

  • Tripepi, Manuela; Imam, Saheed; Pohlschröder, Mechthild
  • Journal of Bacteriology, Vol. 192, Issue 12
  • DOI: 10.1128/JB.00133-10

The archaellum: an old motility structure with a new name
journal, July 2012


Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures
journal, November 2012


FlaF Is a β-Sandwich Protein that Anchors the Archaellum in the Archaeal Cell Envelope by Binding the S-Layer Protein
journal, May 2015


Insertional inactivation of the flaH gene in the archaeon Methanococcus voltae results in non-flagellated cells
journal, June 2001

  • Thomas, N. A.; Pawson, C. T.; Jarrell, K. F.
  • Molecular Genetics and Genomics, Vol. 265, Issue 4
  • DOI: 10.1007/s004380100451

[20] Processing of X-ray diffraction data collected in oscillation mode
book, January 1997


Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius: The adhesive type IV pilus of S. acidocaldarius
journal, October 2012


Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

EMAN: Semiautomated Software for High-Resolution Single-Particle Reconstructions
journal, December 1999

  • Ludtke, Steven J.; Baldwin, Philip R.; Chiu, Wah
  • Journal of Structural Biology, Vol. 128, Issue 1
  • DOI: 10.1006/jsbi.1999.4174

Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2
journal, September 2003


Works referencing / citing this record:

Salt‐dependent regulation of archaellins in Haloarcula marismortui
journal, October 2018

  • Syutkin, Alexey S.; Wolferen, Marleen; Surin, Alexey K.
  • MicrobiologyOpen, Vol. 8, Issue 5
  • DOI: 10.1002/mbo3.718

Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum
journal, August 2016


The structure of the periplasmic FlaG–FlaF complex and its essential role for archaellar swimming motility
journal, December 2019

  • Tsai, Chi-Lin; Tripp, Patrick; Sivabalasarma, Shamphavi
  • Nature Microbiology, Vol. 5, Issue 1
  • DOI: 10.1038/s41564-019-0622-3

Motor torque measurement of Halobacterium salinarum archaellar suggests a general model for ATP-driven rotary motors
journal, May 2019


Taxis in archaea
journal, November 2018

  • Quax, Tessa E. F.; Albers, Sonja-Verena; Pfeiffer, Friedhelm
  • Emerging Topics in Life Sciences, Vol. 2, Issue 4
  • DOI: 10.1042/etls20180089

Archaeal cell surface biogenesis
journal, June 2018

  • Pohlschroder, Mechthild; Pfeiffer, Friedhelm; Schulze, Stefan
  • FEMS Microbiology Reviews, Vol. 42, Issue 5
  • DOI: 10.1093/femsre/fuy027

Structure of the archaeal chemotaxis protein CheY in a domain-swapped dimeric conformation
journal, August 2019

  • Paithankar, Karthik Shivaji; Enderle, Mathias; Wirthensohn, David C.
  • Acta Crystallographica Section F Structural Biology Communications, Vol. 75, Issue 9
  • DOI: 10.1107/s2053230x19010896

Tree of motility – A proposed history of motility systems in the tree of life
journal, January 2020

  • Miyata, Makoto; Robinson, Robert C.; Uyeda, Taro Q. P.
  • Genes to Cells, Vol. 25, Issue 1
  • DOI: 10.1111/gtc.12737

Versatile cell surface structures of archaea: Cell surface structures of archaea
journal, December 2017

  • Chaudhury, Paushali; Quax, Tessa E. F.; Albers, Sonja-Verena
  • Molecular Microbiology, Vol. 107, Issue 3
  • DOI: 10.1111/mmi.13889

Recent Advances and Future Prospects in Bacterial and Archaeal Locomotion and Signal Transduction
journal, May 2017

  • Bardy, Sonia L.; Briegel, Ariane; Rainville, Simon
  • Journal of Bacteriology, Vol. 199, Issue 18
  • DOI: 10.1128/jb.00203-17

Evolution of the Stator Elements of Rotary Prokaryote Motors
journal, October 2019

  • Lai, Yu-Wen; Ridone, Pietro; Peralta, Gonzalo
  • Journal of Bacteriology, Vol. 202, Issue 3
  • DOI: 10.1128/jb.00557-19

Twitch or swim: towards the understanding of prokaryotic motion based on the type IV pilus blueprint
journal, June 2018


Diversity and Evolution of Type IV pili Systems in Archaea
journal, May 2016

  • Makarova, Kira S.; Koonin, Eugene V.; Albers, Sonja-Verena
  • Frontiers in Microbiology, Vol. 7
  • DOI: 10.3389/fmicb.2016.00667

Structure and in situ organisation of the Pyrococcus furiosus archaellum machinery
journal, June 2017


Structure of the archaeal chemotaxis protein CheY in a domain-swapped dimeric conformation
text, January 2019

  • Paithankar, Karthik Shivaji; Enderle, Mathias; Wirthensohn, David C.
  • FID GEO
  • DOI: 10.23689/fidgeo-4709

Structure and in situ organisation of the Pyrococcus furiosus archaellum machinery
text, January 2017

  • Daum, Bertram; Vonck, Janet; Bellack, Annett
  • Universität Regensburg
  • DOI: 10.5283/epub.37469

Salt‐dependent regulation of archaellins in Haloarcula marismortui
journal, October 2018

  • Syutkin, Alexey S.; Wolferen, Marleen; Surin, Alexey K.
  • MicrobiologyOpen, Vol. 8, Issue 5
  • DOI: 10.1002/mbo3.718

Archaeal cell surface biogenesis
journal, June 2018

  • Pohlschroder, Mechthild; Pfeiffer, Friedhelm; Schulze, Stefan
  • FEMS Microbiology Reviews, Vol. 42, Issue 5
  • DOI: 10.1093/femsre/fuy027

Tree of motility – A proposed history of motility systems in the tree of life
journal, January 2020

  • Miyata, Makoto; Robinson, Robert C.; Uyeda, Taro Q. P.
  • Genes to Cells, Vol. 25, Issue 1
  • DOI: 10.1111/gtc.12737

Cross-kymography analysis to simultaneously quantify the function and morphology of the archaellum
journal, January 2018


Diversity and Evolution of Type IV pili Systems in Archaea
journal, May 2016

  • Makarova, Kira S.; Koonin, Eugene V.; Albers, Sonja-Verena
  • Frontiers in Microbiology, Vol. 7
  • DOI: 10.3389/fmicb.2016.00667