DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

Abstract

Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

Authors:
 [1];  [2];  [3];  [4];  [2];  [5];  [3];  [6];  [3];  [5];  [5];  [2];  [7];  [8];  [8];  [8];  [9];  [10];  [11];  [12] more »;  [3];  [3];  [4];  [3];  [2] « less
  1. Univ. of Cambridge (United Kingdom); Univ. College Cork (Ireland)
  2. Univ. of Cambridge (United Kingdom)
  3. Univ. of Helsinki (Finland)
  4. Univ. College Cork (Ireland)
  5. Univ. of Helsinki (Finland); Hyytiala Forestry Field Station (Finland)
  6. Univ. College Cork (Ireland); Leibniz Inst. for Tropospheric Research (ITR), Leipzig (Germany)
  7. Univ. of Cambridge (United Kingdom); Cranfield Univ. (United Kingdom)
  8. Forschungszentrum Julich (Germany)
  9. Weizmann Inst. of Science, Rehovot (Israel)
  10. Univ. of Gothenburg (Sweden)
  11. Inst. Pierre Simon Laplace, Creteil (France)
  12. Ghent Univ. (Belgium); Univ. of Antwerp (Belgium)
Publication Date:
Research Org.:
ARM Climate Research Facility, Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1378562
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Kourtchev, Ivan, Giorio, Chiara, Manninen, Antti, Wilson, Eoin, Mahon, Brendan, Aalto, Juho, Kajos, Maija, Venables, Dean, Ruuskanen, Taina, Levula, Janne, Loponen, Matti, Connors, Sarah, Harris, Neil, Zhao, Defeng, Kiendler-Scharr, Astrid, Mentel, Thomas, Rudich, Yinon, Hallquist, Mattias, Doussin, Jean-Francois, Maenhaut, Willy, Bäck, Jaana, Petäjä, Tuukka, Wenger, John, Kulmala, Markku, and Kalberer, Markus. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. United States: N. p., 2016. Web. doi:10.1038/srep35038.
Kourtchev, Ivan, Giorio, Chiara, Manninen, Antti, Wilson, Eoin, Mahon, Brendan, Aalto, Juho, Kajos, Maija, Venables, Dean, Ruuskanen, Taina, Levula, Janne, Loponen, Matti, Connors, Sarah, Harris, Neil, Zhao, Defeng, Kiendler-Scharr, Astrid, Mentel, Thomas, Rudich, Yinon, Hallquist, Mattias, Doussin, Jean-Francois, Maenhaut, Willy, Bäck, Jaana, Petäjä, Tuukka, Wenger, John, Kulmala, Markku, & Kalberer, Markus. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. United States. https://doi.org/10.1038/srep35038
Kourtchev, Ivan, Giorio, Chiara, Manninen, Antti, Wilson, Eoin, Mahon, Brendan, Aalto, Juho, Kajos, Maija, Venables, Dean, Ruuskanen, Taina, Levula, Janne, Loponen, Matti, Connors, Sarah, Harris, Neil, Zhao, Defeng, Kiendler-Scharr, Astrid, Mentel, Thomas, Rudich, Yinon, Hallquist, Mattias, Doussin, Jean-Francois, Maenhaut, Willy, Bäck, Jaana, Petäjä, Tuukka, Wenger, John, Kulmala, Markku, and Kalberer, Markus. Thu . "Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols". United States. https://doi.org/10.1038/srep35038. https://www.osti.gov/servlets/purl/1378562.
@article{osti_1378562,
title = {Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols},
author = {Kourtchev, Ivan and Giorio, Chiara and Manninen, Antti and Wilson, Eoin and Mahon, Brendan and Aalto, Juho and Kajos, Maija and Venables, Dean and Ruuskanen, Taina and Levula, Janne and Loponen, Matti and Connors, Sarah and Harris, Neil and Zhao, Defeng and Kiendler-Scharr, Astrid and Mentel, Thomas and Rudich, Yinon and Hallquist, Mattias and Doussin, Jean-Francois and Maenhaut, Willy and Bäck, Jaana and Petäjä, Tuukka and Wenger, John and Kulmala, Markku and Kalberer, Markus},
abstractNote = {Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.},
doi = {10.1038/srep35038},
journal = {Scientific Reports},
number = 1,
volume = 6,
place = {United States},
year = {Thu Oct 13 00:00:00 EDT 2016},
month = {Thu Oct 13 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 71 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Investigating the use of secondary organic aerosol as seed particles in simulation chamber experiments
journal, January 2011

  • Hamilton, J. F.; Rami Alfarra, M.; Wyche, K. P.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 12
  • DOI: 10.5194/acp-11-5917-2011

Effect of Acidity on Secondary Organic Aerosol Formation from Isoprene
journal, August 2007

  • Surratt, Jason D.; Lewandowski, Michael; Offenberg, John H.
  • Environmental Science & Technology, Vol. 41, Issue 15
  • DOI: 10.1021/es0704176

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Chemodiversity of a Scots pine stand and implications for terpene air concentrations
journal, January 2012


Physical characterization of aerosol particles during nucleation events
journal, January 2001

  • Aalto, Pasi; Hämeri, Kaarle; Becker, Edo
  • Tellus B: Chemical and Physical Meteorology, Vol. 53, Issue 4
  • DOI: 10.3402/tellusb.v53i4.17127

The formation, properties and impact of secondary organic aerosol: current and emerging issues
journal, January 2009

  • Hallquist, M.; Wenger, J. C.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5155-2009

Influence of Light and Temperature on Monoterpene Emission Rates from Slash Pine
journal, May 1980

  • Tingey, David T.; Manning, Marybeth; Grothaus, Louis C.
  • Plant Physiology, Vol. 65, Issue 5
  • DOI: 10.1104/pp.65.5.797

Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks
journal, January 2013

  • Mentel, Th. F.; Kleist, E.; Andres, S.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 17
  • DOI: 10.5194/acp-13-8755-2013

The analysis of size-segregated cloud condensation nuclei counter (CCNC) data and its implications for cloud droplet activation
journal, January 2013


Cloud condensation nuclei (CCN) activity and oxygen-to-carbon elemental ratios following thermodenuder treatment of organic particles grown by α-pinene ozonolysis
journal, January 2011

  • Kuwata, Mikinori; Chen, Qi; Martin, Scot T.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 32
  • DOI: 10.1039/c1cp20253g

Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene
journal, January 2010

  • Yasmeen, F.; Vermeylen, R.; Szmigielski, R.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 19
  • DOI: 10.5194/acp-10-9383-2010

Formation and evolution of molecular products in α-pinene secondary organic aerosol
journal, November 2015

  • Zhang, Xuan; McVay, Renee C.; Huang, Dan D.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 46
  • DOI: 10.1073/pnas.1517742112

Ambient measurements of aromatic and oxidized VOCs by PTR-MS and GC-MS: intercomparison between four instruments in a boreal forest in Finland
journal, January 2015

  • Kajos, M. K.; Rantala, P.; Hill, M.
  • Atmospheric Measurement Techniques Discussions, Vol. 8, Issue 4
  • DOI: 10.5194/amtd-8-3753-2015

High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization
journal, January 2012

  • Kundu, S.; Fisseha, R.; Putman, A. L.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 12
  • DOI: 10.5194/acp-12-5523-2012

Technical Note: Quantitative long-term measurements of VOC concentrations by PTR-MS – measurement, calibration, and volume mixing ratio calculation methods
journal, January 2008

  • Taipale, R.; Ruuskanen, T. M.; Rinne, J.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 22
  • DOI: 10.5194/acp-8-6681-2008

Identification of Polymers as Major Components of Atmospheric Organic Aerosols
journal, March 2004


Thermodynamics of oligomer formation: implications for secondary organic aerosol formation and reactivity
journal, January 2013

  • DePalma, Joseph W.; Horan, Andrew J.; Hall IV, Wiley A.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 18
  • DOI: 10.1039/c3cp44586k

High-Molecular Weight Dimer Esters Are Major Products in Aerosols from α-Pinene Ozonolysis and the Boreal Forest
journal, July 2016

  • Kristensen, Kasper; Watne, Ågot K.; Hammes, Julia
  • Environmental Science & Technology Letters, Vol. 3, Issue 8
  • DOI: 10.1021/acs.estlett.6b00152

A review of natural aerosol interactions and feedbacks within the Earth system
journal, January 2010

  • Carslaw, K. S.; Boucher, O.; Spracklen, D. V.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 4
  • DOI: 10.5194/acp-10-1701-2010

Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes
journal, January 2006

  • Lee, Anita; Goldstein, Allen H.; Kroll, Jesse H.
  • Journal of Geophysical Research, Vol. 111, Issue D17
  • DOI: 10.1029/2006JD007050

Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysis
journal, January 2010

  • Camredon, M.; Hamilton, J. F.; Alam, M. S.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 6
  • DOI: 10.5194/acp-10-2893-2010

Warming-induced increase in aerosol number concentration likely to moderate climate change
journal, April 2013

  • Paasonen, Pauli; Asmi, Ari; Petäjä, Tuukka
  • Nature Geoscience, Vol. 6, Issue 6
  • DOI: 10.1038/ngeo1800

Direct Observations of Atmospheric Aerosol Nucleation
journal, February 2013


Molecular Composition of Boreal Forest Aerosol from Hyytiälä, Finland, Using Ultrahigh Resolution Mass Spectrometry
journal, April 2013

  • Kourtchev, Ivan; Fuller, Stephen; Aalto, Juho
  • Environmental Science & Technology, Vol. 47, Issue 9
  • DOI: 10.1021/es3051636

Molecular composition of fresh and aged secondary organic aerosol from a mixture of biogenic volatile compounds: a high-resolution mass spectrometry study
journal, January 2015

  • Kourtchev, I.; Doussin, J. -F.; Giorio, C.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 10
  • DOI: 10.5194/acp-15-5683-2015

Molecular composition of biogenic secondary organic aerosols using ultrahigh-resolution mass spectrometry: comparing laboratory and field studies
journal, January 2014

  • Kourtchev, I.; Fuller, S. J.; Giorio, C.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 4
  • DOI: 10.5194/acp-14-2155-2014

The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges
journal, February 2015

  • Nozière, Barbara; Kalberer, Markus; Claeys, Magda
  • Chemical Reviews, Vol. 115, Issue 10
  • DOI: 10.1021/cr5003485

Integrating phase and composition of secondary organic aerosol from the ozonolysis of  -pinene
journal, May 2014

  • Kidd, C.; Perraud, V.; Wingen, L. M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 21
  • DOI: 10.1073/pnas.1322558111

Evolution of the complex refractive index in the UV spectral region in ageing secondary organic aerosol
journal, January 2014

  • Flores, J. M.; Zhao, D. F.; Segev, L.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 11
  • DOI: 10.5194/acp-14-5793-2014

Aerosol Indirect Effect on Biogeochemical Cycles and Climate
journal, November 2011


Investigating the use of secondary organic aerosol as seed particles in simulation chamber experiments
journal, January 2010


Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks
journal, March 2013


Ambient measurements of aromatic and oxidized VOCs by PTR-MS and GC-MS: intercomparison between four instruments in a boreal forest in Finland
journal, January 2015

  • Kajos, M. K.; Rantala, P.; Hill, M.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 10
  • DOI: 10.5194/amt-8-4453-2015

The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges
text, January 2015

  • Decesari, Stefano; Allan, James; Claeys, Magda
  • American Chemical Society
  • DOI: 10.7892/boris.69473

The formation, properties and impact of secondary organic aerosol: current and emerging issues
text, January 2009

  • Y., Rudich,; M., Jang,; A. S. H., Prevot,
  • Copernicus Publications
  • DOI: 10.17615/k22s-ek71

High molecular weight SOA formation during limonene ozonolysis: insights from ultrahigh-resolution FT-ICR mass spectrometry characterization
journal, January 2012


Works referencing / citing this record:

Environmental conditions regulate the impact of plants on cloud formation
journal, February 2017

  • Zhao, D. F.; Buchholz, A.; Tillmann, R.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14067

Quantitative constraints on autoxidation and dimer formation from direct probing of monoterpene-derived peroxy radical chemistry
journal, November 2018

  • Zhao, Yue; Thornton, Joel A.; Pye, Havala O. T.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 48
  • DOI: 10.1073/pnas.1812147115

Multiphase composition changes and reactive oxygen species formation during limonene oxidation in the new Cambridge Atmospheric Simulation Chamber (CASC)
journal, January 2017

  • Gallimore, Peter J.; Mahon, Brendan M.; Wragg, Francis P. H.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 16
  • DOI: 10.5194/acp-17-9853-2017

Insights into HOx and ROx chemistry in the boreal forest via measurement of peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide
journal, January 2018

  • Crowley, John N.; Pouvesle, Nicolas; Phillips, Gavin J.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 18
  • DOI: 10.5194/acp-18-13457-2018

A model framework to retrieve thermodynamic and kinetic properties of organic aerosol from composition-resolved thermal desorption measurements
journal, January 2018

  • Schobesberger, Siegfried; D'Ambro, Emma L.; Lopez-Hilfiker, Felipe D.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 20
  • DOI: 10.5194/acp-18-14757-2018

Nanoparticle growth by particle-phase chemistry
journal, January 2018

  • Apsokardu, Michael J.; Johnston, Murray V.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 3
  • DOI: 10.5194/acp-18-1895-2018