SQERTSS: Dynamic Rank Based Throttling of Transition Probabilities in Kinetic Monte
Carlo Simulations
Thomas Danielson?, Jonathan Sutton,® Celine Hin2, Aditya Savara®
Corresponding Author: Aditya Savara, savaraa@ornl.gov
!Department of Materials Science and Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, VA, USA
2Department of Mechanical Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, VA, USA
3Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

ABSTRACT

Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation
technique for investigating large reaction networks while retaining spatial configuration
information, unlike ordinary differential equations. However, large chemical reaction networks
can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to
the problem of “KMC stiffness” (Similar to stiffness in differential equations), where the
computational expense has the potential to be overwhelmed by very short time-steps during KMC
simulations, with the simulation spending an inordinate amount of KMC steps / cpu-time
simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In
order to achieve simulation times that are experimentally relevant or desired for predictions, a
dynamic throttling algorithm involving separation of the processes into speed-ranks based on event
frequencies has been designed and implemented with the intent of decreasing the probability of
FFP events, and increasing the probability of slow process events -- allowing rate limiting events
to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium
Rank-based Throttling for Steady-state (SQERTSS) algorithm designed for use in achieving and
simulating steady-state conditions in KMC simulations. As shown in this work, the SQERTSS
algorithm also works for transient conditions: the correct configuration space and final state will
still be achieved if the required assumptions are not violated, with the caveat that the sizes of the
time-steps may be distorted during the transient period.

1. Introduction

Lattice based kinetic Monte Carlo (KMC) serves as a powerful and widely used
computational technique for investigating the stochastic spatio-temporal evolution of atomic and
molecular systems, e.g. catalytic chemical reactions on crystalline surfaces [1-11]. The technique
transitions a system from an initial configuration to a subsequent configuration, where the
subsequent configuration is selected using a random number and a probability weighted by the
available transition rate constants (for chemical reactions, the transition rate constants are
proportional to the reaction rate constants). By comparison to solutions of ordinary differential
equations, lattice based KMC provides the advantage of being able to obtain localized, site-specific
reaction information. However, the computational expense of lattice based KMC has the potential

to become intractable when the event frequencies of the different reaction events (e.g. diffusion,
dissociation, association, adsorption, desorption, etc.) span many orders of magnitude, in which
case the KMC steps are dominated by events of fast frivolous processes (FFPs). As a result, using
KMC to simulate experimentally relevant simulation times (~10* s) for complex chemical reaction
networks poses a challenge, since the simulation may be prone to spending many steps simulating
FFPs with very small time increments (i.e. similar to stiffness in ODEs). An FFP is defined here
as a rapid process which does not significantly progress the reaction network towards a steady-
state (e.g. H* hopping back and forth between neighboring O atoms). One example from the
literature where the local site-specific information may be required to capture the kinetics but FFPs
would prevent the KMC simulation from being tractable is Fischer-Tropsch over Ru, for which
there is evidence that there are both spatio-temporal effects in the kinetics as well as pre-
equilibrium reaction steps.[12] The FFPs that are mediated in this work are a subset of the quasi-
equilibrated (QE) processes present in a simulation: we call a process QE when the forward and
reverse rates are equal or approximately equal, and thus what is referred to as QE in this work may
not be reflective of a Boltzmann distribution across the states present in the system (we do not
attempt to identify whether a QE process is actually at equilibrium -- what we refer to as QE does
include processes that are at equilibrium). Additionally, various processes have significantly lower
transition probabilities, making them rarely occurring events. These rare events may be important
for transitioning the reaction network to a steady-state; however, the occurrence of rare events may
require a substantial number of KMC steps to achieve even a single rare event occurrence
(particularly when FFPs are present).

Various formulations have been developed to address the issue of simulating long time
scales, relative to the characteristic time-scales of processes being simulated, when using KMC.
Some methods treat the occurrence of a FFP as a localized energy basin [13-18]. In “basin”
methods, the probabilities of the system evolving to a state outside of the basin, and the respective
escape time for different paths out of the energy basin, are calculated. In many cases, such an
approach is considered to be exact in preserving the underlying kinetics of the system. An
alternative approach is the t-leap method [19-24]. Within the t-leap approach, reactions are
executed several times and the simulation time is advanced by coarser time increments than the
standard microscopic time-step. While these approaches are suitable for simple systems (e.g.
diffusion of point defects), their utility for investigating a complex chemical reaction network on
a lattice is limited by needing an ability to predict the configurations which may occur outside of
the energy basin. In general, it is not possible to predict which of these configurations would be
accessible a priori (especially for rare configurations). Likewise, the computational expense of the
basin hopping formulations scales increasingly with the number of processes and possible
outcomes. Thus, for simulations containing many reaction processes and many possible
configurations, an alternative method is needed, and must be able to simulate long time scales in
an efficient manner. The approach we use below is chosen specifically for addressing this problem
in the context of complex chemical reaction networks with FFPs, though it may be applicable to
other systems where basin hopping is not feasible for the same reasons.

We introduce an alternative approach: Staggered Quasi-Equilibrium Rank-based
Throttling for Steady-State (SQERTSS), which circumvents the complications of FFPs, rare
events, and rare configurations by dynamically throttling the transition probabilities of reaction
processes based on the local-in-time KMC event frequencies. In this work, throttling refers to
speeding up or slowing down a particular process (in the context of KMC, this means
increasing/decreasing the event frequency by changing the associated transition rate constant). The
dynamic throttling of transition probabilities is similar to solving stiff ODEs by combining the
Quasi Steady-State Approximation [25-27] and dynamic time-step methods[28] which assume a
separation of time scales (classified by speed-ranking). In this work, we use the stiffness mediation
in the context of an asymptotic approach to steady-state for various reactions on the time-scale of
interest. By applying the SQERTSS approach, FFPs become less likely to occur and slower events
more likely to occur, resulting in a faster approach to a steady-state of the reaction network while
maintaining kinetically appropriate ratios between transition probabilities when computationally
feasible. This approach also enables appropriate timescales to be simulated once steady-state is
reached; in a way where the accuracy achieved is based on the computational resources available
(a paragraph on this philosophy is provided in the supporting information). A similar method is
net event KMC, [29] in which fast reversible processes are lumped together as one and the net rate
is determined by the difference in the forward and reverse process. While net event KMC
successfully improves the computational expense of KMC simulations while maintaining the
relative probabilities of occurrence between forward and reverse processes, it does not maintain
the staggering of the event frequencies between processes of different speed-ranks (described in
sections 3 and 4); thus net event KMC (which is different from SQERTSS) can affect the paths
accessed and consequently the chemical selectivity in complex reaction networks. The SQERTSS
methodology introduced here is designed to retain the chemical selectivity for complex chemical
reaction networks, even for many cases where net event KMC would not.

After describing the methodology, we present results where the algorithm has been applied
to sample reaction networks with physically realistic parameters. We find that this algorithm
behaves as anticipated, and is practical.

2. Computational Methods and Model Details

The reaction network has been investigated using lattice Kinetic Monte Carlo (KMC) as
implemented in the program KMOS, which was developed by Hoffman and Reuter as a general
purpose code for lattice kinetic Monte Carlo simulations encompassing multiple chemical
reactions [30]. The current section will outline the Lattice KMC framework that has been used in
this work, followed by a description of the reaction network that has been used for testing.

2.1. Lattice KMC Formulation

The KMC formulation will be discussed in the context of a catalytic chemical reaction on
a crystal surface where there exists a set of well-defined unique reaction sites (e.g. atomic or

molecular scale surface sites). The simulation cell of the crystal surface is repeated through space
with the use of periodic boundary conditions, and each surface site has the potential of becoming
occupied by chemical species. The surface, and the associated species on the surface, define a
surface configuration at a particular point in time. The probability (and time-steps) for transitions
between surface configurations are related to the transition rate constants associated with each
possible reaction process. Kinetically, the stochastic evolution of the surface configuration through
time follows a Markovian master equation:

Pu(t) = 2p(Wyp Py (£) — Wiy oy (1)) 1)

where, pu(t) is the probability for the system to be in configuration u at time t, and wyy is the
transition rate constant which represents the mean frequency (“rate”) at which configuration u is
expected to transition to configuration v in the absence of other possible transitions. The KMC
algorithm generates an ensemble of possible trajectories that can propagate the surface to other
configurations across time, such that the average over the entire ensemble of trajectories yields the
probability densities of the underlying Markovian master equation.

Within the current work, the variable step-size method (VSSM) has been used for the
propagation of the system through different surface configurations across time. The time-steps in
VSSM emerge from a basis that the waiting times for n uncorrelated events that occur with
transition rate, k, follow a Poisson distribution as:

(wAt)"e —-WAt

Palk, At) = 22— 0)
From this, the waiting time between two events is given by the case that no events occur:

Po(w, AL) = e~W4 @)
Using a uniform random number, r; ¢ (0,1]:

—In(ry)
Where, Wiotal is the sum of all transition rate constants for all processes that can occur within the
current configuration (for a more thorough derivation of VSSM see refs [30-34]). Thus, the step-
size is variable due to the fact that the number of processes available to occur in each configuration
is variable, and also due to the random number in Equation 4. Within VSSM, the event which
occurs in a given KMC step is also selected using a separate random number, ,,, and the sum of
all available process transition rates as:

1 .
Z{i Wvu < rWWtOt,u S Z‘l]] Wvu (5)

The most relevant KMC output when investigating the rates of reactions in a simulation
are the process event frequencies. The event frequency (i.e. the number of times an event happens
per unit cell per second) for a given process can be calculated across a given time interval as:

M
TOF, = - (6)

where M is the number of times process a has occurred during the time interval At -- for example,
this could correspond to the number of times a molecule is produced for a particular species such
as CO or CH3OH. Typically, an event frequency is calculated based on the observations from
multiple (e.g., thousands of) KMC steps, and these groupings of steps can be called ‘snapshots’.

To summarize, each step in a VSSM KMC simulation can be stated as follows:

1. Initialize lattice if at the first step, otherwise take lattice configuration from previous step.
Update list of available processes and their associated transition rates to calculate k;y¢q; =
Yk

Draw two random numbers on the interval (0,1]

Select an event that satisfies equation 5

Update lattice configuration according to the event which occurs

6. Update time according to equation 4

N

ok ow

2.2 Reaction Model: Methanol Adsorption and Conversion on CeO> (111)

The following section will outline the reaction network that has been simulated using KMC
in order to test the dynamic throttling algorithm. The reaction network is a simplified reaction
network from one in the literature,[35, 36] that begins with methanol adsorption on a CeO> (111)
surface and results in output fluxes of formaldehyde, H> and methanol through various reaction
processes.

Under the conditions which will be simulated, there is initially only an input flux of
methanol gas molecules encountering a defect free CeO (111) surface. The CeO> (111) surface
has three distinct site types: Ce, O and an intermediate bridge site for methanol adsorption
processes. The simulation is conducted for methanol being continuously exposed to the surface at
a pressure of 1 bar, although the pressure simply serves as a parameter for the adsorption transition
rate constant and no gas phase is explicitly present. Since the surface is initially free of any
adsorbates and methanol is the only input gas, the first process to occur in this simulation is
methanol adsorption. The transition rate constants for adsorption processes can be calculated by:

P —Ea 9
= —_—_—m— RT
Wads /—anBTM e ()

where, P is the input pressure of the gas, kg is the Boltzmann constant, T is the temperature, M is
the molecular mass, Ea is the activation energy for adsorption and R is the gas constant. The surface
sites geometry for methanol adsorption on the CeO> (111) surface can be described using Figure

1.[37] A methanol molecule will adsorb onto the surface and bridge between the site marked A
and any one of the neighboring B sites (B1, B2 or B3) — these represent Ce and O sites,
respectively. The probability of any of these three orientations occurring is equivalent, assuming
that all three B sites are unoccupied. Here, the A sites are the lattice positions of surface layer
cerium cations and the B sites are the lattice positions of surface layer lattice oxygen anions. Thus,
when adsorption of methanol occurs, both a Ce site and an O site are occupied. Other intermediates
will also adsorb on A sites, B sites, or bridge both sites.

Figure 1. The CeO2 (111) surface geometry used for KMC simulations. Red and blue correspond to Ce and O sites, respectively.

The reaction pathway has been adapted from one in the literature[35, 36], and tailored to
result in steady-state output fluxes of methanol, H> and formaldehyde. Reaction processes within
the simplified reaction network are provided in Table 1 and include adsorption, desorption, and
ionic dissociation and association. The transition rate constants for desorption, associative and
dissociative processes are given by:

_EA

w = AeRT (10)

Where, A is the pre-exponential factor, Ea is the activation energy for the reaction process,
R is the gas constant and T is the temperature. The simulation size consists of 400 unit cells,
corresponding to a surface with dimensions of 38.25 x 66.26 Angstroms. The number of KMC
steps per snapshot, and number of snapshots per simulation, are specified for each simulation
within the Results section.
Table 1 Reaction processes within the sample reaction network. Reactions containing a “«<” indicate that there is both a

forward and reverse reaction process listed and transition probabilties are listed in the same order. Reactions containing a
“—” indicate that only one direction exists.

Reaction Reaction Chemical Equation Forward Reverse
Number Name Transition Rate Transition
Constant (s) Rate Constant

(C)

1 H2 Production 2(H" -- Ce** - 0%) — 1.48x10°
Ha(g) + 2 Ce** -- O%

2 H* production/reduction Ce¥ - 0% -H' & 9.79x10° 3.63x10%°

H* - Ce#* -- 0%

3 H* Hopping between Ce3* Ce* -- 0% - H*+ Ce®* - 0% & 2.01x10%? 2.01x10%2
and Ce** Ce** -- 0% + Ce¥ -- 0% - H*
4 H20 Molecular H20 -- Ce**-- 0% — 3.9x10% -
Desorption H20 + Ce**-- 0%
5 H20 ionic H20 -- Ce**-- 0% + Ce** -- 0% 4.53x10%2 1.28x108
association/dissociation OH" -- Ce**-- 0% + Ce**-- 0% -- H*
6 OH- hopping infout of OH --Ce*--0*+Ce** -- [~ 4.53x10*? 1.95x108
vacancy Ce* -- 0% + Ce¥ -- 0% - H*
7 H20 hopping in/out of H20 -- Ce**-- 0% + Ce¥* - [|° & 4.53x10%? 6.25x10%!
vacancy H20 -- Ce3* -- []° + Ce** -- O%
8 Methanol CH30H(g) + 2 Ce** -- 0% «> 5.08x10° 1.46x10°
Adsorption/Desorption Ce**-- 0% -- CH3OH -- Ce**-- 0%
9 CH3OH ionic Ce** -- 0% -- CH30H -- Ce** - 0% & 1.74x108 6.37x108
dissociation/association CH3O -- Ce**-- 0% + Ce** -- 0% -- H*
10 H abstraction from ionic CH3O -- Ce**-- 0% + 2 Ce** - 0% — 3.29x108 -
CHsO CH20 -- Ce**-- 0% + Ce3*-- O% + H" -- Ce**
- 0%
11 H abstraction from ionic (CH3O") — Ce¥* --[1°+ 2 Ce**-- 0% — 4.53x10° -
CH30 on a vacancy (CH20) -- Ce3* -- [10+ H" - Ce**-- 0% +
Ce3+ - 02-
12 lonic CHsO migration Ce**-- 0% + (CH30) -- Ce¥* - [1° 6.89x107 9.28x101
CH30" - Ce**-- 0% + Ce3* - []°
13 CH:0 Desorption Ce**-- 0% -- CH20 — 6.78x10° -
CH20 + Ce**-- 0%
14 CH20 Desorption from CH20-Ce** --[1°— 5.88x107 -
Vacancy CH20 + Ce%* --[1°

3. Throttling Algorithm

3.1 Conceptual Description of the Algorithm

The SQERTSS algorithm is designed to decrease the occurrence of fast frivolous processes
and increase the occurrence of slower processes. The intention is to enable computationally
tractable simulations that a) reach the reaction network’s most likely steady-state from a given
starting configuration, b) can simulate experimentally relevant simulation time-scales, and c¢) do
not significantly alter the underlying kinetics of the system. The algorithm involves first
classifying the processes as fast frivolous processes (FFPs), slow processes (SPs), and identifying
the fastest rate limiting process (FRP), followed by “compressing” the transition rate constants of

these processes to be nearer to each other with as little disruption of the underlying kinetics and
system dynamics as possible.

Before delving into the details of the throttling algorithm, it is useful to define some
important terms. A shapshot is a grouping of sequential KMC steps (typically thousands of
individual events or more), over which quantities such as event frequencies are averaged to
evaluate the state of the system. An event frequency (EF, with units of events = s » #unit cells™)
is the rate for a given process during a given snapshot of the KMC simulation. Typically, the
number of steps in a snapshot will be significantly larger than the number of sites in a simulation,
and this algorithm would not be needed for systems that can be simulated using snapshots smaller
than the number of sites in a simulation. For each snapshot, we rely on three quantities related to
the event frequencies. The observed event frequency (0EF) is the most recent EF observed for a
particular process during simulation, and is based on the number of events which occurred divided
by the simulation time transpired during that snapshot. The unthrottled event frequency (UEF) of
a process is a back-calculated value for what the EF would have been during the previous snapshot
in the absence of throttling. The predicted throttled event frequency (ptEF) is a prediction for what
the EF will be during the next (to be executed) snapshot with a given level of throttling applied. A
throttling factor (TF) is the coefficient by which the transition rate constant of a given process is
being multiplied to achieve the throttling level desired. How much throttling is applied is based on
the event frequency range, EF?2"% which is defined as the EF associated with the fastest speed-
rank divided by the EF associated with the slowest speed-rank. Speed-ranks are explained below.
During a simulation, the algorithm ‘compresses’ the EFRa"% by throttling processes. We are now
in a position to explain the details of some of the more complex subtasks in the algorithm. The
subtasks in the algorithm can be broadly divided into two groups: (1) the speed-ranking and
classification of processes and (2) the calculation of the throttling factors. Below, we describe each
of these subtasks in turn.

3.2 Process Ranking and Classification

A central concept of the SQERTSS throttling algorithm is classifying the processes into
different types, based on paired speed-ranking of the processes. In paired speed-ranking, the
forward and reverse process pairs are assigned speed-ranks (one rank for each pair) based on the
EF associated with the faster of the two processes in each pair. Here, the uEFs are used, as their
rankings reflect the natural ranking of the processes (i.e., the rankings in the absence of throttling).
Each uEF is back-calculated based on the throttling factors of the just-executed snapshot, using
UEF = OEF/TFm.1, where m-1 is the number of the just-executed snapshot. The throttling is also
applied according to these paired ranks such that the ratios between the forward and reverse
processes are maintained for each reaction (i.e., the transition rate constants for the pair forward
and reverse processes are multiplied by the same throttling factor). This maintains the
thermodynamics for each process pair during throttling. During speed-ranking, first process rank
is associated with the fastest process pair, the second process rank is associated with second fastest

process pair, and so on. The concept of paired speed-ranks is illustrated in Figure 2, with the
corresponding event frequencies ranked in Table 2.

—_
w

Rank 1

—_
o

Rank 2

[4)]

Event Frequency (5'1)

o

1 2
Reaction Number

Figure 2. Process ranks example for paired throttling. Forward and reverse processes are shown in black and grey respectively.

Table 2 Process ranks example with forward and reverse process event frequencies separated into ranks using paired ranking.

Process Number Event Frequency (s) Rank
1F 12.1 1
1R 6.8
2F 5.9
2
2R 3.8

Subsequent to sorting and speed-ranking the process pairs, they are classified into several
types which we will now define. A fast frivolous process (FFP) is any reaction process belonging
to a pair where the forward and reverse reactions have equal event frequencies and are each faster
than the fastest rate-limiting process (e.g. H* hopping back and forth rapidly, or rapid
adsorption/desorption). Due to statistical noise, the EFs for the forward and reverse processes of
individual FFPs will not generally be exactly equal over a finite period of time, such as a KMC
snapshot. In this work, pairs of forward and reverse reaction process are identified as being
sufficiently equal to be quasi-equilibrated (QE) when the ratio of the forward and reverse processes
is within some threshold from being equal (here, we use a threshold of 0.1). One of the main
challenges of KMC simulations with large separations between the fast and slow timescales is that
an inordinate amount of time is spent simulating the FFPs with little opportunity for the execution
of the slow processes that control the evolution of the system. The strategy used here to decrease
the occurrence of the FFPs is to throttle down (reduce) their rate constants while maintaining the
ratio of the forward and reverse rates, until the FFPs have event frequencies that do not inhibit
observation of rate limiting processes during simulation (thereby also accelerating the elapsed time
during each snapshot). The FFPs are not throttled to become so slow as to become comparable to
rate limiting processes; the FFPs are only throttled to the extent necessary for the simulation to
show sufficient activity of the rate limiting processes.

The benchmark for throttling is chosen as the fastest rate limiting process (FRP). The FRP
is the fastest non-QE process: it is the fastest process among the processes for which the forward
and reverse oEFs differ by greater than 10%. By using the FRP as a benchmark for throttling, the
distortion of the time-steps within VSSM is limited. If the slowest rate-limiting process were used
as the benchmark (such that process pairs faster than the slowest rate-limiting process were
throttled down to have slower rates), there would be large distortions to the KMC time, where the
time-steps would become significantly larger. Process pairs are classified as slow processes (SPs)
if their speed-rank is slower than that of the FRP and they have event frequencies that are non-
negligible. SPs may or may-not be QE. Negligibly slow processes (NSPs) belong to process pairs
where both the forward and reverse event frequencies are so low that they are considered negligible
over the timescale of interest (as defined in the last bullet of section 3.5). Just as the FFPs are
intentionally throttled down, the SPs can be intentionally throttled up towards the FRP in order to
increase the sampling of the slowest relevant processes, and thereby reduce the number of KMC
steps needed to achieve a steady-state simulation. However, since throttling up of SPs distorts the
time-steps and has a finite risk of distorting the underlying kinetics, the FFPs are always throttled
down preferentially and the SPs are only throttled up if it is computationally necessary to achieve
steady-state with the computational resources available.

3.3 Calculation of Throttling Factors and EFRange-Pred

In essence, the objective of the SQERTSS algorithm is to compress the EFR&"% which is
defined as the value obtained by taking the EF associated with the fastest speed-rank divided by
the EF associated with the slowest speed-rank. This has the effect of ensuring that events of the
slowest speed-rank happen frequently enough to observe during each snapshot. To accomplish
this, the algorithm attempts to compress the event frequencies to fall within EF?a"%¢Red which is a
user-supplied value for the event frequency range that is required for the simulation to be
computationally tractable. This means that EFRa"%¢-Red and the steps per snapshot should be chosen
such that EFRa"®-Red js smaller than the steps per snapshot, which will allow processes of the
slowest rank to occur a countable number of times per snapshot. After each snapshot, the EFRange-
Pred (which is the predicted event frequency range for a given level of throttling) is calculated for
up to several levels of throttling. The EFRa"9e-Pred js first checked for no throttling, and then checked
for progressively more aggressive levels of throttling until EFR"%¢-Red js achieved or until no further
throttling is possible without distorting the speed-rankings. EF?29¢-P"ed js the ratio of the ptEFs
associated with the fastest and slowest speed-ranks. The ptEFs thus play a role in determining what
level of throttling should be applied for the next snapshot, with each ptEF calculated by ptEF =
TFm*0EF, where m is the number of the current snapshot, and TFny represents the throttling factor
that corresponds to applying a given level of throttling in the next (to-be-executed) snapshot. Thus,
for each snapshot, we use the oEFs are from the just-executed snapshot to calculate the TFs for the
next snapshot.

At this stage, we can describe what it means to throttle the processes into having a more
‘compressed’ EF?%, The ranked event frequencies form a type of staircase in the speed-rankings.

The ratio of the event frequencies of the adjacent ranks (corresponding to the height of one of the
steps in this staircase of speeds) is called a "staggering factor". For reasons that will be explained
below, we do not throttle the FFPs or the SPs closer to the FRP than a staggering factor of Nsites,
where Nsites IS the number of sites in the simulation. For process pairs that are not directly adjacent
to the FRP, the staggering is limited to being within a factor of sa, such that a smaller s corresponds
to more aggressive throttling. We maintain the natural staggering factors between any adjacent
ranks that are already within the specified tolerance. The visualization of the staircase after
compression is shown in Figure 3, which shows that each staggering factor presents an upper limit
for the EF spacing between speed-ranks. The objective is to make sa as small as possible without
distorting the system dynamics. This is accomplished using discrete throttling scales with
progressively more aggressive throttling.

10000000

m Forward
1000000

= Safast B Reverse

100000 -
10000 -
= Niiges X Safast X Sgfast
1000 -
100
10

11 = Ns;'tes

Event Frequency (s)
|
|
|
|
|
|
|
|
|
|
|
|
|
-
A
0

0.1 1 < Njtes X Sa,slow X Sa slow

0.01 4 = Sa,siow

0.001 } = Sg slow

0.0001

1 2 3 4 5 6 7
Speed-Rank

Figure 3. A staggering factor is the ratio between the event frequency associated with a particular speed-
rank and that of the speed-rank below it. During throttling, the maximum staggering factors are set as < Nisjtes
for speed-ranks directly adjacent to the FRP, and are set as < s for other speed-ranks. The values of s, can
be varied independently for the upper wing of processes (processes with speed-ranks faster than the FRP)
and lower wing of processes (processes with speed-ranks slower than the FRP).

There are three throttling scales used in this study, with increasingly more aggressive
values for sa. The approach used here is to check whether EFRange-Pred < ppRange-Red yithoyt
throttling, and (if the requirement is not met) to then to check whether EFRange-Pred < pERange-Req jg

met using the first level of throttling, then using the second level of throttling, and so on down the
possible levels of throttling until EFRan9e-Pred < EERange-Red js met or until the system cannot be
throttled further while maintaining the speed-rankings. As will be explained below, the maximum
contribution to the EFRa" from either the upper or lower wing of the rankings (speed-ranks faster
than the FRP and speed-ranks slower than the FRP, respectively) can be related to the number of
non-FRP speed-ranks in that wing. For the three throttling levels here, the contributions to the
EFRa"% from one wing of the processes is then as follows (from least compressed scale to most
compressed scale):

b NSPites
2 NSites * C(P_l)
NSites * 1-1(P_1)

where P is the number of process ranks in that wing and C is a user defined constant (set as 10 in
the current study), where C is chosen to have increased compression relative to the N&, . scaling,
while being less extreme than the third scale. The “P-1” factor appears because for either wing of
processes the process rank closest to the FRP is throttled to have a staggering of < Nsites relative
to the FRP, while the other process ranks are throttled to having a staggering of < sa .

The first and third throttling scale (numbered 1 and 3 above) were chosen based upon two
limits, and the second (middle) throttling scale was chosen to be between the two limits. The first
throttling scale (N&,,) represents the limit of allowing each site to turn over one time on-average
for every occurrence of processes of the next rank. For example, if there are Y sites, then with the
(N&,.s) scaling a Rank 1 process will occur Y times on average prior to each occurrence of a Rank
2 process (i.e., enabling the Rank 1 process to occur once on each site prior to any Rank 2 process
occurring), while the Rank 2 process will occur Y time on average for each occurrence of a Rank
3 process. This throttling scale will introduce no inaccuracies when the relationship between the
configurations and the event frequencies are strictly first order. The third throttling scale (Ng;;es *
1.1P~1) represents a limit in which the event frequencies of the fast speed-ranks (or slow speed-
ranks) are throttled towards having a single event frequency that is a factor of Nsits away from that
of the FRP (i.e. the scaling becomes, Ng;;0s * LF~1, with the limit of L — 1%). L is kept above 1 in
order to retain separate rankings between the various process pairs. In this study, 1.1 is used for L,
for reasons explained below. For example, if there are 2000 sites, and the fastest rate limiting
process has an event frequency of 2000, then if there are three ranks of FFPs above the FRP, the
third throttling scale would constrain the three ranks of FFPs to having ptEFs within the following
limits for each rank: (1) Y * Ngites » (2) Y * Ngjtes * 1.1, and (3) Y * Ngjes * 1.1 * 1.1. In other
words, when a process requires throttling, the TF for that process is the product of the staggering
factor between it and the next faster (for slow processes) or slower (for fast processes) process and
the TF for that adjacent process.

Effectively, in the third throttling scale, the FFPs will be throttled to be very near each
other while having their rankings retained (if they are truly FFPs, this should not affect the system

dynamics). We choose a factor of 1.1 for our limit as this choice is consistent with our previous
choice of setting the quasi-equilibrium threshold for forward and reverse processes to being within
a factor of 10%. The third scale of throttling has a greater risk of affecting the system dynamics
compared to Scale 1. The second throttling scale (Ng;..s * CP™1) is chosen to be intermediate
between the limits of the first and third throttling scales, such that 1 < C < Nsits. During dynamic
throttling, EFRane-Red specifies the level of compression required for the simulation to achieve the
desired time-scales (given the computational resources and wall-clock time available), and based
on this value the minimum level of compression to achieve EFRa"%¢Red js ysed. We note that the
three compression scales used here can each be reduced to the form Nsites * sa™Y), where the factor
Sa takes values in this work of Nsiws, 10 or 1.1. Recognizing that the various throttling scales can
be encompassed by a single function of sa, we note that the factor of sa could, in principle, be
implemented as a continuous variable for even greater optimization of accuracy and efficiency —
but some criteria would need to be developed on how to modulate the compression in that context,
which is beyond the scope of this work.

The progression of throttling scales is listed in Table 3: the first index represents the scale
for the FFP wing and the second index represents the scale for the SP wing. The scales are listed
starting from no compression (first row) and progressing to the most compressed scale (last row).
As can be seen, the FFPs are always given preference in throttling prior to any throttling of SPs.
An example of compression is shown in Figure 4, which depicts the effects of compression on an
example set of event frequencies. Figure 4 shows four of the scales: these four are a subset of the
scales in Table 3, and represent the subset of cases where both the FFP wing and the SP wing are
set to the same compression. It is clearly shown that the compression increases from scale 1 to
scale 3, and that the compression can be orders of magnitude in extent. Due to the paired ranking
and throttling, the ratios of the forward and reverse process are maintained. As mentioned
previously, during dynamic throttling, we apply compression preferentially to the FFPs prior to
SPs, since the FFPs can be compressed without affecting the system dynamics and without time
distortion when our assumptions are met.

During dynamic throttling, the throttling scale with the highest accuracy (least
compression) that meets the required compression criteria is used. Such compression is necessary
to achieve the goal of increased computational efficiency and simulations with time-scales of
experimental relevance (on the order of minutes to hours, in this case). The concept of throttling
is based on (1) reducing the computational effort expended on simulating FFPs and (2) ideally
ensuring that the slowest process rank occurs at least once per computationally feasible snapshot.
For the KMC simulations in this study, it was determined that if the slowest process rank occurred
on the order of once per one million configuration steps, then detecting significant changes in the
system would be computationally feasible (i.e., it was determined that 1 million KMC steps per
snapshot was computationally feasible). Thus, EF?a19¢-Red was set as 10°.

Table 3. The progression of throttling scales for setting the throttling factors of the fast processes and the slow processes.

Throttling Scale Fast Processes Scaling Slow Processes Scaling
(Fast, Slow)

0,0 Unthrottled Unthrottled
1,0 N&ies Unthrottled
2,0 Ngires * CP71 Unthrottled
3,0 Ngjtes * 1.1°71 Unthrottled
1,1 Nites Nites
2,1 Nsites * CF71 Nsites
3.1 Nsites * 1.1771 Nsﬁ'tes
1,2 Neites Nsites * CP71
2,2 Nsites * CP71 Nsites * CP71
3,2 Nsites * 1.1771 Nsites * CF71
1,3 NsFites Nsites * 1.1771
2,3 Nsites * CP71 Nsites * 1.1771
3,3 Nsites * 1.1°71 Nsiges * 1.1°71

w
o

-
o

-

o
[N}
[~}

10

-
o

o

Event Frequency (s™)
=)

1234567123456712345671234561717
Reaction Number

Figure 4. Example of EFRa"%¢ compression with different throttling scales. Black and grey bars represent forward and reverse
processes respectively. The cases shown are the subset of cases for which the same throttling scale is applied to both FFPs and SPs.
This subset corresponds to the rows in Table 3 denoted by throttling scales of (0,0) , (1,1), (2,2), and (3,3). The scaling shown is
indicated above each figure panel. The red horizontal lines are used to illustrate the differences in EFRa"% compression between
the different scalings.

3.4 Throttling Stepdown When there is No FRP

When the KMC simulation gets in to a metastable state where only QE processes exist, these
processes must be FFPs. There are two possible ways that the simulation can exit such a state: A)
by entering into a rare configuration from which a non-QE process can occur, or B) by having a
rare (low transition rate constant) non-QE process occur. We do not have a way of predicting
which type of exit path the simulation will. In such a state, the configuration space that the
simulation is traversing is independent of the values of the transition rate constants, provided that
the staggering is not changed (because we have only QE processes). Thus, we take the approach
of decreasing each of the FFP transition probabilities by the same factor. In this approach, all of
the FFPs are throttled down together, slowly, which preserves the system dynamics while
increasing the relative likelihood of a rare process occurring in order to exit the metastable state.
We term each iteration a “stepdown”, and apply a small stepdown after each snapshot when only
FFPs are present. In the event that the metastable state consisting of only FFPs persists, it is
advantageous to stepdown repeatedly. The stepdown factor is chosen to be 10 in this work, which
is safely within the bounds required for the marginal change assumption (described below) since
our snapshots have greater than 10% steps per snapshot. If the FFP transition probabilities are
decreased too much, the time-steps can become distorted, which can in turn distort the observed
event frequencies for product formation. As such, we implement a floor value (FFP™°°") for the
throttling down of FFP QE processes, and the EFs of FFP processes are not throttled below the
floor. The FFPF!°" should be orders of magnitude higher than the EF of the steady-state FRP, and
is chosen to be 10° s in this work, as explained in the discussion section.

3.5 Algorithm Steps and Flowchart

Putting together the above-mentioned concepts, the complete throttling algorithm takes the
below structure, which is also expressed in flowchart form in Figure 5 and in mathematical form
in the Appendix. The flowchart has been constructed such that the typical flow is in a counter
clockwise loop from the top left after each snapshot. In the algorithmic text below, we intentionally
do not include the level of detail of “for/while” loops across the different process ranks: this is
because our intention is to present the high-level algorithm, which can be programmed in more
than one possible way. However, an expanded form of the algorithm which includes some of the
choices we utilized for implementation is included in the supporting information, and a version of
the algorithm in mathematical form is included in the Appendix. The variable “m " is a counter for
the current snapshot, and the variable M is a constant that corresponds to how often the system is
periodically relaxed by unthrottling the SPs. The TFs are first set (calculated) and are then applied
by adjusting the transition rate constants. As the TFs are set by an iterative process when an FRP
is present (depicted in the lower right-hand corner of the flowchart), the TFs cannot be applied
until after that iterative process.

We employ two closely related variations of throttling in the algorithm: one set of steps to
accelerate reaching of steady-state, and another (very similar) set of steps for simulating steady
state once it is reached. The primary difference between the two sets of steps is that during steady-
state the SPs are set to be unthrottled during every snapshot, while the SPs are only set to be

unthrottled periodically during acceleration towards steady-state. We note that it is possible to start
directly with the steady state version of the algorithm, which does not distort the time steps, but
also does not accelerate the system beyond induction periods.

SQERTSS Algorithmic Steps to Accelerate Reaching Steady State

0. set m=0. Run a KMC snapshot with no throttling applied. Increase m by 1.
1. Gather all oEFs and rank the processes:

a. The processes are ranked with paired ranking. If a process is irreversible, then
its reverse process is assumed to have an EF of zero.

b. Classify each process pair as FFP, FRP, SP, or NSP.

i. Any process in a pair that is negligibly slow is not throttled, and is not
considered in the below algorithmic steps.
2. Calculate TFs:

a. Ifany FRP is present, set TFs throttling by iterating over the compression scales
from Table 3 until either EFRa9e-Pred < pERange-Red jg achieved or the final
compression scale is reached.

i. During this process, each process pair that is not the FRP is set to have
TFs to have the correct staggering ratio (based on Table 3) relative to the
FRP or relative to the process pair which is one rank closer to the FRP.

b. If all process pairs are FFPs, then set TFs to step down all FFP transition rate
constants by a factor of 10 -- unless the ptEF of any FFP will reach the FFPF°r,
in which case the stepping down of FFPs will be constrained to not go below
the FFPFloor,

c. If m/M is an integer, unthrottle the SPs by setting their TFs to 1.

3. Apply the calculated TFs to the transition rate constants. Run a snapshot, and increase
m by 1.

4. Repeat steps 1-3 until steady-state is reached.

5. The above steps accelerate the reaching of steady-state. After steady-state is reached,
the user should run additional snapshots using the steps listed below, to ensure that the
steady-state behavior is captured correctly.

SQERTSS Algorithmic Steps to Simulate Steady State

0. Set m=0. Run a KMC snapshot using the most recent throttling level applied. Increase
m by 1.
1. Gather all oEFs and rank the processes:

a. The processes are ranked with paired ranking. If a process is irreversible, then
its reverse process is assumed to have an EF of zero.

b. Classify each process pair as FFP, FRP, SP, or NSP.

i. Any process in a pair that is negligibly slow is not throttled, and is not
considered in the below algorithmic steps.
2. Calculate TFs:

a. Ifany FRP is present, set TFs throttling by iterating over the compression scales
from Table 3 until either EFRange-Pred ppRange-Req jg achieved or the final
compression scale is reached.

I. During this process, each process pair that is not the FRP is set to have
TFs to have the correct staggering ratio (based on Table 3) relative to the
FRP or relative to the process pair which is one rank closer to the FRP.

b. If all process pairs are FFPs, then set TFs to step down all FFP transition rate
constants by a factor of 10 -- unless the ptEF of any FFP will reach the FFPF°r,
in which case the stepping down of FFPs will be constrained to not go below
the FFPFloor,

c. Always unthrottle the SPs by setting their TFs to 1.

3. Apply the calculated TFs to the transition rate constants. Run a snapshot, and increase
m by 1.

4. Repeat steps 1-3 until m > M, and as long as desired to collect further steady state
statistics.

During the snapshots where the SPs are periodically unthrottled (and after steady-state is
reached), compression is applied first, then the slow processes are unthrottled (thus, the same
compression of FFPs is maintained during these snapshots). Within this algorithm, Step 2 shows
that all possible throttling combinations are explored until the compression is sufficient to allow
all slow process ranks to occur at least once within a computationally feasible number of steps
(excluding NSPs). Step 3c is performed once every M times as a means to relax the system (but it
is reasonable to assume that primarily FFP events will occur during this Step if FFPs are present).
Once steady-state is achieved, the simulation is run with the SPs unthrottled (in the same fashion
as during the periodic SP unthrottling, such that the compression of FFPs is maintained during
these snapshots).

Set SP TFsto 1

| setm=0 | (i.e., Unthrottle SPs)

Y

Run Snapshot and Apply Throttling to
Increment m Rate Constants

!

‘ Collect oEFs ‘

Integer m/M ?

Unthrottle SPs and Run

?
at least M Snapshots* Steady State’

Y

End ‘ Rank Process Pairs ‘

Y

Classify Processes Set TFs to
as FFP/FRP/SP/NSP Step Down FFPs

Yes

Only FFPs Increase Throttling

EFRange-Fred < EFRange-Req

Present? Yes Scale Level or Max Scale?
Y
Set Throttling Scale .| SetTFs According
to Unthrottled (0, 0) “| to Throttling Scale

Figure 5. Flowchart of throttling algorithm. Abbreviations: oEF = Observed Event Frequency, FFP = Fast Frivolous Process, FRP
= Fastest Rate-Limiting Process, SP = Slow Process, NSP = Negligibly Slow Process, TF = Throttling Factor. Note that the first
snapshot run has no throttling applied to it. The compression restriction of EFRange-Red jg met if EFRange-Pred < EFRange-Req, The
relaxation period M is set by the user and controls how often the SPs are temporarily unthrottled in order to temporarily relax the
system dynamics.. *After steady-state is reached, additional snapshots should be run with the SPs unthrottled to ensure correct
capturing of the steady-state system dynamics.

3.6 Assumptions and Approximations involved in Algorithm

The following approximations and assumptions have been made which must be fulfilled
or distortions of the system behavior will occur. All of these approximations and assumptions
will usually be valid, enabling this algorithm to be quite general:

e The event frequencies are assumed to be linear with respect to the appearance of the local
configurations required for a process to occur: this will typically be true for systems for
which the VSSM KMC algorithm is appropriate. This enables us to predict the EFRa"% for
the next snapshot (EFRa"9%¢-Pred) during throttling by assuming that (for example) reducing
the transition rate constant for a reaction by half will reduce the event frequency for that
reaction by half. This assumption is present in the calculation of the uEFs and the ptEFs
from the oEFs.

Based on the linearity assumption stated above, the least aggressive throttling scale has
staggering factors of Nsites. WWhen this assumption is valid, Nsits Scaling enables processes
of a given rank to occur (on average) once on each of the sites before any processes of the
next fastest rank can occur (i.e., process rank 1 has the opportunity to completely change
the nature of the surface between each execution of any event from process rank 2). To the
extent that this assumption is accurate, the first throttling scale will introduce no
inaccuracies in the system dynamics.

Throttling is performed with respect to the FRP in order to maintain the least amount of
distortion to the variable time-steps; this is because the FRP determines the rate of
production of the major product in a steady-state system. If we throttled with respect to any
of the slower RPs, we would more significantly distort the time-steps and the rate of
production of the major product.

FFPs constitute a quasi-pre-equilibrium for reactants or intermediates (or are outside of the
main reaction pathway), and thus no significant changes in the reaction system are driven
by the processes provided that the FFP retains QE during throttling: this requirement is
preserved in our algorithm, which applies the same throttling factor to both the forward
and reverse processes in a given speed-rank. In contrast, the slow reactions are not
generally QE, and systemic changes are thus still being driven by these processes. It is
more important to preserve the accuracy of the SPs, and throttling of SPs is thus only
applied if compression of the FFPs is insufficient to achieve computationally tractable
simulations.

The SPs are unthrottled after every M steps to allow the system to relax locally in time: this
better ensures that the system’s dynamics are progressing along the same trajectory as if
the SPs were not throttled. M is user supplied, and chosen to be 10 in the present work.
To be free from distortions of either the time-steps or system dynamics, the algorithm relies
on the assumption that any change in rate of a QE FFPs and other process pairs are only
marginal between snapshots -- such that any departure from QE is gradual enough for the
dynamic throttling to adapt (i.e., that significant changes in event frequencies are not more
abrupt than a snapshot), and also that any changes in the staggering are gradual. This
assumption is valid provided that no FFP or other process pair changes rates faster than
their throttling staggering factor within a single snapshot. An example is provided in the
supporting information. Gradual changing of the positions in the rankings does not cause
any distortion, since processes will stop being throttled relative to each other when their
rates approach each other (thus, they will not have any throttling relative to each other
during the period of snapshots where they are switching ranks). It is important to note that
even when the marginal change assumption is not met, any distortion would only be for
the period of the snapshot during which the marginal change assumption is not met and is
unlikely to result in any qualitative changes of the system dynamics. Further, even when
the marginal change assumption is exited in a particular snapshot, the throttling factors will
be recalculated for the next snapshot, and thus the size of the time-steps and system

dynamics will be driven back towards the natural system dynamics (particularly if the
marginal change assumption is becomes met once more). If there is only one possible
steady-state, then that same steady-state will still be reached. If there is more than one
possible steady-state, it is anticipated that the natural steady-state will still always be
reached (see supporting information), except for systems very near a bifurcation point. It
is possible to define the marginal change requirement through an inequality.

If we have departure from QE for the oEFs of forward and reverse process of
reaction i between two snapshots at time t and t+1 we can express the change in rate as:

AR; = Rt- RFH?

And similarly, the staggering S} can be defined as the ratio between the oEFs of
two adjacent processes ranks (i and i+1) at a given time-step t, when ordered from least to
greatest. So the change in the staggering between two snapshots can be expressed as:

AS; = Sf — st

From the above definitions, we see that the marginal change assumption is fulfilled
when AR; « AS; between any two snapshots (since in this case there is no change in rate
greater than the staggering).

Given that the marginal change assumption is important, we make a few notes here.

1) As noted above, any distortion of the system dynamics during the transient period will
only be for the duration during which the marginal change assumption is not met; 2) For a
snapshot to not meet the marginal change assumption is unlikely and rare with
appropriately chosen snapshot sizes, since an appropriately chosen snapshot size will still
have FFPs as the vast majority of the events; 3) The probability of such a snapshot then
pushing the system configuration into a trajectory that will reach a different steady-state
(relative to what would be reached without throttling) is even lower, particularly since the
algorithm re-ranks the processes and re-calculates the throttling factors for every snapshot;
4) the probability for a snapshot to not meet the marginal change requirement (even
temporarily) is yet more rare during steady-state relative to during the transient period.
If a given process rank is projected to occur less than Nsites times in the maximum relevant
simulation time (MRST) -- which is 10 hours in the test case presented here -- then no
throttling is applied to that process rank at the current snapshot. These processes are
considered “negligibly slow processes” (NSPs) because these processes are so slow that
they should not drive significant change of the system on the relevant time scale nor be
significant participants in the primary reaction pathway. In addition, if extremely slow
poisoning processes happen to be autocatalytic, the risk of poisoning the surface would
increase by making these reactions occur more frequently. The choice of MRST is based
upon the reactor timescales that are relevant to the system of study, and the choice for
MRST will thus be system specific, leading to a threshold (EFN¢9"9"¢) helow which process
pairs are considered negligible. A process that starts as an NSP can of course become
relevant later during a simulation since the processes are re-ranked and re-classified after
every snapshot.

4. Results

The focus of the current section is the application of the SQERTSS algorithm to the sample
reaction network previously described in Section 2.3 and outlined in Table 1. The snapshot sizes
used were 10° KMC steps per snapshot for the throttled simulations and 108 KMC steps per
snapshot for the unthrottled simulations (the larger snapshot size was used for the unthrottled
simulations to provide better averaging of the EFs shown in the figures). The number of snapshots
was typically chosen to exceed 108 KMC steps per simulation, which was sufficient to achieve
converged system dynamics. The reaction model (consisting of the transition rate constants and
reactions) are a subset from one that is published. [35, 36] To test this algorithm, values of the
transition rate constants have been altered relative to those in the references provided in order to
find conditions where the CH breaking reactions (Reactions 10 and 11 in Table 1) were competitive
enough to result in sustained output fluxes of methanol, Hz, and formaldehyde, over sufficiently
long time-scales for the algorithm to be tested appropriately. The only incoming gas flux is that of
methanol, with the surface initially free of adsorbates, such that the first process to occur will be
methanol adsorption. Subsequently, dissociation of the methanol molecule to produce H* on the
surface can occur via reaction number 9. Various processes with low activation barriers occur
when H* is accumulated on the surface such as reaction number 3 and (when Ce** exists on the
surface) reaction number 2. These low activation barrier processes are responsible for the small
time-steps in an unthrottled simulation and give rise to the “KMC stiffness” that the throttling
algorithm has been developed to address.

The current section will describe the effectiveness, and relative differences, for each of the
throttling scales and the dynamic throttling scale algorithm. Additionally, the efficiency of
dynamically throttled simulations will be compared to that of unthrottled simulations for both
transient and steady-state cases based on the reaction system investigated. These comparisons will
be mainly focused around formaldehyde desorption events. To show the generality of this
algorithm, a fictional complex reaction network -- one designed to have multiple FFPs as well as
changing FRPs during the simulation -- has also been tested and is presented in supplementary
information. All simulations have been performed on a Linux virtual machine using an Intel Core
2 Duo CPU with a processing speed of 2.33 GHz and 4 GB of RAM.

The dynamic throttling algorithm as well as simulations constrained to each of the four
throttling scales shown in Figure 4 have been applied to a subset of the sample reaction network,
defined by reactions 1, 2, 8, 9, 10, and 13 from Table 1. The formaldehyde desorption event
frequencies observed for the dynamic throttling algorithm as well as the four constrained throttling
scale simulations are shown in Figure 6a and b for the same span of time (not the same span of
KMC steps). In Figure 6a, the series labelled “Dynamic” refers to the full dynamic throttling
algorithm, where the throttling algorithm can access all of the scales and progresses through the
throttling scales applied with increasing compression until the most accurate computationally
tractable compression is reached (and relaxes compression if needed). The grey, blue, and green
markers correspond to simulations where only a single compression scale is applied throughout

the simulation (e.g. the grey marker shows N&, . scaling applied to the fast processes and also
slow processes). Each of the scales is in good agreement with each other, as well as with the
dynamic throttling algorithm, giving confidence that even as compression of the time scales
increases, the system is still progressing along the same trajectory. We additionally ran a
simulation with NJ;,. scaling applied to the fast processes and no throttling applied to the slow
processes, and that simulation was also in line with the simulations presented here.

=

a) 5000 5000
B Dynamic
‘T’(_I; 4000 A N:ites FaSt + N;iles SIOW ‘Tw 4000
g v N, x10°"Fast+ N, x 107" Slow =
(8] P-1 P-1 o
S 3000 ® N, x1.17 Fast+Ng x1.1"" Slow S 3000
= =
3 3
[T 2000 T 2000
c I= [
© 1000 2 1000
L L
T T - T 1 0
0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03
Time (s) Time (s)

Figure 6. a) Comparison of formaldehyde production outputs from several throttling scales and the full dynamic throttling
algorithm when applied to the simplified reaction mechanism. b) Formaldehyde production from unthrottled simulation of the
simplified reaction mechanism. There is good agreement between the throttled and unthrottled simulations. The axes have been
made equal between these graphs for clarity. The output from the throttled simulations extends to much longer time scales, as
shown in Figure 7. In Figure 6a, not all symbols are visible as there is much overlap between the series plotted.

Comparing Figure 6a and Figure 6b shows that throttled simulations follow the same
reaction trajectory as an unthrottled simulation. When the unthrottled case is performed using the
same snapshot size as the throttled simulations, there are many points where the event frequency
for formaldehyde production is zero, due to the fact that the reaction mechanism is largely
dominated by FFPs during this time period. To further illustrate that the throttled simulation gives
the same output of formaldehyde production, the unthrottled formaldehyde-production and
throttled formaldehyde-production have been plotted together in Figure 7 (in units of event
frequency). As can be seen, the throttled reaction network was capable of reaching simulation
times significantly greater than the unthrottled reaction network. Figure 7 shows an order of
magnitude difference in simulation time between the throttled and unthrottled simulations, but in
fact the throttled data has been truncated and actually reached times on the order of 10* seconds
with the same number of KMC steps as the unthrottled simulation.

10000 5

® u ® Unthrottled
Ty 1000 4 @ Throttled

)

®
3 100
g]
S
10+
g ‘.
* 13 °
[[]
2 o1 ¢
w " °
[
001 Ty Ty LAY LAY LAY BRI LR ALY |
10° 10 107 10°
Time (s)

Figure 7. Comparison of the formaldehyde production event frequency for throttled and unthrottled simulations, when using the
dynamic form of the throttling algorithm. The throttled simulation overlaps with the unthrottled simulation, but is able to achieve
orders of magnitude higher timescales in the same computational time. The data is plotted on a log-log graph, and data points
with values of zero are not shown.

The simulations shown in Figure 6 and Figure 7 ultimately reach a steady-state
formaldehyde production of 0 molecules/s due to a poisoning of the surface. Thus, to further test
the algorithm, a second, larger subset of the full network’s reactions was used to produce a
simulation with a non-zero steady-state output of formaldehyde. This subset of reactions consists
of reactions 1, 2, 3, 8, 9, 10 and 13. That is, in addition to the reactions in the system for the
previous section, it also includes H™ hopping across the surface; this reaction is vital for promoting
the formation and desorption of H» (reaction 1), which frees up new sites for continued catalytic
turnover. The throttling algorithm was applied until steady-state was reached. A steady-state
surface configuration and the formaldehyde production rate from the throttled KMC simulation
are shown in Figure 8. The steady-state surface configuration was then run without the slow process
throttled, and also imported into a completely unthrottled KMC simulation to verify that the
dynamics were unchanged by the throttling. In this configuration, the throttled simulation
snapshots were about 0.01 s each. In the unthrottled simulation, the snapshots were on the order
of 10 swhen the same number of steps per snapshot was used, showing the effectiveness of the
throttling algorithm at decreasing the occurrence of FFPs. In the unthrottled simulation, the
simulation was dominated by H* hopping and electron transfer event FFPs. After 1500 snapshots
with 10° steps per snapshot, (>108 KMC steps and 0.01 s) the unthrottled simulation only produced
two formaldehyde molecules, while the throttled simulation was easily able to simulate on the
order of hundreds of seconds and the production of tens of thousands of formaldehyde molecules.

lo@-ooocoiyrq
[el aNeN N 1
a) {o-ooeoot si%== Methoxy

g

10000
scocecoodl
POO00O0O0C e
00000000
POCO IO D 8D
0 0 Dty O O D D O .
oo ﬁ‘\fﬁw'— Oxygen Sites
(e} :ﬁ-i i 0

CeeCOO00e0
LRl W R Nl W)
OO0 00D e 000
POCODC0O0D0 + :
-o-oo-oioo/ H" Species
CO0O000 R0

DeOe 8 e TS

0.1+ T ‘ T T T ‘
SO0 4 ob e
000 » *0 0 50 100 150 200 250 300
Time (s)
Figure 8. a) A surface configuration exported from a KMC simulation during steady-state formaldehyde production using the

dynamic throttling algorithm. b) Formaldehyde production from a KMC simulation which achieves steady state using the
dynamic throttling algorithm.

1000

100

10

1 -

Event Frequency (s™)

5. Discussion
5.1 Discussion of Results, Limitations, and Efficiency

In general, a chemical reaction system may have one or more steady states that are
accessible from a given initial configuration of species. When more than one steady-state is
accessible, the system can be called a “multistable” system. As noted previously, the SQERTSS
algorithm only throttles the slow process as a last resort, if necessary to achieve computational
tractability. In the supporting information, we follow the approach taken by Chatterjee and
Voter[38] to justify what happens in the following two cases. 1) When the slow processes do not
need to be throttled to achieve computational tractability, the SQERTSS algorithm will not distort
the system trajectory towards any accessible steady states. 2) When the slow cases must be
throttled to achieve computational tractability, the SQERTSS algorithm is still likely to follow the
same trajectory that would be followed in the absence of throttling. In general, SQERTSS is
designed to enable simulations that would not otherwise be possible while attempting to minimize
the errors given the computational resources available (a paragraph on this philosophy is provided
in the supporting information).

Figure 6 and Figure 7 demonstrate the similarity in dynamics between the three throttling
scales providing confidence that none of the throttling scales produced significant distortion of this
model. By comparison to the unthrottled simulations in those figures, it is shown that the transient
behavior of this particular reaction network is well reproduced by the throttled simulations. In this
example, even the time progression of the throttled simulation matched that of the unthrottled
simulation. The fact that time progression matched so well between the throttled and unthrottled
simulations can be regarded as fortuitous. In general, this algorithm is likely to reproduce the same
configurational trajectory during transient kinetics, but is likely to distort the time-steps. However,
since the configuration-space trajectory should not be distorted, if there is a unique steady-state
(for a given reaction network), the throttling algorithm will drive the system toward that steady-

state. Thus, for systems that may not otherwise be computationally tractable, this algorithm enables
simulating the configuration trajectory towards steady-state, and also (perhaps more importantly)
enables simulating the steady-state once it is reached. Even if the steady-state were already known,
it would generally be computationally intractable to simulate without throttling for cases where
there are FFPs present that span more than several orders of magnitude. Once a steady-state is
achieved, it is prudent to try running an additional simulation using that configuration as a starting
point and the slow reactions completely unthrottled, in order to verify that the system’s dynamics
do not change: This verification is included in the algorithm presented here (SQERTSS Algorithmic
Steps to Simulate Steady State), at the end of the flowchart of Figure 5.

Within the throttling algorithm, the SPs are periodically unthrottled after M snapshots. In
this study, periodic unthrottling occurred after every M=10 snapshots. This periodic unthrottling
allows for a partial relaxation of the system to occur by slowing down the SPs back to their normal
rates for a single snapshot. Thus, during these snapshots, in this example simulation, the slower
gas production events would be less likely to occur relative to other throttled snapshots and faster
reversible events such as hopping between sites would be more likely to occur (but the time passed
during the throttled snapshot would also decrease, so the observed event frequencies of product
generation remain unaffected). As the simulation progresses towards steady-state, the FFPs (such
as H* hopping) remain throttled. Once the simulation has reached steady-state, the throttling
factors stabilize after the system has converged, such that further throttling does not occur. Being
able to access the steady-state during simulation is a consequence of the throttling algorithm
allowing for the FFPs to occur, while not allowing the FFPs to dominate the calculations as they
typically would.

There is some flexibility in the final throttling factors achieved: the final set of FFP
transition rate constants could be throttled up or down (somewhat) without affecting the system
dynamics. Thus, the EFRan%¢-Red and FFPF°" have order-of-magnitude acceptable ranges of values
to achieve the same steady-state without distorting the system dynamics. The FFP™°" prevents
the FFPs from becoming too slow relative to processes that may suddenly appear or increase in
frequency. When only QE processes are present, the system is in a metastable state which can be
exited either due to accessing a rare configuration or accessing a long enough time-scale for a rare
process. As described earlier in this paper, we do not have a way of predicting which exit path the
simulation will take to have a non QE process occur. Slowing down the QE processes will increase
the probability of a rare process occurring without distorting the configuration space that is
explored. However, if the processes are throttled too far the simulation time may be significantly
distorted when a rare configuration is one of the exit paths. We must make a compromise for how
far we are willing to throttle the transition probabilities of the QE processes in order to encourage
the likelihood of a rare process occurring (keeping in mind that it may instead be a rare
configuration that exits the simulation from the state). As an approximation, we have calculated a
floor value for how far the QE transition probabilities can be throttled to minimize the distortion
of the times associated with the snapshots based on the characteristic timescale of the slowest QE

process. The characteristic timescale is often given by the half-life of the process, and for a first
order process the solution is:

tie = In(2)/k

For example, if we want the time-steps to be no larger than 10 s, then the floor of k takes an
approximate value of 10® s, This implies that if the system enters a state in which only QE
processes exist and remains there for many steps, that the lowest transition rate constant will be
throttled no further than 108 s and that the time-steps will be on the order of 10®s. Once a non
QE process enters in to the realm of possibility, the KMC time-steps will then become larger,
resulting in more time elapsed per snapshot, and the metastable state will also naturally be exited.
If we can afford simulating 10° configurations to get out of a metastable state, then we are capable
of capturing the exit from any metastable state that lasts 1 second or less. Additionally, the above
choices imply that the time distortion will be insignificant provided that the FRP is significantly
slower than the FFPF°" during steady-state. These two time-related limits are the ones that
become affected by the choice of the floor. In practice, the floor should be chosen based on what
timescales are expected to be relevant (i.e., to keep the FFPs much faster than the timescales of
interest). In principle, if there is no experimental knowledge of what timescale is relevant, the floor
could be chosen empirically (i.e., by trial and error). We chose a floor that was orders of magnitude
faster than the timescales we were simulating; then we checked that the floor had no effect by
setting the floor more conservatively (i.e., by making the floor higher by two orders of magnitude,
from to 10° s and 108 s%) and verifying that this did not change the simulation. The simulations
with floors of from to 10° s and 10® s were identical, which is an indication that the floor value
of 10°s* did not distort the time-steps.

The implemented throttling algorithm is effective at identifying QE FFPs that move in a
back and forth direction (e.g. A <> B), where QE behavior is identified by investigating the ratio
of the occurrence of the forward and reverse processes. When this ratio reflects that the forward
and reverse processes are close to equal, a QE is identified. A current limitation of the SQERTSS
algorithm is that it is unable to identify non-QE FFPs such as loops (e.g. A — B — C — A).

The algorithm was shown to be effective at slowing down QE FFPs (and speeding up SPs)
sufficiently to allow for a steady-state production of gas products H; and formaldehyde in the
reaction system studied, where both gas production processes had steady-state event frequencies
on the order of ~1-3 molecules/s. In contrast, the unthrottled simulation resulted in primarily H*
hopping events and other QE FFPs even if a steady-state configuration found by the throttled
simulation was fed as a starting point into the unthrottled simulation. The time-steps in the
unthrottled simulation were approximately six orders of magnitude smaller. As a consequence, the
unthrottled simulation would need to perform ~10° snapshots in order to see between one and
several gas molecule production events (which would still not be enough to accurately capture the
statistics). Likewise, within the scope of the investigation of this particular chemical reaction
network, the maximum relevant simulation-time is on the order of 10 h. With the throttling

algorithm simulation, this 10 h simulation-time is computationally feasible in a matter of hours of
CPU time and requires on the order of 10* snapshots. Without throttling, the computational time
(wall clock time) is significantly increased and would require an estimated 10! snapshots to
achieve 10 h, which would require on the order of 107 hours.

5.2 Comparison of SQERTSS to AS-KMC and comment on migration between multistable steady
states

There is a similar method to SQERTSS called accelerated superbasin KMC (AS-
KMC).[38] To compare SQERTSS to AS-KMC, we start with connecting the terminology used
by Chaterjee and Voter[38] to the terminology used in this work. The system can be considered to
reside on a potential energy surface in which the transition between global spatial configurations
is a transition between basins (potential energy wells). A superbasin is then a region of the
potential energy surface where the system can become temporarily trapped within a set of basins
(a set of global configurations) for an extended period of time. Each steady-state achieved in
catalytic reactions is actually a superbasin comprising a set of global spatial configurations. These
catalytic steady states are non-equilibrated superbasins, but may have some quasi-equilibrated
processes within the steady-state. Having connected the terminology, we can now compare
SQERTSS to AS-KMC. AS-KMC is to simulate the migration out of quasi-equilibrated
superbasins. In contrast, SQERTSS is to simulate migration into and within non-equilibrated
superbasins. Thus, the two codes serve different purposes. One important distinction is that
because AS-KMC requires quasi-equilibrated superbasins (this is a strict requirement of AS-
KMC), the probabilities of finding the system in a particular global spatial configuration can be
calculated explicitly using thermodynamics. This is why AS-KMC can be used to calculate the
escape from a quasi-equilibrated superbasin, but cannot be used to calculate migration into/out
of/within a non-equilibrated superbasin. In catalytic transient states, as well as catalytic steady
states, the system is non-equilibrium, so the probability of any global configuration cannot be
calculated using thermodynamics and AS-KMC cannot be used. In principle, AS-KMC should
be more efficient than SQERTSS (because the staggering does not need to be maintained), and
thus AS-KMC should be used over SQERTSS for calculating the escape flux from quasi-
equilibrated superbasins. For cases where AS-KMC cannot be used, such as calculating the
dynamics or flux into/out of/within a non-equilibrated superbasin, SQERTSS should be used.

Having distinguished between the two methods at a qualitative level, we can now add a
comment on the migration between multistable steady states, following the ideas laid forth by
Chatterjee and Voter. Consider a chemical system where the system can convert between two
bistable catalytic steady states, corresponding to a high catalytic activity FRP rate and a low
catalytic activity FRP rate. These represent different regions on the potential energy surface which
we can call Regions H and Region L. We can call the larger region of all states external to these
regions as Region O. Going from region L to region H (and vice versa) thus requires the system to
first migrate into Region O. The frequency of leaving the steady state with a low catalytic FRP
(going from Region L to Region O) is then given by:

fL—0 = E E TTL,iWL,i-0,j
i

Where m;,; is the probability of being located in global configuration i inside region L, and wy ;_ ;
is the transition rate constant to global configuration j inside region O. similar expressions can be
written for the other terms related to the frequency of leaving and entering Regions L and H (four
terms total). Further explanation of this concept of migration between regions, including a figure,
is available in the supporting information. For systems where all the transitions are at quasi-
equilibrium, the = terms can be calculated a priori using thermodynamics (and that is the approach
used in AS-KMC). However, when the system is not at quasi-equilibrium -- which is the situation
that SQERTSS has been primarily designed for -- it is not possible to calculate the = terms a priori.
However, it would be possible to make an advance in simulations of these types of systems by
combining AS-KMC and SQERTSS. Although the m terms of global configurations within the
super basin of a catalytic steady-state are not analytically calculable a priori, it would be possible
to statistically accumulate the probabilities of each global configuration within a non-equilibrium
steady-state region by running SQERTSS in that superbasin for an extended period of time. Thus,
the 7 terms can be calculated a posteriori from a SQERTSS simulation. It would then be possible
to create effective thermodynamics for the non-equilibrium superbasin, which would enable
applying AS-KMC to transition out of non-equilibrium superbasins, including for catalytic steady
states. Thus, it should be possible to extend AS-KMC to non-equilibrated superbasins using
SQERTSS, which would enable even further accelerated simulations of the migrations between
bistable (or multistable) non-equilibrium steady states. Such an undertaking would solve (another)
currently unsolved problem, but is obviously beyond the scope of the current work.

6. Conclusions

A dynamic throttling algorithm, SQERTSS, based on speed-ranking and identification of
quasi-equilibrium fast frivolous processes followed by throttling, has been developed and
implemented for use in lattice KMC simulations. The algorithm has been applied to two chemical
reaction networks, each containing reaction processes encompassing multiple orders of magnitude
in reaction rates. By identifying and dynamically throttling the FFPs and SPs, steady-state
conditions have been achieved with a significant improvement in the computational efficiency of
the KMC. For the larger reaction network simulated, simulation times > 300 s were easily
computed (in minutes), whereas in the unthrottled case, even simulation times on the order of 1 s
required an additional several orders of magnitude in computational expense. The algorithm is
designed to follow the correct trajectory for system dynamics during both steady-state and transient
Kinetic periods, and is designed to provide the correct time-steps and product formation event
frequencies during steady-state periods. For the systems in this work, the dynamic throttling
algorithm was shown to produce the same transient and steady-state output as unthrottled

simulations. Though it is beyond the scope of this work, a further acceleration could be achieved
for transitions between multistable steady states if AS-KMC were combined with SQERTSS and
statistical sampling of the configurations in the relevant steady states.

Acknowledgments

Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge

National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

References

[1] D. Mei, J. Du, M. Neurock, Ind. Eng. Chem. Res., 49 (2010) 10364-103737.

[2] M. Stamatakis, D.G. Vlachos, ACS Catalysis, 2 (2012) 2648-2663.

[3] E.W. Hansen, M. Neurock, Journal of Catalysis, 196 (2000) 241-252.

[4] A. Farkas, F. Hess, H. Over, The Journal of Physical Chemistry C, 116 (2012) 581-591.

[5] A.P.J. Jansen, J.J. Lukkien, Catalysis Today, 53 (1999) 259-271.

[6] O. Deutschmann, Modeling and Simulation of Heterogeneous Catalytic Reactions: From the
Molecular Process to the Technical System, Wiley2013.

[7] A.P.J. Jansen, An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions, Springer
Berlin Heidelberg2012.

[8] B. Temel, H. Meskine, K. Reuter, M. Scheffler, H. Metiu, The Journal of Chemical Physics, 126 (2007)
204711.

[9] K. Reuter, D. Frenkel, M. Scheffler, Physical Review Letters, 93 (2004) 116105.

[10] R.M. Nieminen, A.P.J. Jansen, Applied Catalysis A: General, 160 (1997) 99-123.

[11] C. Wu, D.J. Schmidt, C. Wolverton, W.F. Schneider, Journal of Catalysis, 286 (2012) 88-94.

[12] D. Hibbitts, E. Dybeck, T. Lawlor, M. Neurock, E. Iglesia, Journal of Catalysis, 337 (2016) 91-101.
[13] S.A. Trygubenko, D.J. Wales, J Chem Phys, 124 (2006) 234110.

[14] C.S. Deo, D.J. Srolovitz, Modelling Simul. Mater. Sci. Eng., 10 (2002) 581-596.

[15] C.D. VanSiclen, J Phys Condens Matter, 19 (2007) 072201.

[16] B. Puchala, M.L. Falk, K. Garikipati,] Chem Phys, 132 (2010) 134104.

[17] M.A. Novotny, Phys Rev Lett, 74 (1995) 1-5.

[18] D.R. Mason, R.E. Rudd, A.P. Sutton, Computer Physics Communications, 160 (2004) 140-157.

[19] D.G. Vlachos, Phys Rev E Stat Nonlin Soft Matter Phys, 78 (2008) 046713.

[20] A. Chatterjee, D.G. Vlachos, Journal of Computational Physics, 211 (2006) 596-615.

[21] D.T. Gillespie, Journal of Chemical Physics, 115 (2001) 1716-1733.

[22] A. Chatterjee, K. Mayawala, J.S. Edwards, D.G. Vlachos, Bioinformatics, 21 (2005) 2136-2137.
[23] A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, The journal of Chemical Physics, 122 (2005) 024112.
[24] Z. Zheng, R.M. Stephens, R.D. Braatz, R.C. Alkire, L.R. Petzold, Journal of Computational Physics, 227
(2008) 5184-5199.

[25] C.V. Rao, A.P. Arkin, The Journal of Chemical Physics, 118 (2003) 4999.

[26] V.G. Gorskii, M.Z. Zeinaloc, Theoretical Foundations of Chemical Engineering, 37 (2003) 184-190.
[27] A. Agarwal, R. Adams, G.C. Castellani, H.Z. Shouval,] Chem Phys, 137 (2012) 044105.

[28] T.R. Young, J.P. Boris, The Journal of Physical Chemistry, 81 (1977) 2424-2427.

[29] M.A. Snyder, A. Chatterjee, D.G. Vlachos, Computers & Chemical Engineering, 29 (2005) 701-712.
[30] M.J. Hoffmann, S. Matera, K. Reuter, Computer Physics Communications, 185 (2014) 2138-2150.
[31] K.A. Fichthorn, W.H. Weinberg, The Journal of Chemical Physics, 95 (1991) 1090.

[32] D.T. Gillespie, The journal of Chemical Physics, 81 (1977) 2340-2361.

[33] D.T. Gillespie, Journal of Computational Physics, 22 (1976) 403-434.

[34] A.B. Bortz, M.H. Kalos, J.L. Lebowitz, Journal of Computational Physics, 17 (1975) 10-18.
[35] A. Savara, Journal of Physical Chemistry C, Submitted (2016).

[36] A. Savara, Surface Science, 653 (2016) 169-180.

[37] T. Danielson, C. Hin, A. Savara, Journal of Chemical Physics, 145 (2016).

[38] A. Chatterjee, A.F. Voter, Journal of Chemical Physics, 132 (2010).

Appendix |

The throttling algorithm can be expressed in mathematical pseudocode, with the following
variable names, where brackets indicate sets and all other variables are scalars.

EFRange-Red: The value for EF?" required for the simulation to achieve relevant
simulation timescales within the computational resources and wall clock time provided.
The possible ranges are calculated according to the scales in Table 3.

EFRange-Pred:-The value for EFRa"% that is predicted for the next snapshot given a particular
throttling scale, based on the first bulleted assumption in Section 3. (i.e. EFRange-Pred —
TEFastestp | Fastesty TSlowestp | Slowest \yhere TEFaStest gnd TFSIOWest gre the throttling factors
for the fastest and slowest processes)

[E FRange-Pred-Allowed] - The set of possible EFRa%e-Pred that are less than EFRa"9e-Red gjven the
throttling scales listed in Table 3. [EFRange-Pred-Allowed] js thys a subset of the possible
ranges from the scales in Table 3 and excludes any scalings that have event frequency
ranges greater than EFRange-Red,

(Sr,Ss): The set of throttling scales for fast (Sr = [0,3]) and slow (Ss= [0,3]) processes
EF': Process event frequencies of rank i (this can be one or two processes depending on if
there is both a forward and reverse process)

EFnegligible: The cutoff such that any process pair whose event frequencies are lower than
this value is not considered

@ is the reaction number that a given process corresponds to.

A is the direction (F or R) of a given process, for a given reaction.

P?#: The process with reaction & and direction A

[P]: The set of all processes.

EF®: The event frequency for the forward process of reaction @

EF®X: The event frequency for the reverse process of reaction @

EF®*: The event frequency for a particular process of reaction @ and direction A, such
that 4 can take values of either R or F

EF®: The event frequency for the opposite direction of a particular process of reaction
@ and direction 4, such that EF®* is the opposite direction of EF®*

EF?: The event frequencies pair for reaction number @

[EF-YF | EFLR]: This denotes the pair of forward and reverse processes whose rank, i, is
located in the next slowest position to a reference process rank

[EF'F, EF'R]: This denotes the pair of forward and reverse processes whose rank, i, is the

reference process rank

[EF™*F EF*LR]: This denotes the pair of forward and reverse processes whose rank, i, is
located in the next fastest position to a reference process

[EF]&,: list of all individual event frequencies, with indices of ¢ and 4

EFFastest: The fastest process event frequency within [EF] s,

EFSlowest: The slowest process event frequency within [EF] .

[FRP]: Set of processes which includes only one process pair, defined as the fastest non-
QE process pair

[FFP]: Set of Fast Frivolous processes, includes all QE process pairs which have EFs
faster than the FRP (if only QE processes exist, all processes are considered FFPS)

[SP]: Set of rate limiting processes slower than the FRP.

Se: Throttling scale for FFPs

Ss: Throttling scale for SPs

TF': The throttling factor for processes rank i

RC?*: The original rate constant for reaction 4, with direction A

[RC] & ..: The set of all current transition rate constants, with indices of ¢ and 4

FFPrioor: The minimum EF value to which an FFP will be throttled

[TF]e.. = The all-inclusive list of throttling factors (this has a one to one correspondence
with [EF])

FFPster down: The factor by which processes are throttled down when only FFPs exist (this
is a user defined parameter and has been taken as 0.1 for the current work)

The following symbols are used:

¥ means “for all”

Fmeans “there exists”

Z means “there does not exist”

The syntax (Sr,Ss) = {(a,b) | EFRa"9e-Pred(g p) = Max [EFRange-Pred-Allowed] } megns:
choosing values of “a” and “b” for Sr and Sssuch that EFRa"%-Pred(g b) is equal to the
maximum value in the set [EFRange-Pred-Allowed]

The algorithm can be expressed as follows:

0. Setm =0. Run a KMC snapshot with no throttling applied. Increase m by 1.
1. Gather process event frequencies into [EF]#, from most recent snapshot and classify
the processes.
a. VEF?if ((EF?F&EF®®)< EFnegligibe) remove EF?*&EF?X from [EF] 4.
b. For each element of [P], classify processes for each combination of @,4 as follows.
i. classify P?* e [FFP] if (EF®* ~ EF®* and [EF*%, EF""*] > Max(FRP)),
or if (EF®* ~EF®* and [FRP]=@)
ii. classify P®*c[FRP] if EF®* =Max[non-FFPs]
iii. classify P?* ¢ /SP] if (EF®* ¢ [FRP] and EF®* ¢ /FFP])
2. Calculate TFs:
a. If3P%* ¢ [FFP]

i. Then for VTF', set TF' based on throttling scale (Sr,Ss) = {(a,b) | EFR?anee-
Pred(a,b) = Max [EFRange-Pred-Allowed] }
b. If YP? e [FFP]
i. If EFSIowest > FEPqr then VTF, TF = Min(FFPSEP 9O EEPg oo /EFSIOWest)
c. Ifmod(m/M)=0,
i. Then V[SP] set TF'=1 (equivalent to TS"=0)
3. VRC%* e [RC?4], apply TF' * RC®%. Run a snapshot, and increase m by 1.
4. Repeat Steps 1-3 until steady state is reached.
5. Run > M snapshots with slow processes unthrottled
a. This means running steps 1-3 repeatedly, except that the “if” statement in Step 2¢
is removed, such that ¥[SP] set TF'=1 occurs every snapshot.

